--- base_model: Qwen/Qwen2-VL-2B-Instruct library_name: transformers model_name: qwen_report tags: - trl - sft - Image-Text-to-Text - Transformers - Safetensors - English - qwen2_5_vl - multimodal licence: license datasets: - eltorio/ROCOv2-radiology pipeline_tag: image-text-to-text --- # Model Card for qwen_report This model is a fine-tuned version of [Qwen/Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import AutoModelForVision2Seq, AutoProcessor, BitsAndBytesConfig import torch # Hugging Face model id model_id = "BoghdadyJR/qwen_report" # BitsAndBytesConfig int-4 config bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) model = AutoModelForVision2Seq.from_pretrained( model_id, device_map="auto", torch_dtype=torch.float16, quantization_config=bnb_config ) processor = AutoProcessor.from_pretrained(model_id) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.15.1 - Transformers: 4.48.3 - Pytorch: 2.5.1+cu124 - Datasets: 3.3.1 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```