Upload 3 files
Browse files- config.json +14 -3
- modeling_bvv_pro.py +156 -0
- tokenizer_config.json +5 -2
config.json
CHANGED
@@ -1,9 +1,20 @@
|
|
1 |
{
|
2 |
-
"
|
3 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
"bos_token": "<s>",
|
5 |
"eos_token": "</s>",
|
6 |
"unk_token": "<unk>",
|
7 |
"pad_token": "<pad>",
|
8 |
-
"
|
9 |
}
|
|
|
1 |
{
|
2 |
+
"architectures": ["BVVProForCausalLM"],
|
3 |
+
"auto_map": {
|
4 |
+
"AutoConfig": "modeling_bvv_pro.BVVProConfig",
|
5 |
+
"AutoModel": "modeling_bvv_pro.BVVProForCausalLM",
|
6 |
+
"AutoModelForCausalLM": "modeling_bvv_pro.BVVProForCausalLM"
|
7 |
+
},
|
8 |
+
"model_type": "bvv_pro",
|
9 |
+
"vocab_size": 65536,
|
10 |
+
"block_size ": 1024,
|
11 |
+
"n_embd": 1024,
|
12 |
+
"n_layer": 8,
|
13 |
+
"n_head": 8,
|
14 |
+
"pad_id": 57344,
|
15 |
"bos_token": "<s>",
|
16 |
"eos_token": "</s>",
|
17 |
"unk_token": "<unk>",
|
18 |
"pad_token": "<pad>",
|
19 |
+
"torch_dtype": "float32"
|
20 |
}
|
modeling_bvv_pro.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
2 |
+
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from transformers.modeling_outputs import CausalLMOutput
|
7 |
+
|
8 |
+
class BVVProConfig(PretrainedConfig):
|
9 |
+
model_type = "bvv_pro"
|
10 |
+
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
vocab_size = 65536,
|
14 |
+
n_embd = 1024,
|
15 |
+
n_head = 8,
|
16 |
+
n_layer = 8,
|
17 |
+
block_size = 1024,
|
18 |
+
pad_id = 57344,
|
19 |
+
**kwargs
|
20 |
+
):
|
21 |
+
super().__init__(**kwargs)
|
22 |
+
self.vocab_size = vocab_size
|
23 |
+
self.block_size = block_size
|
24 |
+
self.n_embd = n_embd
|
25 |
+
self.n_layer = n_layer
|
26 |
+
self.n_head = n_head
|
27 |
+
self.pad_id = pad_id
|
28 |
+
|
29 |
+
class SimpleSelfAttentionHead(nn.Module):
|
30 |
+
def __init__(self, head_size, n_embd, block_size):
|
31 |
+
super().__init__()
|
32 |
+
self.q_proj = nn.Linear(n_embd, head_size, bias=False)
|
33 |
+
self.k_proj = nn.Linear(n_embd, head_size, bias=False)
|
34 |
+
self.v_proj = nn.Linear(n_embd, head_size, bias=False)
|
35 |
+
self.o_proj = nn.Linear(head_size, head_size, bias=False)
|
36 |
+
|
37 |
+
self.dropout = nn.Dropout(0.0)
|
38 |
+
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
|
39 |
+
|
40 |
+
def forward(self, x):
|
41 |
+
B, T, C = x.shape
|
42 |
+
q = self.q_proj(x) # (B,T,head_size)
|
43 |
+
k = self.k_proj(x)
|
44 |
+
v = self.v_proj(x)
|
45 |
+
|
46 |
+
attn_scores = q @ k.transpose(-2, -1) * (k.shape[-1] ** -0.5) # (B,T,T)
|
47 |
+
|
48 |
+
attn_scores = attn_scores.masked_fill(self.tril[:T, :T] == 0, torch.finfo(attn_scores.dtype).min) #float('-inf'))
|
49 |
+
|
50 |
+
attn_probs = F.softmax(attn_scores, dim=-1)
|
51 |
+
attn_probs = self.dropout(attn_probs)
|
52 |
+
|
53 |
+
out = attn_probs @ v # (B,T,head_size)
|
54 |
+
out = self.o_proj(out) # (B,T,head_size)
|
55 |
+
|
56 |
+
return out
|
57 |
+
|
58 |
+
class SimpleMultiHeadSelfAttention(nn.Module):
|
59 |
+
def __init__(self, n_embd, n_head, block_size):
|
60 |
+
super().__init__()
|
61 |
+
self.head_size = n_embd // n_head
|
62 |
+
self.heads = nn.ModuleList([SimpleSelfAttentionHead(self.head_size, n_embd, block_size) for _ in range(n_head)])
|
63 |
+
self.out_proj = nn.Linear(n_head * self.head_size, n_embd)
|
64 |
+
self.dropout = nn.Dropout(0.0)
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
out = torch.cat([head(x) for head in self.heads], dim=-1)
|
68 |
+
out = self.dropout(self.out_proj(out))
|
69 |
+
return out
|
70 |
+
|
71 |
+
class TransformerMLP(nn.Module):
|
72 |
+
def __init__(self, n_embd):
|
73 |
+
super().__init__()
|
74 |
+
self.net = nn.Sequential(
|
75 |
+
nn.Linear(n_embd, 4 * n_embd),
|
76 |
+
nn.GELU(),
|
77 |
+
nn.Linear(4 * n_embd, n_embd),
|
78 |
+
nn.Dropout(0.0),
|
79 |
+
)
|
80 |
+
|
81 |
+
def forward(self, x):
|
82 |
+
return self.net(x)
|
83 |
+
|
84 |
+
class TransformerBlock(nn.Module):
|
85 |
+
def __init__(self, n_embd, n_head, block_size):
|
86 |
+
super().__init__()
|
87 |
+
self.self_attn = SimpleMultiHeadSelfAttention(n_embd, n_head, block_size)
|
88 |
+
self.mlp = TransformerMLP(n_embd)
|
89 |
+
self.input_layernorm = nn.LayerNorm(n_embd)
|
90 |
+
self.post_attention_layernorm = nn.LayerNorm(n_embd)
|
91 |
+
|
92 |
+
def forward(self, x):
|
93 |
+
x = x + self.self_attn(self.input_layernorm(x))
|
94 |
+
x = x + self.mlp(self.post_attention_layernorm(x))
|
95 |
+
return x
|
96 |
+
|
97 |
+
class BVVProForCausalLM(PreTrainedModel):
|
98 |
+
config_class = BVVProConfig
|
99 |
+
|
100 |
+
def __init__(self, config):
|
101 |
+
super().__init__(config)
|
102 |
+
self.token_embeddings = nn.Embedding(config.vocab_size, config.n_embd)
|
103 |
+
self.position_embeddings = nn.Embedding(config.block_size, config.n_embd)
|
104 |
+
self.transformer_layers = nn.Sequential(*[
|
105 |
+
TransformerBlock(config.n_embd, n_head=config.n_head, block_size=config.block_size) for _ in range(config.n_layer)
|
106 |
+
])
|
107 |
+
self.final_layernorm = nn.LayerNorm(config.n_embd)
|
108 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
|
109 |
+
|
110 |
+
self.apply(self._init_weights)
|
111 |
+
|
112 |
+
def _init_weights(self, module):
|
113 |
+
if isinstance(module, nn.Linear):
|
114 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
115 |
+
if module.bias is not None:
|
116 |
+
torch.nn.init.zeros_(module.bias)
|
117 |
+
elif isinstance(module, nn.Embedding):
|
118 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
119 |
+
|
120 |
+
|
121 |
+
def forward(self, idx, targets=None):
|
122 |
+
B, T = idx.shape
|
123 |
+
|
124 |
+
positions = torch.arange(0, T, device=idx.device).unsqueeze(0).expand(B, T)
|
125 |
+
|
126 |
+
x = self.token_embeddings(idx) + self.position_embeddings(positions)
|
127 |
+
|
128 |
+
x = self.transformer_layers(x)
|
129 |
+
x = self.final_layernorm(x)
|
130 |
+
logits = self.lm_head(x)
|
131 |
+
|
132 |
+
loss = None
|
133 |
+
if targets is not None:
|
134 |
+
#logits_flat = logits.view(-1, logits.size(-1))
|
135 |
+
#targets_flat = targets.view(-1)
|
136 |
+
logits_flat = logits.reshape(-1, logits.size(-1))
|
137 |
+
targets_flat = targets.reshape(-1)
|
138 |
+
loss = F.cross_entropy(logits_flat, targets_flat, ignore_index = 57344)
|
139 |
+
|
140 |
+
return CausalLMOutput(
|
141 |
+
logits=logits,
|
142 |
+
loss=loss,
|
143 |
+
)
|
144 |
+
|
145 |
+
def generate(self, idx, max_new_tokens):
|
146 |
+
with torch.no_grad():
|
147 |
+
for _ in range(max_new_tokens):
|
148 |
+
idx_cond = idx[:, -self.config.block_size:]
|
149 |
+
outputs = self(idx_cond)
|
150 |
+
logits = outputs.logits
|
151 |
+
logits = logits[:, -1, :]
|
152 |
+
probs = F.softmax(logits, dim=-1)
|
153 |
+
idx_next = torch.multinomial(probs, num_samples=1)
|
154 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
155 |
+
|
156 |
+
return idx
|
tokenizer_config.json
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
{
|
|
|
|
|
|
|
|
|
2 |
"unk_token": "<unk>",
|
3 |
"pad_token": "<pad>",
|
4 |
-
"
|
5 |
-
"eos_token": "</s>"
|
6 |
}
|
|
|
1 |
{
|
2 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
3 |
+
"model_type": "gpt2",
|
4 |
+
"bos_token": "<s>",
|
5 |
+
"eos_token": "</s>",
|
6 |
"unk_token": "<unk>",
|
7 |
"pad_token": "<pad>",
|
8 |
+
"vocab_size": 65536
|
|
|
9 |
}
|