Upload 3 files
Browse files- config.json +14 -3
- modeling_bvv_best.py +243 -0
config.json
CHANGED
@@ -1,9 +1,20 @@
|
|
1 |
{
|
2 |
-
"
|
3 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
"bos_token": "<s>",
|
5 |
"eos_token": "</s>",
|
6 |
"unk_token": "<unk>",
|
7 |
"pad_token": "<pad>",
|
8 |
-
"
|
9 |
}
|
|
|
1 |
{
|
2 |
+
"architectures": ["BVVBestForCausalLM"],
|
3 |
+
"auto_map": {
|
4 |
+
"AutoConfig": "modeling_bvv_best.BVVBestConfig",
|
5 |
+
"AutoModel": "modeling_bvv_best.BVVBestForCausalLM",
|
6 |
+
"AutoModelForCausalLM": "modeling_bvv_best.BVVBestForCausalLM"
|
7 |
+
},
|
8 |
+
"model_type": "bvv_best",
|
9 |
+
"vocab_size": 131072,
|
10 |
+
"block_size ": 1024,
|
11 |
+
"n_embd": 1024,
|
12 |
+
"n_layer": 16,
|
13 |
+
"n_head": 32,
|
14 |
+
"pad_id": 57344,
|
15 |
"bos_token": "<s>",
|
16 |
"eos_token": "</s>",
|
17 |
"unk_token": "<unk>",
|
18 |
"pad_token": "<pad>",
|
19 |
+
"torch_dtype": "float32"
|
20 |
}
|
modeling_bvv_best.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
2 |
+
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from transformers.modeling_outputs import CausalLMOutput
|
7 |
+
|
8 |
+
class BVVBestConfig(PretrainedConfig):
|
9 |
+
model_type = "bvv_best"
|
10 |
+
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
vocab_size = 131072,
|
14 |
+
n_embd = 1024,
|
15 |
+
n_head = 32,
|
16 |
+
n_layer = 16,
|
17 |
+
block_size = 1024,
|
18 |
+
pad_id = 57344,
|
19 |
+
**kwargs
|
20 |
+
):
|
21 |
+
super().__init__(**kwargs)
|
22 |
+
self.vocab_size = vocab_size
|
23 |
+
self.block_size = block_size
|
24 |
+
self.n_embd = n_embd
|
25 |
+
self.n_layer = n_layer
|
26 |
+
self.n_head = n_head
|
27 |
+
self.pad_id = pad_id
|
28 |
+
|
29 |
+
class RotaryEmbedding(nn.Module):
|
30 |
+
def __init__(self, dim): # dim = head_dim (?? n_embd!)
|
31 |
+
super().__init__()
|
32 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
33 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
34 |
+
|
35 |
+
def forward(self, seq_len, device):
|
36 |
+
t = torch.arange(seq_len, device=device, dtype=self.inv_freq.dtype)
|
37 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
38 |
+
emb = torch.cat([freqs, freqs], dim=-1) # (seq_len, dim)
|
39 |
+
return emb
|
40 |
+
|
41 |
+
def apply_rotary_emb(x, rot_emb):
|
42 |
+
# x: (B, n_head, seq_len, head_dim)
|
43 |
+
# rot_emb: (seq_len, head_dim)
|
44 |
+
seq_len = x.shape[-2]
|
45 |
+
rot_emb = rot_emb[:seq_len]
|
46 |
+
|
47 |
+
cos = torch.cos(rot_emb).unsqueeze(0).unsqueeze(0) # (1, 1, seq_len, head_dim)
|
48 |
+
sin = torch.sin(rot_emb).unsqueeze(0).unsqueeze(0)
|
49 |
+
|
50 |
+
x_shape = x.shape
|
51 |
+
x = x.reshape(*x_shape[:-1], -1, 2) # (..., head_dim/2, 2)
|
52 |
+
x1 = x[..., 0]
|
53 |
+
x2 = x[..., 1]
|
54 |
+
|
55 |
+
cos = cos.reshape(*cos.shape[:-1], -1, 2)[..., 0]
|
56 |
+
sin = sin.reshape(*sin.shape[:-1], -1, 2)[..., 0]
|
57 |
+
|
58 |
+
x1_rot = x1 * cos - x2 * sin
|
59 |
+
x2_rot = x1 * sin + x2 * cos
|
60 |
+
|
61 |
+
x_rot = torch.stack([x1_rot, x2_rot], dim=-1)
|
62 |
+
return x_rot.reshape(x_shape)
|
63 |
+
|
64 |
+
class MultiHeadSelfAttention(nn.Module):
|
65 |
+
def __init__(self, n_embd, n_head, block_size):
|
66 |
+
super().__init__()
|
67 |
+
assert n_embd % n_head == 0
|
68 |
+
self.n_embd = n_embd
|
69 |
+
self.n_head = n_head
|
70 |
+
self.head_dim = n_embd // n_head
|
71 |
+
|
72 |
+
self.q_proj = nn.Linear(n_embd, n_embd, bias=False)
|
73 |
+
self.k_proj = nn.Linear(n_embd, n_embd, bias=False)
|
74 |
+
self.v_proj = nn.Linear(n_embd, n_embd, bias=False)
|
75 |
+
self.o_proj = nn.Linear(n_embd, n_embd, bias=False)
|
76 |
+
|
77 |
+
self.rotary_emb = RotaryEmbedding(self.head_dim)
|
78 |
+
self.dropout = nn.Dropout(0.0)
|
79 |
+
|
80 |
+
self.register_buffer(
|
81 |
+
"tril", torch.tril(torch.ones(block_size, block_size)), persistent=False
|
82 |
+
)
|
83 |
+
|
84 |
+
def forward(self, x):
|
85 |
+
# x: (B, T, n_embd)
|
86 |
+
B, T, C = x.shape
|
87 |
+
|
88 |
+
q = self.q_proj(x) # (B, T, n_embd)
|
89 |
+
k = self.k_proj(x)
|
90 |
+
v = self.v_proj(x)
|
91 |
+
|
92 |
+
q = q.view(B, T, self.n_head, self.head_dim).transpose(1, 2) # (B, n_head, T, head_dim)
|
93 |
+
k = k.view(B, T, self.n_head, self.head_dim).transpose(1, 2)
|
94 |
+
v = v.view(B, T, self.n_head, self.head_dim).transpose(1, 2)
|
95 |
+
|
96 |
+
# Rotary embeddings
|
97 |
+
rot_emb = self.rotary_emb(seq_len=T, device=x.device) # (T, head_dim)
|
98 |
+
q = apply_rotary_emb(q, rot_emb)
|
99 |
+
k = apply_rotary_emb(k, rot_emb)
|
100 |
+
|
101 |
+
# Attention
|
102 |
+
attn_scores = torch.matmul(q, k.transpose(-2, -1)) * (self.head_dim ** -0.5) # (B, n_head, T, T)
|
103 |
+
attn_scores = attn_scores.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
|
104 |
+
attn_probs = F.softmax(attn_scores, dim=-1)
|
105 |
+
attn_probs = self.dropout(attn_probs)
|
106 |
+
|
107 |
+
out = torch.matmul(attn_probs, v) # (B, n_head, T, head_dim)
|
108 |
+
out = out.transpose(1, 2).contiguous().view(B, T, C) # (B, T, n_embd)
|
109 |
+
|
110 |
+
return self.o_proj(out)
|
111 |
+
|
112 |
+
|
113 |
+
class TransformerMLP(nn.Module):
|
114 |
+
def __init__(self, n_embd):
|
115 |
+
super().__init__()
|
116 |
+
self.net = nn.Sequential(
|
117 |
+
nn.Linear(n_embd, 4 * n_embd),
|
118 |
+
nn.GELU(),
|
119 |
+
nn.Linear(4 * n_embd, n_embd),
|
120 |
+
nn.Dropout(0.0),
|
121 |
+
)
|
122 |
+
|
123 |
+
def forward(self, x):
|
124 |
+
return self.net(x)
|
125 |
+
|
126 |
+
class TransformerBlock(nn.Module):
|
127 |
+
def __init__(self, n_embd, n_head, block_size):
|
128 |
+
super().__init__()
|
129 |
+
self.self_attn = MultiHeadSelfAttention(n_embd, n_head, block_size)
|
130 |
+
self.mlp = TransformerMLP(n_embd)
|
131 |
+
self.input_layernorm = nn.LayerNorm(n_embd)
|
132 |
+
self.post_attention_layernorm = nn.LayerNorm(n_embd)
|
133 |
+
|
134 |
+
def forward(self, x):
|
135 |
+
x = x + self.self_attn(self.input_layernorm(x))
|
136 |
+
x = x + self.mlp(self.post_attention_layernorm(x))
|
137 |
+
return x
|
138 |
+
|
139 |
+
class BVVBestForCausalLM(PreTrainedModel):
|
140 |
+
config_class = BVVBestConfig
|
141 |
+
|
142 |
+
def __init__(self, config):
|
143 |
+
super().__init__(config)
|
144 |
+
self.token_embeddings = nn.Embedding(config.vocab_size, config.n_embd)
|
145 |
+
|
146 |
+
self.transformer_layers = nn.Sequential(*[
|
147 |
+
TransformerBlock(config.n_embd, n_head=config.n_head, block_size=config.block_size) for _ in range(config.n_layer)
|
148 |
+
])
|
149 |
+
self.final_layernorm = nn.LayerNorm(config.n_embd)
|
150 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
|
151 |
+
|
152 |
+
self.apply(self._init_weights)
|
153 |
+
|
154 |
+
def _init_weights(self, module):
|
155 |
+
if isinstance(module, nn.Linear):
|
156 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
157 |
+
if module.bias is not None:
|
158 |
+
torch.nn.init.zeros_(module.bias)
|
159 |
+
elif isinstance(module, nn.Embedding):
|
160 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
161 |
+
|
162 |
+
|
163 |
+
def forward(self, idx, targets=None):
|
164 |
+
B, T = idx.shape
|
165 |
+
|
166 |
+
x = self.token_embeddings(idx)
|
167 |
+
|
168 |
+
x = self.transformer_layers(x)
|
169 |
+
x = self.final_layernorm(x)
|
170 |
+
logits = self.lm_head(x)
|
171 |
+
|
172 |
+
loss = None
|
173 |
+
if targets is not None:
|
174 |
+
#logits_flat = logits.view(-1, logits.size(-1))
|
175 |
+
#targets_flat = targets.view(-1)
|
176 |
+
logits_flat = logits.reshape(-1, logits.size(-1))
|
177 |
+
targets_flat = targets.reshape(-1)
|
178 |
+
loss = F.cross_entropy(logits_flat, targets_flat, ignore_index = 57344)
|
179 |
+
|
180 |
+
return CausalLMOutput(
|
181 |
+
logits=logits,
|
182 |
+
loss=loss,
|
183 |
+
)
|
184 |
+
|
185 |
+
def generate(self,
|
186 |
+
input_ids=None,
|
187 |
+
max_new_tokens=None,
|
188 |
+
max_length=None,
|
189 |
+
temperature=1.0,
|
190 |
+
top_k=None,
|
191 |
+
top_p=None,
|
192 |
+
do_sample=True,
|
193 |
+
pad_token_id=None,
|
194 |
+
eos_token_id=None,
|
195 |
+
**kwargs):
|
196 |
+
|
197 |
+
if input_ids is None:
|
198 |
+
raise ValueError("Input_ids must be provided")
|
199 |
+
|
200 |
+
idx = input_ids
|
201 |
+
|
202 |
+
if max_new_tokens is None:
|
203 |
+
if max_length is not None:
|
204 |
+
max_new_tokens = max_length - idx.shape[1]
|
205 |
+
else:
|
206 |
+
max_new_tokens = 50
|
207 |
+
|
208 |
+
with torch.no_grad():
|
209 |
+
for _ in range(max_new_tokens):
|
210 |
+
idx_cond = idx[:, -self.config.block_size:]
|
211 |
+
|
212 |
+
outputs = self(idx_cond)
|
213 |
+
logits = outputs.logits[:, -1, :] / temperature
|
214 |
+
|
215 |
+
if top_k is not None:
|
216 |
+
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
217 |
+
logits[logits < v[:, [-1]]] = float('-inf')
|
218 |
+
|
219 |
+
if top_p is not None:
|
220 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
221 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
222 |
+
|
223 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
224 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
225 |
+
sorted_indices_to_remove[..., 0] = 0
|
226 |
+
|
227 |
+
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
228 |
+
logits[indices_to_remove] = float('-inf')
|
229 |
+
|
230 |
+
probs = F.softmax(logits, dim=-1)
|
231 |
+
|
232 |
+
if do_sample:
|
233 |
+
idx_next = torch.multinomial(probs, num_samples=1)
|
234 |
+
else:
|
235 |
+
idx_next = torch.argmax(logits, dim=-1, keepdim=True)
|
236 |
+
|
237 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
238 |
+
|
239 |
+
|
240 |
+
if eos_token_id is not None and (idx_next == eos_token_id).any():
|
241 |
+
break
|
242 |
+
|
243 |
+
return idx
|