Bo8dady commited on
Commit
2199052
·
verified ·
1 Parent(s): 9185b68

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,771 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:4030
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/all-distilroberta-v1
10
+ widget:
11
+ - source_sentence: What is the contact email for Dr. Amr Ashraf Mohamed Amin?
12
+ sentences:
13
+ - "Topic: Second Level Courses (Mainstream)\nSummary: Outlines the course list for\
14
+ \ the third and fourth semesters, including course codes, titles, credit hours,\
15
+ \ and prerequisites.\nChunk: \"Second Level Courses (Mainstream) \nThird Semester\n\
16
+ \ • HUM113: Report Writing (2 Credit Hours) \n• CIS250: Object-Oriented Programming\
17
+ \ (3 Credit Hours) – Prerequisite: CIS150 \n(Structured Programming) \n• BSC221:\
18
+ \ Discrete Mathematics (3 Credit Hours) \n• CIS260: Logic Design (3 Credit Hours)\
19
+ \ – Prerequisite: BSC121 (Physics I) \n• CIS280: Database Management Systems (3\
20
+ \ Credit Hours) – Prerequisite: CIS150 \n(Structured Programming) \n• CIS240:\
21
+ \ Statistical Analysis (3 Credit Hours) – Prerequisite: BSC123 (Probability &\
22
+ \ \nStatistics) \n• Total Credit Hours: 17 \nFourth Semester \n• CIS220: Computer\
23
+ \ Organization & Architecture (3 Credit Hours) – Prerequisite: CIS260 \n(Logic\
24
+ \ Design) \n• CIS270: Data Structure (3 Credit Hours) – Prerequisite: CIS250 (Object-Oriented\
25
+ \ \nProgramming) \n• BSC225: Linear Algebra (3 Credit Hours) \n• CIS230: Operations\
26
+ \ Research (3 Credit Hours) \n• CIS243: Artificial Intelligence (3 Credit Hours)\
27
+ \ – Prerequisite: CIS150 (Structured \nProgramming) \n• Total Credit Hours: 15\""
28
+ - 'The final exam for the Structured programming course, offered by the general
29
+ department, from 2022, is available at the following link: [https://drive.google.com/file/d/1Bpqoa78DcFNC8335i7vucV0nBN-J01v9/view?usp=sharing'
30
+ - Dr. Amr Ashraf Mohamed Amin is part of the Unknown department and can be reached
31
32
+ - source_sentence: What systems have been developed for quickly locating missing children?
33
+ sentences:
34
+ - 'The final exam for Digital Signal Processing course, offered by the computer
35
+ science department, from 2024, is available at the following link: [https://drive.google.com/file/d/1RO0aPoom-TA-qgsopwR9krszD_pQIzfJ/view?usp=sharing'
36
+ - '**Lost People Finder**
37
+
38
+
39
+ ### **Abstract**
40
+
41
+
42
+ **Missing Persons Statistics**
43
+
44
+ Recently, there has been a clear increase in the population. As stated in a 2005
45
+ report, published by the US Department of Justice, over 340,500 of children''s
46
+ population go missing, from their parents, for at least an hour. Not only was
47
+ this issue minor in between children, but also it has been evident that the elderly
48
+ and people with special needs seem missing whenever their guardians get distracted.
49
+
50
+
51
+ **Lost People Finder Application**
52
+
53
+ Through the Lost People Finder application, we can search for missing people quickly
54
+ and efficiently by entering the missing person''s picture in the application,
55
+ and the application searches for him immediately.'
56
+ - 'The final exam for the English 1course, offered by the general department, from
57
+ 2022, is available at the following link: [https://drive.google.com/file/d/1IbqLbHuyZoDyhsL1BERpI2P0iLFZmgt8/view].'
58
+ - source_sentence: What are the conditions for the College Council granting a final
59
+ chance?
60
+ sentences:
61
+ - Dr. Zeina Rayan is part of the Unknown department and can be reached at [email protected].
62
+ - 'Topic: Academic Warning and Dismissal
63
+
64
+ Summary: Students receive academic warnings for low GPAs and may be dismissed
65
+ if the GPA remains low for six semesters or if graduation requirements aren''t
66
+ met within double the study years. Students can re-study courses to improve their
67
+ average, with certain conditions and grade limits.
68
+
69
+ Chunk: "Academic warning - dismissal from study - mechanisms of raising the cumulative
70
+ average
71
+
72
+ 1. The student is given an academic warning if he obtains a cumulative average
73
+ less than "2" for any semester that he must raise his cumulative average to at
74
+ least 2.00.
75
+
76
+ 2. A student who is academically probated is dismissed from the study if the GPA
77
+ drops below 2.00 is repeated during six main semesters.
78
+
79
+ 3. If the student does not meet the graduation requirements within the maximum
80
+ period of study, which is double the years of study according to the law, he will
81
+ be dismissed.
82
+
83
+ 4. The College Council may consider the possibility of granting the student exposed
84
+ to dismissal as a result of his inability to raise his cumulative average to At
85
+ least one and final chance of two semesters to raise his/her GPA to 2.00 and meet
86
+ graduation requirements if he/she has successfully completed at least 80% of the
87
+ credit hours required for graduation.
88
+
89
+ 5. The student may re-study the courses in which he has previously passed in order
90
+ to improve the cumulative average, and the repetition is a study and an exam,
91
+ and the grade he obtained the last time he studied the course is calculated for
92
+ him. A maximum of (5) courses unless the improvement is for the purpose of raising
93
+ the academic warning or achieving the graduation requirements, and in all cases,
94
+ both grades are mentioned in his academic record.
95
+
96
+ 6. For the student to re-study a course in which he has previously obtained a
97
+ grade of (F), the grade he obtained in the repetition is calculated with a maximum
98
+ of (B), and for calculating the cumulative average, the last grade is calculated
99
+ for him only, provided that both grades are mentioned in the student''s academic
100
+ record."'
101
+ - '**Abstract**
102
+
103
+
104
+ **Introduction to Renewable Energy**
105
+
106
+ Renewable energy is gaining great importance nowadays. Solar energy is one of
107
+ the most popular renewable energy sources as it is carbon dioxide free, has low
108
+ operating costs, and its exploitation helps improve public health.
109
+
110
+
111
+ **Project Overview**
112
+
113
+ This project deals with the introduction of an embedded automatic solar energy
114
+ tracking system that can be monitored remotely. The main objective of the system
115
+ is to exploit the maximum amount of sunlight and convert it into electricity so
116
+ that it can be used easily and efficiently. This can be done by rendering and
117
+ aligning a model that drives the solar panels to be perpendicular to and track
118
+ the sun''s rays so that more energy is generated.
119
+
120
+
121
+ **Advantages of the Tracker System**
122
+
123
+ The main advantage of this tracker is that the various readings received from
124
+ the sensors can be tracked remotely with a decentralized technological system
125
+ that allows analysis of results, detection of faults and making tracking decisions.
126
+ The advantage of this system is to provide access to a permanent and contamination-free
127
+ power supply source. When connected to large battery banks, they can independently
128
+ fill the needs of local areas.'
129
+ - source_sentence: How can I contact Dr. Doaa Mahmoud?
130
+ sentences:
131
+ - Dr. Hanan Hindy is part of the CS department and can be reached at [email protected].
132
+ - 'The final exam for Database Management System course, offered by the general
133
+ department, from 2019, is available at the following link: [https://drive.google.com/file/d/1OOIPr48WI8Cm3TVzPdel2Dh3SZUQTVxA/view'
134
+ - Dr. Doaa Mahmoud is part of the Unknown department and can be reached at [email protected].
135
+ - source_sentence: Where can I find Abdel Badi Salem's email address?
136
+ sentences:
137
+ - '# **Abstract**
138
+
139
+
140
+ ## **Introduction**
141
+
142
+ One of the main issues we are aiming to help in society are those of the disabled.
143
+ Disabilities do not have a single type or manner in which it attacks the body
144
+ but comes in a very wide range. At the present time, the amount of disabled people
145
+ is **increasing annually**, so we aim to make a standard wheelchair to aid the
146
+ mobility of disabled people who cannot walk; by designing two mechanisms, one
147
+ uses eye-movement guidance and the other uses EEG Signals, which goes through
148
+ pre-processing stage to extract more information from the data. This'' done by
149
+ segmentation using a window of size 200 (Sampling frequency), then features extraction.
150
+ That takes us to classification, the highest accuracy we got is on subject [E]
151
+ for motor imaginary dataset on Classical paradigm, Multi Level Perceptron classifier
152
+ (with accuracy of 60.5%), The result of this classification''s used as a command
153
+ to move the wheelchair after that.'
154
+ - '# **Abstract**
155
+
156
+
157
+ ## **Sports Analytics Overview**
158
+
159
+ Sports analytics has been successfully applied in sports like football and basketball.
160
+ However, its application in soccer has been limited. Research in soccer analytics
161
+ with Machine Learning techniques is limited and is mostly employed only for predictions.
162
+ There is a need to find out if the application of Machine Learning can bring better
163
+ and more insightful results in soccer analytics. In this thesis, we perform descriptive
164
+ as well as predictive analysis of soccer matches and player performances.
165
+
166
+
167
+ ## **Football Rating Analysis**
168
+
169
+ In football, it is popular to rely on ratings by experts to assess a player''s
170
+ performance. However, the experts do not unravel the criteria they use for their
171
+ rating. We attempt to identify the most important attributes of player''s performance
172
+ which determine the expert ratings. In this way we find the latent knowledge which
173
+ the experts use to assign ratings to players. We performed a series of classifications
174
+ with three different pruning strategies and an array of Machine Learning algorithms.
175
+ The best results for predicting ratings using performance metrics had mean absolute
176
+ error of 0.17. We obtained a list of most important performance metrics for each
177
+ of the playing positions which approximates the attributes considered by the experts
178
+ for assigning ratings. Then we find the most influential performance metrics of
179
+ the players for determining the match outcome and we examine the extent to which
180
+ the outcome is characterized by the performance attributes of the players. We
181
+ found 34 performance attributes'
182
+ - Dr. Abdel Badi Salem is part of the CS department and can be reached at [email protected].
183
+ pipeline_tag: sentence-similarity
184
+ library_name: sentence-transformers
185
+ metrics:
186
+ - cosine_accuracy@1
187
+ - cosine_accuracy@3
188
+ - cosine_accuracy@5
189
+ - cosine_accuracy@10
190
+ - cosine_precision@1
191
+ - cosine_precision@3
192
+ - cosine_precision@5
193
+ - cosine_precision@10
194
+ - cosine_recall@1
195
+ - cosine_recall@3
196
+ - cosine_recall@5
197
+ - cosine_recall@10
198
+ - cosine_ndcg@10
199
+ - cosine_mrr@10
200
+ - cosine_map@100
201
+ model-index:
202
+ - name: SentenceTransformer based on sentence-transformers/all-distilroberta-v1
203
+ results:
204
+ - task:
205
+ type: information-retrieval
206
+ name: Information Retrieval
207
+ dataset:
208
+ name: ai college validation
209
+ type: ai-college-validation
210
+ metrics:
211
+ - type: cosine_accuracy@1
212
+ value: 0.18810557968593383
213
+ name: Cosine Accuracy@1
214
+ - type: cosine_accuracy@3
215
+ value: 0.4186435015035082
216
+ name: Cosine Accuracy@3
217
+ - type: cosine_accuracy@5
218
+ value: 0.5676578683595055
219
+ name: Cosine Accuracy@5
220
+ - type: cosine_accuracy@10
221
+ value: 0.8463080521216171
222
+ name: Cosine Accuracy@10
223
+ - type: cosine_precision@1
224
+ value: 0.18810557968593383
225
+ name: Cosine Precision@1
226
+ - type: cosine_precision@3
227
+ value: 0.13954783383450275
228
+ name: Cosine Precision@3
229
+ - type: cosine_precision@5
230
+ value: 0.1135315736719011
231
+ name: Cosine Precision@5
232
+ - type: cosine_precision@10
233
+ value: 0.08463080521216171
234
+ name: Cosine Precision@10
235
+ - type: cosine_recall@1
236
+ value: 0.18810557968593383
237
+ name: Cosine Recall@1
238
+ - type: cosine_recall@3
239
+ value: 0.4186435015035082
240
+ name: Cosine Recall@3
241
+ - type: cosine_recall@5
242
+ value: 0.5676578683595055
243
+ name: Cosine Recall@5
244
+ - type: cosine_recall@10
245
+ value: 0.8463080521216171
246
+ name: Cosine Recall@10
247
+ - type: cosine_ndcg@10
248
+ value: 0.47259073953229414
249
+ name: Cosine Ndcg@10
250
+ - type: cosine_mrr@10
251
+ value: 0.3588172667440963
252
+ name: Cosine Mrr@10
253
+ - type: cosine_map@100
254
+ value: 0.3678298256041653
255
+ name: Cosine Map@100
256
+ - type: cosine_accuracy@1
257
+ value: 0.18843969261610424
258
+ name: Cosine Accuracy@1
259
+ - type: cosine_accuracy@3
260
+ value: 0.4173070497828266
261
+ name: Cosine Accuracy@3
262
+ - type: cosine_accuracy@5
263
+ value: 0.5669896424991647
264
+ name: Cosine Accuracy@5
265
+ - type: cosine_accuracy@10
266
+ value: 0.8456398262612763
267
+ name: Cosine Accuracy@10
268
+ - type: cosine_precision@1
269
+ value: 0.18843969261610424
270
+ name: Cosine Precision@1
271
+ - type: cosine_precision@3
272
+ value: 0.13910234992760886
273
+ name: Cosine Precision@3
274
+ - type: cosine_precision@5
275
+ value: 0.11339792849983296
276
+ name: Cosine Precision@5
277
+ - type: cosine_precision@10
278
+ value: 0.08456398262612765
279
+ name: Cosine Precision@10
280
+ - type: cosine_recall@1
281
+ value: 0.18843969261610424
282
+ name: Cosine Recall@1
283
+ - type: cosine_recall@3
284
+ value: 0.4173070497828266
285
+ name: Cosine Recall@3
286
+ - type: cosine_recall@5
287
+ value: 0.5669896424991647
288
+ name: Cosine Recall@5
289
+ - type: cosine_recall@10
290
+ value: 0.8456398262612763
291
+ name: Cosine Recall@10
292
+ - type: cosine_ndcg@10
293
+ value: 0.47223133269915585
294
+ name: Cosine Ndcg@10
295
+ - type: cosine_mrr@10
296
+ value: 0.3585802056650706
297
+ name: Cosine Mrr@10
298
+ - type: cosine_map@100
299
+ value: 0.3676667485080777
300
+ name: Cosine Map@100
301
+ - type: cosine_accuracy@1
302
+ value: 0.10194511983327545
303
+ name: Cosine Accuracy@1
304
+ - type: cosine_accuracy@3
305
+ value: 0.3183397012851685
306
+ name: Cosine Accuracy@3
307
+ - type: cosine_accuracy@5
308
+ value: 0.5359499826328586
309
+ name: Cosine Accuracy@5
310
+ - type: cosine_accuracy@10
311
+ value: 0.8726988537686696
312
+ name: Cosine Accuracy@10
313
+ - type: cosine_precision@1
314
+ value: 0.10194511983327545
315
+ name: Cosine Precision@1
316
+ - type: cosine_precision@3
317
+ value: 0.10611323376172282
318
+ name: Cosine Precision@3
319
+ - type: cosine_precision@5
320
+ value: 0.10718999652657174
321
+ name: Cosine Precision@5
322
+ - type: cosine_precision@10
323
+ value: 0.08726988537686697
324
+ name: Cosine Precision@10
325
+ - type: cosine_recall@1
326
+ value: 0.10194511983327545
327
+ name: Cosine Recall@1
328
+ - type: cosine_recall@3
329
+ value: 0.3183397012851685
330
+ name: Cosine Recall@3
331
+ - type: cosine_recall@5
332
+ value: 0.5359499826328586
333
+ name: Cosine Recall@5
334
+ - type: cosine_recall@10
335
+ value: 0.8726988537686696
336
+ name: Cosine Recall@10
337
+ - type: cosine_ndcg@10
338
+ value: 0.4252051320311702
339
+ name: Cosine Ndcg@10
340
+ - type: cosine_mrr@10
341
+ value: 0.28928936689878015
342
+ name: Cosine Mrr@10
343
+ - type: cosine_map@100
344
+ value: 0.29650939746113625
345
+ name: Cosine Map@100
346
+ ---
347
+
348
+ # SentenceTransformer based on sentence-transformers/all-distilroberta-v1
349
+
350
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-distilroberta-v1](https://huggingface.co/sentence-transformers/all-distilroberta-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
351
+
352
+ ## Model Details
353
+
354
+ ### Model Description
355
+ - **Model Type:** Sentence Transformer
356
+ - **Base model:** [sentence-transformers/all-distilroberta-v1](https://huggingface.co/sentence-transformers/all-distilroberta-v1) <!-- at revision 842eaed40bee4d61673a81c92d5689a8fed7a09f -->
357
+ - **Maximum Sequence Length:** 512 tokens
358
+ - **Output Dimensionality:** 768 dimensions
359
+ - **Similarity Function:** Cosine Similarity
360
+ <!-- - **Training Dataset:** Unknown -->
361
+ <!-- - **Language:** Unknown -->
362
+ <!-- - **License:** Unknown -->
363
+
364
+ ### Model Sources
365
+
366
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
367
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
368
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
369
+
370
+ ### Full Model Architecture
371
+
372
+ ```
373
+ SentenceTransformer(
374
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
375
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
376
+ (2): Normalize()
377
+ )
378
+ ```
379
+
380
+ ## Usage
381
+
382
+ ### Direct Usage (Sentence Transformers)
383
+
384
+ First install the Sentence Transformers library:
385
+
386
+ ```bash
387
+ pip install -U sentence-transformers
388
+ ```
389
+
390
+ Then you can load this model and run inference.
391
+ ```python
392
+ from sentence_transformers import SentenceTransformer
393
+
394
+ # Download from the 🤗 Hub
395
+ model = SentenceTransformer("Bo8dady/finetuned2-College-embeddings")
396
+ # Run inference
397
+ sentences = [
398
+ "Where can I find Abdel Badi Salem's email address?",
399
+ 'Dr. Abdel Badi Salem is part of the CS department and can be reached at [email protected].',
400
+ "# **Abstract**\n\n## **Sports Analytics Overview**\nSports analytics has been successfully applied in sports like football and basketball. However, its application in soccer has been limited. Research in soccer analytics with Machine Learning techniques is limited and is mostly employed only for predictions. There is a need to find out if the application of Machine Learning can bring better and more insightful results in soccer analytics. In this thesis, we perform descriptive as well as predictive analysis of soccer matches and player performances.\n\n## **Football Rating Analysis**\nIn football, it is popular to rely on ratings by experts to assess a player's performance. However, the experts do not unravel the criteria they use for their rating. We attempt to identify the most important attributes of player's performance which determine the expert ratings. In this way we find the latent knowledge which the experts use to assign ratings to players. We performed a series of classifications with three different pruning strategies and an array of Machine Learning algorithms. The best results for predicting ratings using performance metrics had mean absolute error of 0.17. We obtained a list of most important performance metrics for each of the playing positions which approximates the attributes considered by the experts for assigning ratings. Then we find the most influential performance metrics of the players for determining the match outcome and we examine the extent to which the outcome is characterized by the performance attributes of the players. We found 34 performance attributes",
401
+ ]
402
+ embeddings = model.encode(sentences)
403
+ print(embeddings.shape)
404
+ # [3, 768]
405
+
406
+ # Get the similarity scores for the embeddings
407
+ similarities = model.similarity(embeddings, embeddings)
408
+ print(similarities.shape)
409
+ # [3, 3]
410
+ ```
411
+
412
+ <!--
413
+ ### Direct Usage (Transformers)
414
+
415
+ <details><summary>Click to see the direct usage in Transformers</summary>
416
+
417
+ </details>
418
+ -->
419
+
420
+ <!--
421
+ ### Downstream Usage (Sentence Transformers)
422
+
423
+ You can finetune this model on your own dataset.
424
+
425
+ <details><summary>Click to expand</summary>
426
+
427
+ </details>
428
+ -->
429
+
430
+ <!--
431
+ ### Out-of-Scope Use
432
+
433
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
434
+ -->
435
+
436
+ ## Evaluation
437
+
438
+ ### Metrics
439
+
440
+ #### Information Retrieval
441
+
442
+ * Dataset: `ai-college-validation`
443
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
444
+
445
+ | Metric | Value |
446
+ |:--------------------|:-----------|
447
+ | cosine_accuracy@1 | 0.1881 |
448
+ | cosine_accuracy@3 | 0.4186 |
449
+ | cosine_accuracy@5 | 0.5677 |
450
+ | cosine_accuracy@10 | 0.8463 |
451
+ | cosine_precision@1 | 0.1881 |
452
+ | cosine_precision@3 | 0.1395 |
453
+ | cosine_precision@5 | 0.1135 |
454
+ | cosine_precision@10 | 0.0846 |
455
+ | cosine_recall@1 | 0.1881 |
456
+ | cosine_recall@3 | 0.4186 |
457
+ | cosine_recall@5 | 0.5677 |
458
+ | cosine_recall@10 | 0.8463 |
459
+ | **cosine_ndcg@10** | **0.4726** |
460
+ | cosine_mrr@10 | 0.3588 |
461
+ | cosine_map@100 | 0.3678 |
462
+
463
+ #### Information Retrieval
464
+
465
+ * Dataset: `ai-college-validation`
466
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
467
+
468
+ | Metric | Value |
469
+ |:--------------------|:-----------|
470
+ | cosine_accuracy@1 | 0.1884 |
471
+ | cosine_accuracy@3 | 0.4173 |
472
+ | cosine_accuracy@5 | 0.567 |
473
+ | cosine_accuracy@10 | 0.8456 |
474
+ | cosine_precision@1 | 0.1884 |
475
+ | cosine_precision@3 | 0.1391 |
476
+ | cosine_precision@5 | 0.1134 |
477
+ | cosine_precision@10 | 0.0846 |
478
+ | cosine_recall@1 | 0.1884 |
479
+ | cosine_recall@3 | 0.4173 |
480
+ | cosine_recall@5 | 0.567 |
481
+ | cosine_recall@10 | 0.8456 |
482
+ | **cosine_ndcg@10** | **0.4722** |
483
+ | cosine_mrr@10 | 0.3586 |
484
+ | cosine_map@100 | 0.3677 |
485
+
486
+ #### Information Retrieval
487
+
488
+ * Dataset: `ai-college-validation`
489
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
490
+
491
+ | Metric | Value |
492
+ |:--------------------|:-----------|
493
+ | cosine_accuracy@1 | 0.1019 |
494
+ | cosine_accuracy@3 | 0.3183 |
495
+ | cosine_accuracy@5 | 0.5359 |
496
+ | cosine_accuracy@10 | 0.8727 |
497
+ | cosine_precision@1 | 0.1019 |
498
+ | cosine_precision@3 | 0.1061 |
499
+ | cosine_precision@5 | 0.1072 |
500
+ | cosine_precision@10 | 0.0873 |
501
+ | cosine_recall@1 | 0.1019 |
502
+ | cosine_recall@3 | 0.3183 |
503
+ | cosine_recall@5 | 0.5359 |
504
+ | cosine_recall@10 | 0.8727 |
505
+ | **cosine_ndcg@10** | **0.4252** |
506
+ | cosine_mrr@10 | 0.2893 |
507
+ | cosine_map@100 | 0.2965 |
508
+
509
+ <!--
510
+ ## Bias, Risks and Limitations
511
+
512
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
513
+ -->
514
+
515
+ <!--
516
+ ### Recommendations
517
+
518
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
519
+ -->
520
+
521
+ ## Training Details
522
+
523
+ ### Training Dataset
524
+
525
+ #### Unnamed Dataset
526
+
527
+ * Size: 4,030 training samples
528
+ * Columns: <code>Question</code> and <code>chunk</code>
529
+ * Approximate statistics based on the first 1000 samples:
530
+ | | Question | chunk |
531
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
532
+ | type | string | string |
533
+ | details | <ul><li>min: 8 tokens</li><li>mean: 15.99 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 133.41 tokens</li><li>max: 512 tokens</li></ul> |
534
+ * Samples:
535
+ | Question | chunk |
536
+ |:------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
537
+ | <code>Could you share the link to the 2018 Distributed Computing final exam?</code> | <code>The final exam for Distributed Computing course, offered by the computer science department, from 2018, is available at the following link: [https://drive.google.com/file/d/1YSzMeYStlFEztP0TloIcBqnfPr60o4ez/view?usp=sharing</code> |
538
+ | <code>What databases exist for footstep recognition research?</code> | <code>**Abstract**<br><br>**Documentation Overview**<br>This documentation reports an experimental analysis of footsteps as a biometric. The focus here is on information extracted from the time domain of signals collected from an array of piezoelectric sensors.<br><br>**Database Information**<br>Results are related to the largest footstep database collected to date, with almost 20,000 valid footstep signals and more than 120 persons, which is well beyond previous related databases.<br><br>**Feature Extraction**<br>Three feature approaches have been extracted, the popular ground reaction force (GRF), the spatial average and the upper and lower contours of the pressure signals.<br><br>**Experimental Results**<br>Experimental work is based on a verification mode with a holistic approach based on PCA and SVM, achieving results in the range of 5 to 15% equal error rate(EER) depending on the experimental conditions of quantity of data used in the reference models.</code> |
539
+ | <code>Is there a maximum duration of study specified in the text?</code> | <code>Topic: Duration of Study<br>Summary: A bachelor's degree at the Faculty of Computers and Information requires at least four years of study, contingent on fulfilling degree requirements.<br>Chunk: "Duration of study<br>• The duration of study at the Faculty of Computers and Information to obtain a bachelor's degree is not less than 4 years, provided that the requirements for obtaining the scientific degree are completed."</code> |
540
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
541
+ ```json
542
+ {
543
+ "scale": 20.0,
544
+ "similarity_fct": "cos_sim"
545
+ }
546
+ ```
547
+
548
+ ### Evaluation Dataset
549
+
550
+ #### Unnamed Dataset
551
+
552
+ * Size: 575 evaluation samples
553
+ * Columns: <code>Question</code> and <code>chunk</code>
554
+ * Approximate statistics based on the first 575 samples:
555
+ | | Question | chunk |
556
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
557
+ | type | string | string |
558
+ | details | <ul><li>min: 9 tokens</li><li>mean: 15.97 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 134.83 tokens</li><li>max: 484 tokens</li></ul> |
559
+ * Samples:
560
+ | Question | chunk |
561
+ |:---------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
562
+ | <code>Are there projects that use machine learning for automatic brain tumor identification?</code> | <code># **Abstract**<br><br>## **Brain and Tumor Description**<br>A human brain is center of the nervous system; it is a collection of white mass of cells. A tumor of brain is collection of uncontrolled increasing of these cells abnormally found in different part of the brain namely Glial cells, neurons, lymphatic tissues, blood vessels, pituitary glands and other part of brain which lead to the cancer.<br><br>## **Detection and Identification**<br>Manually it is not so easily possible to detect and identify the tumor. Programming division method by MRI is way to detect and identify the tumor. In order to give precise output a strong segmentation method is needed. Brain tumor identification is really challenging task in early stages of life. But now it became advanced with various machine learning and deep learning algorithms. Now a day's issue of brain tumor automatic identification is of great interest. In Order to detect the brain tumor of a patient we consider the data of patients like MRI images of a pat...</code> |
563
+ | <code>Are there studies that propose solutions to the challenges of plant pest detection using deep learning?</code> | <code>**Abstract**<br><br>**Introduction**<br>Identification of the plant diseases is the key to preventing the losses in the yield and quantity of the agricultural product. Disease diagnosis based on the detection of early symptoms is a usual threshold taken into account for integrated pest management strategies. through deep learning methodologies, plant diseases can be detected and diagnosed.<br><br>**Study Discussion**<br>On this basis, this study discusses possible challenges in practical applications of plant diseases and pests detection based on deep learning. In addition, possible solutions and research ideas are proposed for the challenges, and several suggestions are given. Finally, this study gives the analysis and prospect of the future trend of plant diseases and pests detection based on deep learning.<br><br>5 | Page</code> |
564
+ | <code>Is there a link available for the 2025 Calc 1 course exam?</code> | <code>The final exam for the calculus1 course, offered by the general department, from 2025, is available at the following link: [https://drive.google.com/file/d/1g8iiGUo4HCUzNNWBJJrW1QZAsz-RYehw/view?usp=sharing].</code> |
565
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
566
+ ```json
567
+ {
568
+ "scale": 20.0,
569
+ "similarity_fct": "cos_sim"
570
+ }
571
+ ```
572
+
573
+ ### Training Hyperparameters
574
+ #### Non-Default Hyperparameters
575
+
576
+ - `eval_strategy`: steps
577
+ - `per_device_train_batch_size`: 16
578
+ - `per_device_eval_batch_size`: 16
579
+ - `learning_rate`: 1e-06
580
+ - `warmup_ratio`: 0.2
581
+ - `batch_sampler`: no_duplicates
582
+
583
+ #### All Hyperparameters
584
+ <details><summary>Click to expand</summary>
585
+
586
+ - `overwrite_output_dir`: False
587
+ - `do_predict`: False
588
+ - `eval_strategy`: steps
589
+ - `prediction_loss_only`: True
590
+ - `per_device_train_batch_size`: 16
591
+ - `per_device_eval_batch_size`: 16
592
+ - `per_gpu_train_batch_size`: None
593
+ - `per_gpu_eval_batch_size`: None
594
+ - `gradient_accumulation_steps`: 1
595
+ - `eval_accumulation_steps`: None
596
+ - `torch_empty_cache_steps`: None
597
+ - `learning_rate`: 1e-06
598
+ - `weight_decay`: 0.0
599
+ - `adam_beta1`: 0.9
600
+ - `adam_beta2`: 0.999
601
+ - `adam_epsilon`: 1e-08
602
+ - `max_grad_norm`: 1.0
603
+ - `num_train_epochs`: 3
604
+ - `max_steps`: -1
605
+ - `lr_scheduler_type`: linear
606
+ - `lr_scheduler_kwargs`: {}
607
+ - `warmup_ratio`: 0.2
608
+ - `warmup_steps`: 0
609
+ - `log_level`: passive
610
+ - `log_level_replica`: warning
611
+ - `log_on_each_node`: True
612
+ - `logging_nan_inf_filter`: True
613
+ - `save_safetensors`: True
614
+ - `save_on_each_node`: False
615
+ - `save_only_model`: False
616
+ - `restore_callback_states_from_checkpoint`: False
617
+ - `no_cuda`: False
618
+ - `use_cpu`: False
619
+ - `use_mps_device`: False
620
+ - `seed`: 42
621
+ - `data_seed`: None
622
+ - `jit_mode_eval`: False
623
+ - `use_ipex`: False
624
+ - `bf16`: False
625
+ - `fp16`: False
626
+ - `fp16_opt_level`: O1
627
+ - `half_precision_backend`: auto
628
+ - `bf16_full_eval`: False
629
+ - `fp16_full_eval`: False
630
+ - `tf32`: None
631
+ - `local_rank`: 0
632
+ - `ddp_backend`: None
633
+ - `tpu_num_cores`: None
634
+ - `tpu_metrics_debug`: False
635
+ - `debug`: []
636
+ - `dataloader_drop_last`: False
637
+ - `dataloader_num_workers`: 0
638
+ - `dataloader_prefetch_factor`: None
639
+ - `past_index`: -1
640
+ - `disable_tqdm`: False
641
+ - `remove_unused_columns`: True
642
+ - `label_names`: None
643
+ - `load_best_model_at_end`: False
644
+ - `ignore_data_skip`: False
645
+ - `fsdp`: []
646
+ - `fsdp_min_num_params`: 0
647
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
648
+ - `tp_size`: 0
649
+ - `fsdp_transformer_layer_cls_to_wrap`: None
650
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
651
+ - `deepspeed`: None
652
+ - `label_smoothing_factor`: 0.0
653
+ - `optim`: adamw_torch
654
+ - `optim_args`: None
655
+ - `adafactor`: False
656
+ - `group_by_length`: False
657
+ - `length_column_name`: length
658
+ - `ddp_find_unused_parameters`: None
659
+ - `ddp_bucket_cap_mb`: None
660
+ - `ddp_broadcast_buffers`: False
661
+ - `dataloader_pin_memory`: True
662
+ - `dataloader_persistent_workers`: False
663
+ - `skip_memory_metrics`: True
664
+ - `use_legacy_prediction_loop`: False
665
+ - `push_to_hub`: False
666
+ - `resume_from_checkpoint`: None
667
+ - `hub_model_id`: None
668
+ - `hub_strategy`: every_save
669
+ - `hub_private_repo`: None
670
+ - `hub_always_push`: False
671
+ - `gradient_checkpointing`: False
672
+ - `gradient_checkpointing_kwargs`: None
673
+ - `include_inputs_for_metrics`: False
674
+ - `include_for_metrics`: []
675
+ - `eval_do_concat_batches`: True
676
+ - `fp16_backend`: auto
677
+ - `push_to_hub_model_id`: None
678
+ - `push_to_hub_organization`: None
679
+ - `mp_parameters`:
680
+ - `auto_find_batch_size`: False
681
+ - `full_determinism`: False
682
+ - `torchdynamo`: None
683
+ - `ray_scope`: last
684
+ - `ddp_timeout`: 1800
685
+ - `torch_compile`: False
686
+ - `torch_compile_backend`: None
687
+ - `torch_compile_mode`: None
688
+ - `include_tokens_per_second`: False
689
+ - `include_num_input_tokens_seen`: False
690
+ - `neftune_noise_alpha`: None
691
+ - `optim_target_modules`: None
692
+ - `batch_eval_metrics`: False
693
+ - `eval_on_start`: False
694
+ - `use_liger_kernel`: False
695
+ - `eval_use_gather_object`: False
696
+ - `average_tokens_across_devices`: False
697
+ - `prompts`: None
698
+ - `batch_sampler`: no_duplicates
699
+ - `multi_dataset_batch_sampler`: proportional
700
+
701
+ </details>
702
+
703
+ ### Training Logs
704
+ | Epoch | Step | Training Loss | Validation Loss | ai-college-validation_cosine_ndcg@10 |
705
+ |:------:|:----:|:-------------:|:---------------:|:------------------------------------:|
706
+ | -1 | -1 | - | - | 0.4208 |
707
+ | 0.3968 | 100 | 0.1371 | 0.0785 | 0.4483 |
708
+ | 0.7937 | 200 | 0.0575 | 0.0357 | 0.4600 |
709
+ | 1.1905 | 300 | 0.0346 | 0.0286 | 0.4640 |
710
+ | 1.5873 | 400 | 0.0313 | 0.0264 | 0.4698 |
711
+ | 1.9841 | 500 | 0.0189 | 0.0256 | 0.4716 |
712
+ | 2.3810 | 600 | 0.021 | 0.0249 | 0.4703 |
713
+ | 2.7778 | 700 | 0.0264 | 0.0247 | 0.4726 |
714
+ | -1 | -1 | - | - | 0.4252 |
715
+
716
+
717
+ ### Framework Versions
718
+ - Python: 3.11.11
719
+ - Sentence Transformers: 3.4.1
720
+ - Transformers: 4.51.1
721
+ - PyTorch: 2.5.1+cu124
722
+ - Accelerate: 1.3.0
723
+ - Datasets: 3.5.0
724
+ - Tokenizers: 0.21.0
725
+
726
+ ## Citation
727
+
728
+ ### BibTeX
729
+
730
+ #### Sentence Transformers
731
+ ```bibtex
732
+ @inproceedings{reimers-2019-sentence-bert,
733
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
734
+ author = "Reimers, Nils and Gurevych, Iryna",
735
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
736
+ month = "11",
737
+ year = "2019",
738
+ publisher = "Association for Computational Linguistics",
739
+ url = "https://arxiv.org/abs/1908.10084",
740
+ }
741
+ ```
742
+
743
+ #### MultipleNegativesRankingLoss
744
+ ```bibtex
745
+ @misc{henderson2017efficient,
746
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
747
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
748
+ year={2017},
749
+ eprint={1705.00652},
750
+ archivePrefix={arXiv},
751
+ primaryClass={cs.CL}
752
+ }
753
+ ```
754
+
755
+ <!--
756
+ ## Glossary
757
+
758
+ *Clearly define terms in order to be accessible across audiences.*
759
+ -->
760
+
761
+ <!--
762
+ ## Model Card Authors
763
+
764
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
765
+ -->
766
+
767
+ <!--
768
+ ## Model Card Contact
769
+
770
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
771
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "RobertaModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": null,
8
+ "eos_token_id": 2,
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 6,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.51.1",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 50265
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.51.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89d250b883c477b81eda6cc4637d5773dd1a8d251fe9c0ef3098c342d64eefb4
3
+ size 328485128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "max_length": 128,
53
+ "model_max_length": 512,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "</s>",
59
+ "stride": 0,
60
+ "tokenizer_class": "RobertaTokenizer",
61
+ "trim_offsets": true,
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff