--- base_model: aubmindlab/bert-base-arabertv02-twitter tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: arabert-fully-supervised-arabic-propaganda results: [] --- # arabert-fully-supervised-arabic-propaganda This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-base-arabertv02-twitter) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4417 - Accuracy: 0.9167 - Precision: 0.5577 - Recall: 0.7073 - F1: 0.6237 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5249 | 1.0 | 20 | 0.4933 | 0.7714 | 0.2901 | 0.9268 | 0.4419 | | 0.303 | 2.0 | 40 | 0.3490 | 0.8571 | 0.3933 | 0.8537 | 0.5385 | | 0.1552 | 3.0 | 60 | 0.3830 | 0.9048 | 0.5085 | 0.7317 | 0.6 | | 0.1411 | 4.0 | 80 | 0.4215 | 0.9143 | 0.5455 | 0.7317 | 0.6250 | | 0.1359 | 5.0 | 100 | 0.4417 | 0.9167 | 0.5577 | 0.7073 | 0.6237 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1