Bleking commited on
Commit
e512801
·
1 Parent(s): a3484da

Upload llava-v1.6-34b best check point

Browse files
checkpoint-115/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: liuhaotian/llava-v1.6-34b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
checkpoint-115/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "liuhaotian/llava-v1.6-34b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "o_proj",
25
+ "down_proj",
26
+ "k_proj",
27
+ "q_proj",
28
+ "up_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-115/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d9be90939d81f0c1f4d36995227114e9c12ac8f35dd4d8e5a34c74bef831e42
3
+ size 125377072
checkpoint-115/global_step115/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46c90fb3e46261dc582810d91b50bc25762ae35e7118476768539ff850970e83
3
+ size 1053274
checkpoint-115/global_step115/zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccac836bc3a4a2cc7bc0bc599f3afce15b4742d9e6ba51d8a8412c390b328d09
3
+ size 364066797
checkpoint-115/global_step115/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21f57bb03cae86feb7429e683a2e62c13540d5842b44981da8950ee072df4086
3
+ size 1053274
checkpoint-115/global_step115/zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:863a9bdf590223856e2e7d61c7d53090b4684678849b5e9511557780760384b9
3
+ size 364066797
checkpoint-115/global_step115/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08e460641ebc4542861ee8be1e85a93efe4bb17faf3db95b08c3e65ea1806e69
3
+ size 1053274
checkpoint-115/global_step115/zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:630242764e71ca747a013f697b05ca1d6a0529b1c32d4e9d95ce88202cf4a69c
3
+ size 364066797
checkpoint-115/global_step115/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06097032ffb7612fc38ee58012df396f2dcfcd622c56744e69ea5e5dcc93ff33
3
+ size 1053274
checkpoint-115/global_step115/zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c9cfc2e8af5b98d5fac044de7d9d24d57a323934e2406edb75502bb3f925754
3
+ size 364066797
checkpoint-115/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step115
checkpoint-115/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:069bd959645cedd813117dc3cf2cf2b0a89083b6d3350b8829691245e10dde24
3
+ size 14960
checkpoint-115/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cb4f9a0dea8611077615477ed649604ff1804e1407cd60ace3e921a95544fe2
3
+ size 14960
checkpoint-115/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db9a85d43f5945cd0d97fe3501bd515353903f42c74096ea00db107bd6d194a8
3
+ size 14960
checkpoint-115/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ecd48677ab11ff5286cb583a23fd6fb6d89adb5f28bf402849e24736516dd8d
3
+ size 14960
checkpoint-115/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|im_end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-115/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:386c49cf943d71aa110361135338c50e38beeff0a66593480421f37b319e1a39
3
+ size 1033105
checkpoint-115/tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<|startoftext|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "<|endoftext|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "6": {
31
+ "content": "<|im_start|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "7": {
39
+ "content": "<|im_end|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ }
46
+ },
47
+ "bos_token": "<|startoftext|>",
48
+ "chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
49
+ "clean_up_tokenization_spaces": false,
50
+ "eos_token": "<|im_end|>",
51
+ "legacy": true,
52
+ "model_max_length": 2048,
53
+ "pad_token": "<unk>",
54
+ "padding_side": "right",
55
+ "sp_model_kwargs": {},
56
+ "spaces_between_special_tokens": false,
57
+ "tokenizer_class": "LlamaTokenizer",
58
+ "trust_remote_code": false,
59
+ "unk_token": "<unk>",
60
+ "use_default_system_prompt": false,
61
+ "use_fast": true
62
+ }
checkpoint-115/trainer_state.json ADDED
@@ -0,0 +1,1758 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.7502281069755554,
3
+ "best_model_checkpoint": "./checkpoints/llava-v1.6-34b-chatml_direct-anyres/checkpoint-115",
4
+ "epoch": 3.59375,
5
+ "eval_steps": 1.0,
6
+ "global_step": 115,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03125,
13
+ "grad_norm": 0.3345325833952841,
14
+ "learning_rate": 0.0,
15
+ "loss": 1.2677,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.03125,
20
+ "eval_loss": 1.3042412996292114,
21
+ "eval_runtime": 195.8656,
22
+ "eval_samples_per_second": 1.021,
23
+ "eval_steps_per_second": 0.128,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.0625,
28
+ "grad_norm": 0.35890614982474045,
29
+ "learning_rate": 8.613531161467863e-06,
30
+ "loss": 1.3505,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.0625,
35
+ "eval_loss": 1.3042412996292114,
36
+ "eval_runtime": 190.4145,
37
+ "eval_samples_per_second": 1.05,
38
+ "eval_steps_per_second": 0.131,
39
+ "step": 2
40
+ },
41
+ {
42
+ "epoch": 0.09375,
43
+ "grad_norm": 0.3316701046946783,
44
+ "learning_rate": 1.3652123889719709e-05,
45
+ "loss": 1.2569,
46
+ "step": 3
47
+ },
48
+ {
49
+ "epoch": 0.09375,
50
+ "eval_loss": 1.2942205667495728,
51
+ "eval_runtime": 190.6475,
52
+ "eval_samples_per_second": 1.049,
53
+ "eval_steps_per_second": 0.131,
54
+ "step": 3
55
+ },
56
+ {
57
+ "epoch": 0.125,
58
+ "grad_norm": 0.32188096642751235,
59
+ "learning_rate": 1.7227062322935725e-05,
60
+ "loss": 1.2323,
61
+ "step": 4
62
+ },
63
+ {
64
+ "epoch": 0.125,
65
+ "eval_loss": 1.2789555788040161,
66
+ "eval_runtime": 189.7666,
67
+ "eval_samples_per_second": 1.054,
68
+ "eval_steps_per_second": 0.132,
69
+ "step": 4
70
+ },
71
+ {
72
+ "epoch": 0.15625,
73
+ "grad_norm": 0.3767527705004001,
74
+ "learning_rate": 2e-05,
75
+ "loss": 1.2785,
76
+ "step": 5
77
+ },
78
+ {
79
+ "epoch": 0.15625,
80
+ "eval_loss": 1.258152723312378,
81
+ "eval_runtime": 189.5935,
82
+ "eval_samples_per_second": 1.055,
83
+ "eval_steps_per_second": 0.132,
84
+ "step": 5
85
+ },
86
+ {
87
+ "epoch": 0.1875,
88
+ "grad_norm": 0.3287126070774628,
89
+ "learning_rate": 2e-05,
90
+ "loss": 1.2151,
91
+ "step": 6
92
+ },
93
+ {
94
+ "epoch": 0.1875,
95
+ "eval_loss": 1.2347216606140137,
96
+ "eval_runtime": 190.4111,
97
+ "eval_samples_per_second": 1.05,
98
+ "eval_steps_per_second": 0.131,
99
+ "step": 6
100
+ },
101
+ {
102
+ "epoch": 0.21875,
103
+ "grad_norm": 0.34451127286331007,
104
+ "learning_rate": 2e-05,
105
+ "loss": 1.2968,
106
+ "step": 7
107
+ },
108
+ {
109
+ "epoch": 0.21875,
110
+ "eval_loss": 1.210167646408081,
111
+ "eval_runtime": 190.9799,
112
+ "eval_samples_per_second": 1.047,
113
+ "eval_steps_per_second": 0.131,
114
+ "step": 7
115
+ },
116
+ {
117
+ "epoch": 0.25,
118
+ "grad_norm": 0.36105870692958336,
119
+ "learning_rate": 2e-05,
120
+ "loss": 1.2277,
121
+ "step": 8
122
+ },
123
+ {
124
+ "epoch": 0.25,
125
+ "eval_loss": 1.1862907409667969,
126
+ "eval_runtime": 190.685,
127
+ "eval_samples_per_second": 1.049,
128
+ "eval_steps_per_second": 0.131,
129
+ "step": 8
130
+ },
131
+ {
132
+ "epoch": 0.28125,
133
+ "grad_norm": 0.35460549637546845,
134
+ "learning_rate": 2e-05,
135
+ "loss": 1.2101,
136
+ "step": 9
137
+ },
138
+ {
139
+ "epoch": 0.28125,
140
+ "eval_loss": 1.1649302244186401,
141
+ "eval_runtime": 190.1569,
142
+ "eval_samples_per_second": 1.052,
143
+ "eval_steps_per_second": 0.131,
144
+ "step": 9
145
+ },
146
+ {
147
+ "epoch": 0.3125,
148
+ "grad_norm": 0.3134923556618721,
149
+ "learning_rate": 2e-05,
150
+ "loss": 1.1163,
151
+ "step": 10
152
+ },
153
+ {
154
+ "epoch": 0.3125,
155
+ "eval_loss": 1.144965410232544,
156
+ "eval_runtime": 190.0982,
157
+ "eval_samples_per_second": 1.052,
158
+ "eval_steps_per_second": 0.132,
159
+ "step": 10
160
+ },
161
+ {
162
+ "epoch": 0.34375,
163
+ "grad_norm": 0.3069481492118633,
164
+ "learning_rate": 2e-05,
165
+ "loss": 1.1483,
166
+ "step": 11
167
+ },
168
+ {
169
+ "epoch": 0.34375,
170
+ "eval_loss": 1.124668002128601,
171
+ "eval_runtime": 192.0572,
172
+ "eval_samples_per_second": 1.041,
173
+ "eval_steps_per_second": 0.13,
174
+ "step": 11
175
+ },
176
+ {
177
+ "epoch": 0.375,
178
+ "grad_norm": 0.2801324709168811,
179
+ "learning_rate": 2e-05,
180
+ "loss": 1.1172,
181
+ "step": 12
182
+ },
183
+ {
184
+ "epoch": 0.375,
185
+ "eval_loss": 1.1061824560165405,
186
+ "eval_runtime": 192.6406,
187
+ "eval_samples_per_second": 1.038,
188
+ "eval_steps_per_second": 0.13,
189
+ "step": 12
190
+ },
191
+ {
192
+ "epoch": 0.40625,
193
+ "grad_norm": 0.33156251919932406,
194
+ "learning_rate": 2e-05,
195
+ "loss": 1.1902,
196
+ "step": 13
197
+ },
198
+ {
199
+ "epoch": 0.40625,
200
+ "eval_loss": 1.0897018909454346,
201
+ "eval_runtime": 192.8064,
202
+ "eval_samples_per_second": 1.037,
203
+ "eval_steps_per_second": 0.13,
204
+ "step": 13
205
+ },
206
+ {
207
+ "epoch": 0.4375,
208
+ "grad_norm": 0.3307149375898363,
209
+ "learning_rate": 2e-05,
210
+ "loss": 1.1014,
211
+ "step": 14
212
+ },
213
+ {
214
+ "epoch": 0.4375,
215
+ "eval_loss": 1.075058937072754,
216
+ "eval_runtime": 192.1353,
217
+ "eval_samples_per_second": 1.041,
218
+ "eval_steps_per_second": 0.13,
219
+ "step": 14
220
+ },
221
+ {
222
+ "epoch": 0.46875,
223
+ "grad_norm": 0.31999611930431227,
224
+ "learning_rate": 2e-05,
225
+ "loss": 1.0847,
226
+ "step": 15
227
+ },
228
+ {
229
+ "epoch": 0.46875,
230
+ "eval_loss": 1.0613062381744385,
231
+ "eval_runtime": 192.0586,
232
+ "eval_samples_per_second": 1.041,
233
+ "eval_steps_per_second": 0.13,
234
+ "step": 15
235
+ },
236
+ {
237
+ "epoch": 0.5,
238
+ "grad_norm": 0.2494159223446848,
239
+ "learning_rate": 2e-05,
240
+ "loss": 1.0428,
241
+ "step": 16
242
+ },
243
+ {
244
+ "epoch": 0.5,
245
+ "eval_loss": 1.0484405755996704,
246
+ "eval_runtime": 192.52,
247
+ "eval_samples_per_second": 1.039,
248
+ "eval_steps_per_second": 0.13,
249
+ "step": 16
250
+ },
251
+ {
252
+ "epoch": 0.53125,
253
+ "grad_norm": 0.2899303168196212,
254
+ "learning_rate": 2e-05,
255
+ "loss": 1.122,
256
+ "step": 17
257
+ },
258
+ {
259
+ "epoch": 0.53125,
260
+ "eval_loss": 1.036120891571045,
261
+ "eval_runtime": 192.5716,
262
+ "eval_samples_per_second": 1.039,
263
+ "eval_steps_per_second": 0.13,
264
+ "step": 17
265
+ },
266
+ {
267
+ "epoch": 0.5625,
268
+ "grad_norm": 0.2995776829874209,
269
+ "learning_rate": 2e-05,
270
+ "loss": 1.0425,
271
+ "step": 18
272
+ },
273
+ {
274
+ "epoch": 0.5625,
275
+ "eval_loss": 1.0226774215698242,
276
+ "eval_runtime": 192.5256,
277
+ "eval_samples_per_second": 1.039,
278
+ "eval_steps_per_second": 0.13,
279
+ "step": 18
280
+ },
281
+ {
282
+ "epoch": 0.59375,
283
+ "grad_norm": 0.28709859243892955,
284
+ "learning_rate": 2e-05,
285
+ "loss": 1.0098,
286
+ "step": 19
287
+ },
288
+ {
289
+ "epoch": 0.59375,
290
+ "eval_loss": 1.0081837177276611,
291
+ "eval_runtime": 192.3486,
292
+ "eval_samples_per_second": 1.04,
293
+ "eval_steps_per_second": 0.13,
294
+ "step": 19
295
+ },
296
+ {
297
+ "epoch": 0.625,
298
+ "grad_norm": 0.27612474678791227,
299
+ "learning_rate": 2e-05,
300
+ "loss": 1.0563,
301
+ "step": 20
302
+ },
303
+ {
304
+ "epoch": 0.625,
305
+ "eval_loss": 0.994163990020752,
306
+ "eval_runtime": 191.9782,
307
+ "eval_samples_per_second": 1.042,
308
+ "eval_steps_per_second": 0.13,
309
+ "step": 20
310
+ },
311
+ {
312
+ "epoch": 0.65625,
313
+ "grad_norm": 0.24260720679126926,
314
+ "learning_rate": 2e-05,
315
+ "loss": 1.0355,
316
+ "step": 21
317
+ },
318
+ {
319
+ "epoch": 0.65625,
320
+ "eval_loss": 0.9819543361663818,
321
+ "eval_runtime": 191.9306,
322
+ "eval_samples_per_second": 1.042,
323
+ "eval_steps_per_second": 0.13,
324
+ "step": 21
325
+ },
326
+ {
327
+ "epoch": 0.6875,
328
+ "grad_norm": 0.25336536603884946,
329
+ "learning_rate": 2e-05,
330
+ "loss": 1.0525,
331
+ "step": 22
332
+ },
333
+ {
334
+ "epoch": 0.6875,
335
+ "eval_loss": 0.9709838032722473,
336
+ "eval_runtime": 192.9913,
337
+ "eval_samples_per_second": 1.036,
338
+ "eval_steps_per_second": 0.13,
339
+ "step": 22
340
+ },
341
+ {
342
+ "epoch": 0.71875,
343
+ "grad_norm": 0.24820839136364292,
344
+ "learning_rate": 2e-05,
345
+ "loss": 1.1392,
346
+ "step": 23
347
+ },
348
+ {
349
+ "epoch": 0.71875,
350
+ "eval_loss": 0.9616628885269165,
351
+ "eval_runtime": 192.6673,
352
+ "eval_samples_per_second": 1.038,
353
+ "eval_steps_per_second": 0.13,
354
+ "step": 23
355
+ },
356
+ {
357
+ "epoch": 0.75,
358
+ "grad_norm": 0.24589291203527217,
359
+ "learning_rate": 2e-05,
360
+ "loss": 1.058,
361
+ "step": 24
362
+ },
363
+ {
364
+ "epoch": 0.75,
365
+ "eval_loss": 0.9531083703041077,
366
+ "eval_runtime": 193.0994,
367
+ "eval_samples_per_second": 1.036,
368
+ "eval_steps_per_second": 0.129,
369
+ "step": 24
370
+ },
371
+ {
372
+ "epoch": 0.78125,
373
+ "grad_norm": 0.249532642718915,
374
+ "learning_rate": 2e-05,
375
+ "loss": 0.938,
376
+ "step": 25
377
+ },
378
+ {
379
+ "epoch": 0.78125,
380
+ "eval_loss": 0.9455437660217285,
381
+ "eval_runtime": 191.9941,
382
+ "eval_samples_per_second": 1.042,
383
+ "eval_steps_per_second": 0.13,
384
+ "step": 25
385
+ },
386
+ {
387
+ "epoch": 0.8125,
388
+ "grad_norm": 0.28034242585086017,
389
+ "learning_rate": 2e-05,
390
+ "loss": 0.9387,
391
+ "step": 26
392
+ },
393
+ {
394
+ "epoch": 0.8125,
395
+ "eval_loss": 0.93752121925354,
396
+ "eval_runtime": 195.4083,
397
+ "eval_samples_per_second": 1.023,
398
+ "eval_steps_per_second": 0.128,
399
+ "step": 26
400
+ },
401
+ {
402
+ "epoch": 0.84375,
403
+ "grad_norm": 0.2692565070546352,
404
+ "learning_rate": 2e-05,
405
+ "loss": 1.0474,
406
+ "step": 27
407
+ },
408
+ {
409
+ "epoch": 0.84375,
410
+ "eval_loss": 0.9300512075424194,
411
+ "eval_runtime": 195.3651,
412
+ "eval_samples_per_second": 1.024,
413
+ "eval_steps_per_second": 0.128,
414
+ "step": 27
415
+ },
416
+ {
417
+ "epoch": 0.875,
418
+ "grad_norm": 0.24705041646949316,
419
+ "learning_rate": 2e-05,
420
+ "loss": 0.9596,
421
+ "step": 28
422
+ },
423
+ {
424
+ "epoch": 0.875,
425
+ "eval_loss": 0.9226720929145813,
426
+ "eval_runtime": 195.4848,
427
+ "eval_samples_per_second": 1.023,
428
+ "eval_steps_per_second": 0.128,
429
+ "step": 28
430
+ },
431
+ {
432
+ "epoch": 0.90625,
433
+ "grad_norm": 0.24799871352606165,
434
+ "learning_rate": 2e-05,
435
+ "loss": 1.0172,
436
+ "step": 29
437
+ },
438
+ {
439
+ "epoch": 0.90625,
440
+ "eval_loss": 0.9159422516822815,
441
+ "eval_runtime": 196.157,
442
+ "eval_samples_per_second": 1.02,
443
+ "eval_steps_per_second": 0.127,
444
+ "step": 29
445
+ },
446
+ {
447
+ "epoch": 0.9375,
448
+ "grad_norm": 0.29755264040904106,
449
+ "learning_rate": 2e-05,
450
+ "loss": 0.9324,
451
+ "step": 30
452
+ },
453
+ {
454
+ "epoch": 0.9375,
455
+ "eval_loss": 0.9090733528137207,
456
+ "eval_runtime": 196.5295,
457
+ "eval_samples_per_second": 1.018,
458
+ "eval_steps_per_second": 0.127,
459
+ "step": 30
460
+ },
461
+ {
462
+ "epoch": 0.96875,
463
+ "grad_norm": 0.2629221961008751,
464
+ "learning_rate": 2e-05,
465
+ "loss": 0.9265,
466
+ "step": 31
467
+ },
468
+ {
469
+ "epoch": 0.96875,
470
+ "eval_loss": 0.9027940630912781,
471
+ "eval_runtime": 196.281,
472
+ "eval_samples_per_second": 1.019,
473
+ "eval_steps_per_second": 0.127,
474
+ "step": 31
475
+ },
476
+ {
477
+ "epoch": 1.0,
478
+ "grad_norm": 0.2901110704218056,
479
+ "learning_rate": 2e-05,
480
+ "loss": 0.9933,
481
+ "step": 32
482
+ },
483
+ {
484
+ "epoch": 1.0,
485
+ "eval_loss": 0.8970211148262024,
486
+ "eval_runtime": 190.2702,
487
+ "eval_samples_per_second": 1.051,
488
+ "eval_steps_per_second": 0.131,
489
+ "step": 32
490
+ },
491
+ {
492
+ "epoch": 1.03125,
493
+ "grad_norm": 0.27746608883483487,
494
+ "learning_rate": 2e-05,
495
+ "loss": 0.9339,
496
+ "step": 33
497
+ },
498
+ {
499
+ "epoch": 1.03125,
500
+ "eval_loss": 0.8916085958480835,
501
+ "eval_runtime": 189.4543,
502
+ "eval_samples_per_second": 1.056,
503
+ "eval_steps_per_second": 0.132,
504
+ "step": 33
505
+ },
506
+ {
507
+ "epoch": 1.0625,
508
+ "grad_norm": 0.26134437145600353,
509
+ "learning_rate": 2e-05,
510
+ "loss": 0.9438,
511
+ "step": 34
512
+ },
513
+ {
514
+ "epoch": 1.0625,
515
+ "eval_loss": 0.8867039680480957,
516
+ "eval_runtime": 189.6926,
517
+ "eval_samples_per_second": 1.054,
518
+ "eval_steps_per_second": 0.132,
519
+ "step": 34
520
+ },
521
+ {
522
+ "epoch": 1.09375,
523
+ "grad_norm": 0.252882507519195,
524
+ "learning_rate": 2e-05,
525
+ "loss": 0.8979,
526
+ "step": 35
527
+ },
528
+ {
529
+ "epoch": 1.09375,
530
+ "eval_loss": 0.8824067711830139,
531
+ "eval_runtime": 189.9217,
532
+ "eval_samples_per_second": 1.053,
533
+ "eval_steps_per_second": 0.132,
534
+ "step": 35
535
+ },
536
+ {
537
+ "epoch": 1.125,
538
+ "grad_norm": 0.25443025949474585,
539
+ "learning_rate": 2e-05,
540
+ "loss": 0.9411,
541
+ "step": 36
542
+ },
543
+ {
544
+ "epoch": 1.125,
545
+ "eval_loss": 0.8788293600082397,
546
+ "eval_runtime": 191.4083,
547
+ "eval_samples_per_second": 1.045,
548
+ "eval_steps_per_second": 0.131,
549
+ "step": 36
550
+ },
551
+ {
552
+ "epoch": 1.15625,
553
+ "grad_norm": 0.2559343621244427,
554
+ "learning_rate": 2e-05,
555
+ "loss": 0.9827,
556
+ "step": 37
557
+ },
558
+ {
559
+ "epoch": 1.15625,
560
+ "eval_loss": 0.8760793805122375,
561
+ "eval_runtime": 191.2732,
562
+ "eval_samples_per_second": 1.046,
563
+ "eval_steps_per_second": 0.131,
564
+ "step": 37
565
+ },
566
+ {
567
+ "epoch": 1.1875,
568
+ "grad_norm": 0.25403189851366254,
569
+ "learning_rate": 2e-05,
570
+ "loss": 0.8658,
571
+ "step": 38
572
+ },
573
+ {
574
+ "epoch": 1.1875,
575
+ "eval_loss": 0.8727380633354187,
576
+ "eval_runtime": 190.4281,
577
+ "eval_samples_per_second": 1.05,
578
+ "eval_steps_per_second": 0.131,
579
+ "step": 38
580
+ },
581
+ {
582
+ "epoch": 1.21875,
583
+ "grad_norm": 0.2493777578005398,
584
+ "learning_rate": 2e-05,
585
+ "loss": 1.0053,
586
+ "step": 39
587
+ },
588
+ {
589
+ "epoch": 1.21875,
590
+ "eval_loss": 0.869698703289032,
591
+ "eval_runtime": 190.3431,
592
+ "eval_samples_per_second": 1.051,
593
+ "eval_steps_per_second": 0.131,
594
+ "step": 39
595
+ },
596
+ {
597
+ "epoch": 1.25,
598
+ "grad_norm": 0.24823573574563138,
599
+ "learning_rate": 2e-05,
600
+ "loss": 0.8967,
601
+ "step": 40
602
+ },
603
+ {
604
+ "epoch": 1.25,
605
+ "eval_loss": 0.8664910793304443,
606
+ "eval_runtime": 189.9802,
607
+ "eval_samples_per_second": 1.053,
608
+ "eval_steps_per_second": 0.132,
609
+ "step": 40
610
+ },
611
+ {
612
+ "epoch": 1.28125,
613
+ "grad_norm": 0.25462243237743476,
614
+ "learning_rate": 2e-05,
615
+ "loss": 1.0064,
616
+ "step": 41
617
+ },
618
+ {
619
+ "epoch": 1.28125,
620
+ "eval_loss": 0.8638657927513123,
621
+ "eval_runtime": 195.3373,
622
+ "eval_samples_per_second": 1.024,
623
+ "eval_steps_per_second": 0.128,
624
+ "step": 41
625
+ },
626
+ {
627
+ "epoch": 1.3125,
628
+ "grad_norm": 0.2604089386111215,
629
+ "learning_rate": 2e-05,
630
+ "loss": 0.9898,
631
+ "step": 42
632
+ },
633
+ {
634
+ "epoch": 1.3125,
635
+ "eval_loss": 0.8607734441757202,
636
+ "eval_runtime": 195.219,
637
+ "eval_samples_per_second": 1.024,
638
+ "eval_steps_per_second": 0.128,
639
+ "step": 42
640
+ },
641
+ {
642
+ "epoch": 1.34375,
643
+ "grad_norm": 0.27139202440805793,
644
+ "learning_rate": 2e-05,
645
+ "loss": 1.0539,
646
+ "step": 43
647
+ },
648
+ {
649
+ "epoch": 1.34375,
650
+ "eval_loss": 0.8573687672615051,
651
+ "eval_runtime": 195.8828,
652
+ "eval_samples_per_second": 1.021,
653
+ "eval_steps_per_second": 0.128,
654
+ "step": 43
655
+ },
656
+ {
657
+ "epoch": 1.375,
658
+ "grad_norm": 0.27474433057157854,
659
+ "learning_rate": 2e-05,
660
+ "loss": 0.86,
661
+ "step": 44
662
+ },
663
+ {
664
+ "epoch": 1.375,
665
+ "eval_loss": 0.8537396192550659,
666
+ "eval_runtime": 194.9741,
667
+ "eval_samples_per_second": 1.026,
668
+ "eval_steps_per_second": 0.128,
669
+ "step": 44
670
+ },
671
+ {
672
+ "epoch": 1.40625,
673
+ "grad_norm": 0.2537208760747199,
674
+ "learning_rate": 2e-05,
675
+ "loss": 0.9562,
676
+ "step": 45
677
+ },
678
+ {
679
+ "epoch": 1.40625,
680
+ "eval_loss": 0.8497809767723083,
681
+ "eval_runtime": 194.9162,
682
+ "eval_samples_per_second": 1.026,
683
+ "eval_steps_per_second": 0.128,
684
+ "step": 45
685
+ },
686
+ {
687
+ "epoch": 1.4375,
688
+ "grad_norm": 0.27560461131090846,
689
+ "learning_rate": 2e-05,
690
+ "loss": 0.8767,
691
+ "step": 46
692
+ },
693
+ {
694
+ "epoch": 1.4375,
695
+ "eval_loss": 0.8458660244941711,
696
+ "eval_runtime": 195.1157,
697
+ "eval_samples_per_second": 1.025,
698
+ "eval_steps_per_second": 0.128,
699
+ "step": 46
700
+ },
701
+ {
702
+ "epoch": 1.46875,
703
+ "grad_norm": 0.2594536794112662,
704
+ "learning_rate": 2e-05,
705
+ "loss": 0.9256,
706
+ "step": 47
707
+ },
708
+ {
709
+ "epoch": 1.46875,
710
+ "eval_loss": 0.8429936766624451,
711
+ "eval_runtime": 195.048,
712
+ "eval_samples_per_second": 1.025,
713
+ "eval_steps_per_second": 0.128,
714
+ "step": 47
715
+ },
716
+ {
717
+ "epoch": 1.5,
718
+ "grad_norm": 0.28583207453838866,
719
+ "learning_rate": 2e-05,
720
+ "loss": 0.9858,
721
+ "step": 48
722
+ },
723
+ {
724
+ "epoch": 1.5,
725
+ "eval_loss": 0.84013831615448,
726
+ "eval_runtime": 194.3046,
727
+ "eval_samples_per_second": 1.029,
728
+ "eval_steps_per_second": 0.129,
729
+ "step": 48
730
+ },
731
+ {
732
+ "epoch": 1.53125,
733
+ "grad_norm": 0.28118976636788506,
734
+ "learning_rate": 2e-05,
735
+ "loss": 0.9158,
736
+ "step": 49
737
+ },
738
+ {
739
+ "epoch": 1.53125,
740
+ "eval_loss": 0.8369531035423279,
741
+ "eval_runtime": 194.521,
742
+ "eval_samples_per_second": 1.028,
743
+ "eval_steps_per_second": 0.129,
744
+ "step": 49
745
+ },
746
+ {
747
+ "epoch": 1.5625,
748
+ "grad_norm": 0.29276573776696546,
749
+ "learning_rate": 2e-05,
750
+ "loss": 0.8745,
751
+ "step": 50
752
+ },
753
+ {
754
+ "epoch": 1.5625,
755
+ "eval_loss": 0.8341982960700989,
756
+ "eval_runtime": 194.1114,
757
+ "eval_samples_per_second": 1.03,
758
+ "eval_steps_per_second": 0.129,
759
+ "step": 50
760
+ },
761
+ {
762
+ "epoch": 1.59375,
763
+ "grad_norm": 0.2860638141439372,
764
+ "learning_rate": 2e-05,
765
+ "loss": 0.854,
766
+ "step": 51
767
+ },
768
+ {
769
+ "epoch": 1.59375,
770
+ "eval_loss": 0.8317239284515381,
771
+ "eval_runtime": 198.1029,
772
+ "eval_samples_per_second": 1.01,
773
+ "eval_steps_per_second": 0.126,
774
+ "step": 51
775
+ },
776
+ {
777
+ "epoch": 1.625,
778
+ "grad_norm": 0.29960349722496704,
779
+ "learning_rate": 2e-05,
780
+ "loss": 0.8399,
781
+ "step": 52
782
+ },
783
+ {
784
+ "epoch": 1.625,
785
+ "eval_loss": 0.8290513753890991,
786
+ "eval_runtime": 198.0764,
787
+ "eval_samples_per_second": 1.01,
788
+ "eval_steps_per_second": 0.126,
789
+ "step": 52
790
+ },
791
+ {
792
+ "epoch": 1.65625,
793
+ "grad_norm": 0.2964234305808419,
794
+ "learning_rate": 2e-05,
795
+ "loss": 0.9694,
796
+ "step": 53
797
+ },
798
+ {
799
+ "epoch": 1.65625,
800
+ "eval_loss": 0.8267760276794434,
801
+ "eval_runtime": 197.8284,
802
+ "eval_samples_per_second": 1.011,
803
+ "eval_steps_per_second": 0.126,
804
+ "step": 53
805
+ },
806
+ {
807
+ "epoch": 1.6875,
808
+ "grad_norm": 0.26183932644077784,
809
+ "learning_rate": 2e-05,
810
+ "loss": 0.8153,
811
+ "step": 54
812
+ },
813
+ {
814
+ "epoch": 1.6875,
815
+ "eval_loss": 0.824044942855835,
816
+ "eval_runtime": 198.1694,
817
+ "eval_samples_per_second": 1.009,
818
+ "eval_steps_per_second": 0.126,
819
+ "step": 54
820
+ },
821
+ {
822
+ "epoch": 1.71875,
823
+ "grad_norm": 0.3067024314453144,
824
+ "learning_rate": 2e-05,
825
+ "loss": 0.883,
826
+ "step": 55
827
+ },
828
+ {
829
+ "epoch": 1.71875,
830
+ "eval_loss": 0.8216392397880554,
831
+ "eval_runtime": 198.0249,
832
+ "eval_samples_per_second": 1.01,
833
+ "eval_steps_per_second": 0.126,
834
+ "step": 55
835
+ },
836
+ {
837
+ "epoch": 1.75,
838
+ "grad_norm": 0.27888658705355013,
839
+ "learning_rate": 2e-05,
840
+ "loss": 0.8771,
841
+ "step": 56
842
+ },
843
+ {
844
+ "epoch": 1.75,
845
+ "eval_loss": 0.8194215297698975,
846
+ "eval_runtime": 195.4688,
847
+ "eval_samples_per_second": 1.023,
848
+ "eval_steps_per_second": 0.128,
849
+ "step": 56
850
+ },
851
+ {
852
+ "epoch": 1.78125,
853
+ "grad_norm": 0.32571765544245934,
854
+ "learning_rate": 2e-05,
855
+ "loss": 0.897,
856
+ "step": 57
857
+ },
858
+ {
859
+ "epoch": 1.78125,
860
+ "eval_loss": 0.8167170882225037,
861
+ "eval_runtime": 189.6243,
862
+ "eval_samples_per_second": 1.055,
863
+ "eval_steps_per_second": 0.132,
864
+ "step": 57
865
+ },
866
+ {
867
+ "epoch": 1.8125,
868
+ "grad_norm": 0.292216058855145,
869
+ "learning_rate": 2e-05,
870
+ "loss": 0.9277,
871
+ "step": 58
872
+ },
873
+ {
874
+ "epoch": 1.8125,
875
+ "eval_loss": 0.8145509958267212,
876
+ "eval_runtime": 190.2429,
877
+ "eval_samples_per_second": 1.051,
878
+ "eval_steps_per_second": 0.131,
879
+ "step": 58
880
+ },
881
+ {
882
+ "epoch": 1.84375,
883
+ "grad_norm": 0.29002612820437024,
884
+ "learning_rate": 2e-05,
885
+ "loss": 0.8971,
886
+ "step": 59
887
+ },
888
+ {
889
+ "epoch": 1.84375,
890
+ "eval_loss": 0.8122230768203735,
891
+ "eval_runtime": 189.9403,
892
+ "eval_samples_per_second": 1.053,
893
+ "eval_steps_per_second": 0.132,
894
+ "step": 59
895
+ },
896
+ {
897
+ "epoch": 1.875,
898
+ "grad_norm": 0.2926088029288858,
899
+ "learning_rate": 2e-05,
900
+ "loss": 0.9225,
901
+ "step": 60
902
+ },
903
+ {
904
+ "epoch": 1.875,
905
+ "eval_loss": 0.8100479245185852,
906
+ "eval_runtime": 190.2569,
907
+ "eval_samples_per_second": 1.051,
908
+ "eval_steps_per_second": 0.131,
909
+ "step": 60
910
+ },
911
+ {
912
+ "epoch": 1.90625,
913
+ "grad_norm": 0.30068993111077397,
914
+ "learning_rate": 2e-05,
915
+ "loss": 0.9134,
916
+ "step": 61
917
+ },
918
+ {
919
+ "epoch": 1.90625,
920
+ "eval_loss": 0.808087944984436,
921
+ "eval_runtime": 192.4896,
922
+ "eval_samples_per_second": 1.039,
923
+ "eval_steps_per_second": 0.13,
924
+ "step": 61
925
+ },
926
+ {
927
+ "epoch": 1.9375,
928
+ "grad_norm": 0.3157573686768343,
929
+ "learning_rate": 2e-05,
930
+ "loss": 0.8965,
931
+ "step": 62
932
+ },
933
+ {
934
+ "epoch": 1.9375,
935
+ "eval_loss": 0.8057371377944946,
936
+ "eval_runtime": 190.0158,
937
+ "eval_samples_per_second": 1.053,
938
+ "eval_steps_per_second": 0.132,
939
+ "step": 62
940
+ },
941
+ {
942
+ "epoch": 1.96875,
943
+ "grad_norm": 0.31215592754506605,
944
+ "learning_rate": 2e-05,
945
+ "loss": 0.7828,
946
+ "step": 63
947
+ },
948
+ {
949
+ "epoch": 1.96875,
950
+ "eval_loss": 0.8031384944915771,
951
+ "eval_runtime": 189.5204,
952
+ "eval_samples_per_second": 1.055,
953
+ "eval_steps_per_second": 0.132,
954
+ "step": 63
955
+ },
956
+ {
957
+ "epoch": 2.0,
958
+ "grad_norm": 0.29422828766227993,
959
+ "learning_rate": 2e-05,
960
+ "loss": 0.8196,
961
+ "step": 64
962
+ },
963
+ {
964
+ "epoch": 2.0,
965
+ "eval_loss": 0.8012601733207703,
966
+ "eval_runtime": 189.7041,
967
+ "eval_samples_per_second": 1.054,
968
+ "eval_steps_per_second": 0.132,
969
+ "step": 64
970
+ },
971
+ {
972
+ "epoch": 2.03125,
973
+ "grad_norm": 0.2885449518895793,
974
+ "learning_rate": 2e-05,
975
+ "loss": 0.9715,
976
+ "step": 65
977
+ },
978
+ {
979
+ "epoch": 2.03125,
980
+ "eval_loss": 0.8001161813735962,
981
+ "eval_runtime": 189.57,
982
+ "eval_samples_per_second": 1.055,
983
+ "eval_steps_per_second": 0.132,
984
+ "step": 65
985
+ },
986
+ {
987
+ "epoch": 2.0625,
988
+ "grad_norm": 0.30260184063348483,
989
+ "learning_rate": 2e-05,
990
+ "loss": 0.7912,
991
+ "step": 66
992
+ },
993
+ {
994
+ "epoch": 2.0625,
995
+ "eval_loss": 0.7989436388015747,
996
+ "eval_runtime": 193.0193,
997
+ "eval_samples_per_second": 1.036,
998
+ "eval_steps_per_second": 0.13,
999
+ "step": 66
1000
+ },
1001
+ {
1002
+ "epoch": 2.09375,
1003
+ "grad_norm": 0.32650294605024255,
1004
+ "learning_rate": 2e-05,
1005
+ "loss": 0.8176,
1006
+ "step": 67
1007
+ },
1008
+ {
1009
+ "epoch": 2.09375,
1010
+ "eval_loss": 0.7972333431243896,
1011
+ "eval_runtime": 193.2225,
1012
+ "eval_samples_per_second": 1.035,
1013
+ "eval_steps_per_second": 0.129,
1014
+ "step": 67
1015
+ },
1016
+ {
1017
+ "epoch": 2.125,
1018
+ "grad_norm": 0.3382679480741134,
1019
+ "learning_rate": 2e-05,
1020
+ "loss": 0.8141,
1021
+ "step": 68
1022
+ },
1023
+ {
1024
+ "epoch": 2.125,
1025
+ "eval_loss": 0.7950598001480103,
1026
+ "eval_runtime": 193.2781,
1027
+ "eval_samples_per_second": 1.035,
1028
+ "eval_steps_per_second": 0.129,
1029
+ "step": 68
1030
+ },
1031
+ {
1032
+ "epoch": 2.15625,
1033
+ "grad_norm": 0.3094090784935889,
1034
+ "learning_rate": 2e-05,
1035
+ "loss": 0.796,
1036
+ "step": 69
1037
+ },
1038
+ {
1039
+ "epoch": 2.15625,
1040
+ "eval_loss": 0.7932476997375488,
1041
+ "eval_runtime": 193.0282,
1042
+ "eval_samples_per_second": 1.036,
1043
+ "eval_steps_per_second": 0.13,
1044
+ "step": 69
1045
+ },
1046
+ {
1047
+ "epoch": 2.1875,
1048
+ "grad_norm": 0.30209558834780514,
1049
+ "learning_rate": 2e-05,
1050
+ "loss": 0.927,
1051
+ "step": 70
1052
+ },
1053
+ {
1054
+ "epoch": 2.1875,
1055
+ "eval_loss": 0.7922118902206421,
1056
+ "eval_runtime": 192.8284,
1057
+ "eval_samples_per_second": 1.037,
1058
+ "eval_steps_per_second": 0.13,
1059
+ "step": 70
1060
+ },
1061
+ {
1062
+ "epoch": 2.21875,
1063
+ "grad_norm": 0.35958652905266686,
1064
+ "learning_rate": 2e-05,
1065
+ "loss": 0.8224,
1066
+ "step": 71
1067
+ },
1068
+ {
1069
+ "epoch": 2.21875,
1070
+ "eval_loss": 0.7909810543060303,
1071
+ "eval_runtime": 202.3128,
1072
+ "eval_samples_per_second": 0.989,
1073
+ "eval_steps_per_second": 0.124,
1074
+ "step": 71
1075
+ },
1076
+ {
1077
+ "epoch": 2.25,
1078
+ "grad_norm": 0.356338004067507,
1079
+ "learning_rate": 2e-05,
1080
+ "loss": 0.8376,
1081
+ "step": 72
1082
+ },
1083
+ {
1084
+ "epoch": 2.25,
1085
+ "eval_loss": 0.7894656658172607,
1086
+ "eval_runtime": 195.1481,
1087
+ "eval_samples_per_second": 1.025,
1088
+ "eval_steps_per_second": 0.128,
1089
+ "step": 72
1090
+ },
1091
+ {
1092
+ "epoch": 2.28125,
1093
+ "grad_norm": 0.31886905989727465,
1094
+ "learning_rate": 2e-05,
1095
+ "loss": 0.8688,
1096
+ "step": 73
1097
+ },
1098
+ {
1099
+ "epoch": 2.28125,
1100
+ "eval_loss": 0.7889463901519775,
1101
+ "eval_runtime": 194.8418,
1102
+ "eval_samples_per_second": 1.026,
1103
+ "eval_steps_per_second": 0.128,
1104
+ "step": 73
1105
+ },
1106
+ {
1107
+ "epoch": 2.3125,
1108
+ "grad_norm": 0.35606342918056466,
1109
+ "learning_rate": 2e-05,
1110
+ "loss": 0.835,
1111
+ "step": 74
1112
+ },
1113
+ {
1114
+ "epoch": 2.3125,
1115
+ "eval_loss": 0.7875587344169617,
1116
+ "eval_runtime": 194.7701,
1117
+ "eval_samples_per_second": 1.027,
1118
+ "eval_steps_per_second": 0.128,
1119
+ "step": 74
1120
+ },
1121
+ {
1122
+ "epoch": 2.34375,
1123
+ "grad_norm": 0.3161858862696026,
1124
+ "learning_rate": 2e-05,
1125
+ "loss": 0.873,
1126
+ "step": 75
1127
+ },
1128
+ {
1129
+ "epoch": 2.34375,
1130
+ "eval_loss": 0.7863460779190063,
1131
+ "eval_runtime": 195.4811,
1132
+ "eval_samples_per_second": 1.023,
1133
+ "eval_steps_per_second": 0.128,
1134
+ "step": 75
1135
+ },
1136
+ {
1137
+ "epoch": 2.375,
1138
+ "grad_norm": 0.35771781884741477,
1139
+ "learning_rate": 2e-05,
1140
+ "loss": 0.9021,
1141
+ "step": 76
1142
+ },
1143
+ {
1144
+ "epoch": 2.375,
1145
+ "eval_loss": 0.7847577929496765,
1146
+ "eval_runtime": 195.3724,
1147
+ "eval_samples_per_second": 1.024,
1148
+ "eval_steps_per_second": 0.128,
1149
+ "step": 76
1150
+ },
1151
+ {
1152
+ "epoch": 2.40625,
1153
+ "grad_norm": 0.3549789155823785,
1154
+ "learning_rate": 2e-05,
1155
+ "loss": 0.9195,
1156
+ "step": 77
1157
+ },
1158
+ {
1159
+ "epoch": 2.40625,
1160
+ "eval_loss": 0.783415675163269,
1161
+ "eval_runtime": 190.226,
1162
+ "eval_samples_per_second": 1.051,
1163
+ "eval_steps_per_second": 0.131,
1164
+ "step": 77
1165
+ },
1166
+ {
1167
+ "epoch": 2.4375,
1168
+ "grad_norm": 0.34734314309709374,
1169
+ "learning_rate": 2e-05,
1170
+ "loss": 0.8386,
1171
+ "step": 78
1172
+ },
1173
+ {
1174
+ "epoch": 2.4375,
1175
+ "eval_loss": 0.7814657688140869,
1176
+ "eval_runtime": 190.3177,
1177
+ "eval_samples_per_second": 1.051,
1178
+ "eval_steps_per_second": 0.131,
1179
+ "step": 78
1180
+ },
1181
+ {
1182
+ "epoch": 2.46875,
1183
+ "grad_norm": 0.35540762574897183,
1184
+ "learning_rate": 2e-05,
1185
+ "loss": 0.851,
1186
+ "step": 79
1187
+ },
1188
+ {
1189
+ "epoch": 2.46875,
1190
+ "eval_loss": 0.7798058390617371,
1191
+ "eval_runtime": 190.7447,
1192
+ "eval_samples_per_second": 1.049,
1193
+ "eval_steps_per_second": 0.131,
1194
+ "step": 79
1195
+ },
1196
+ {
1197
+ "epoch": 2.5,
1198
+ "grad_norm": 0.3844458514717174,
1199
+ "learning_rate": 2e-05,
1200
+ "loss": 0.767,
1201
+ "step": 80
1202
+ },
1203
+ {
1204
+ "epoch": 2.5,
1205
+ "eval_loss": 0.7777827978134155,
1206
+ "eval_runtime": 190.8548,
1207
+ "eval_samples_per_second": 1.048,
1208
+ "eval_steps_per_second": 0.131,
1209
+ "step": 80
1210
+ },
1211
+ {
1212
+ "epoch": 2.53125,
1213
+ "grad_norm": 0.36232344175264375,
1214
+ "learning_rate": 2e-05,
1215
+ "loss": 0.8508,
1216
+ "step": 81
1217
+ },
1218
+ {
1219
+ "epoch": 2.53125,
1220
+ "eval_loss": 0.7763205170631409,
1221
+ "eval_runtime": 190.335,
1222
+ "eval_samples_per_second": 1.051,
1223
+ "eval_steps_per_second": 0.131,
1224
+ "step": 81
1225
+ },
1226
+ {
1227
+ "epoch": 2.5625,
1228
+ "grad_norm": 0.36279843147857743,
1229
+ "learning_rate": 2e-05,
1230
+ "loss": 0.8331,
1231
+ "step": 82
1232
+ },
1233
+ {
1234
+ "epoch": 2.5625,
1235
+ "eval_loss": 0.7757676839828491,
1236
+ "eval_runtime": 190.9559,
1237
+ "eval_samples_per_second": 1.047,
1238
+ "eval_steps_per_second": 0.131,
1239
+ "step": 82
1240
+ },
1241
+ {
1242
+ "epoch": 2.59375,
1243
+ "grad_norm": 0.395360566032837,
1244
+ "learning_rate": 2e-05,
1245
+ "loss": 0.847,
1246
+ "step": 83
1247
+ },
1248
+ {
1249
+ "epoch": 2.59375,
1250
+ "eval_loss": 0.7743326425552368,
1251
+ "eval_runtime": 190.6372,
1252
+ "eval_samples_per_second": 1.049,
1253
+ "eval_steps_per_second": 0.131,
1254
+ "step": 83
1255
+ },
1256
+ {
1257
+ "epoch": 2.625,
1258
+ "grad_norm": 0.4268568783791123,
1259
+ "learning_rate": 2e-05,
1260
+ "loss": 0.869,
1261
+ "step": 84
1262
+ },
1263
+ {
1264
+ "epoch": 2.625,
1265
+ "eval_loss": 0.772053062915802,
1266
+ "eval_runtime": 190.2072,
1267
+ "eval_samples_per_second": 1.051,
1268
+ "eval_steps_per_second": 0.131,
1269
+ "step": 84
1270
+ },
1271
+ {
1272
+ "epoch": 2.65625,
1273
+ "grad_norm": 0.3581495538253167,
1274
+ "learning_rate": 2e-05,
1275
+ "loss": 0.8591,
1276
+ "step": 85
1277
+ },
1278
+ {
1279
+ "epoch": 2.65625,
1280
+ "eval_loss": 0.7711917757987976,
1281
+ "eval_runtime": 190.4392,
1282
+ "eval_samples_per_second": 1.05,
1283
+ "eval_steps_per_second": 0.131,
1284
+ "step": 85
1285
+ },
1286
+ {
1287
+ "epoch": 2.6875,
1288
+ "grad_norm": 0.3952841797586726,
1289
+ "learning_rate": 2e-05,
1290
+ "loss": 0.8167,
1291
+ "step": 86
1292
+ },
1293
+ {
1294
+ "epoch": 2.6875,
1295
+ "eval_loss": 0.7714033722877502,
1296
+ "eval_runtime": 193.8038,
1297
+ "eval_samples_per_second": 1.032,
1298
+ "eval_steps_per_second": 0.129,
1299
+ "step": 86
1300
+ },
1301
+ {
1302
+ "epoch": 2.71875,
1303
+ "grad_norm": 0.41820009905687616,
1304
+ "learning_rate": 2e-05,
1305
+ "loss": 0.8165,
1306
+ "step": 87
1307
+ },
1308
+ {
1309
+ "epoch": 2.71875,
1310
+ "eval_loss": 0.771486759185791,
1311
+ "eval_runtime": 194.4791,
1312
+ "eval_samples_per_second": 1.028,
1313
+ "eval_steps_per_second": 0.129,
1314
+ "step": 87
1315
+ },
1316
+ {
1317
+ "epoch": 2.75,
1318
+ "grad_norm": 0.3852566717747202,
1319
+ "learning_rate": 2e-05,
1320
+ "loss": 0.8459,
1321
+ "step": 88
1322
+ },
1323
+ {
1324
+ "epoch": 2.75,
1325
+ "eval_loss": 0.7710732817649841,
1326
+ "eval_runtime": 194.3404,
1327
+ "eval_samples_per_second": 1.029,
1328
+ "eval_steps_per_second": 0.129,
1329
+ "step": 88
1330
+ },
1331
+ {
1332
+ "epoch": 2.78125,
1333
+ "grad_norm": 0.39909292055831935,
1334
+ "learning_rate": 2e-05,
1335
+ "loss": 0.8945,
1336
+ "step": 89
1337
+ },
1338
+ {
1339
+ "epoch": 2.78125,
1340
+ "eval_loss": 0.7708308696746826,
1341
+ "eval_runtime": 194.4483,
1342
+ "eval_samples_per_second": 1.029,
1343
+ "eval_steps_per_second": 0.129,
1344
+ "step": 89
1345
+ },
1346
+ {
1347
+ "epoch": 2.8125,
1348
+ "grad_norm": 0.3916487629667217,
1349
+ "learning_rate": 2e-05,
1350
+ "loss": 0.8029,
1351
+ "step": 90
1352
+ },
1353
+ {
1354
+ "epoch": 2.8125,
1355
+ "eval_loss": 0.7713395953178406,
1356
+ "eval_runtime": 194.6045,
1357
+ "eval_samples_per_second": 1.028,
1358
+ "eval_steps_per_second": 0.128,
1359
+ "step": 90
1360
+ },
1361
+ {
1362
+ "epoch": 2.84375,
1363
+ "grad_norm": 0.36969072235715195,
1364
+ "learning_rate": 2e-05,
1365
+ "loss": 0.7704,
1366
+ "step": 91
1367
+ },
1368
+ {
1369
+ "epoch": 2.84375,
1370
+ "eval_loss": 0.7713618278503418,
1371
+ "eval_runtime": 194.3895,
1372
+ "eval_samples_per_second": 1.029,
1373
+ "eval_steps_per_second": 0.129,
1374
+ "step": 91
1375
+ },
1376
+ {
1377
+ "epoch": 2.875,
1378
+ "grad_norm": 0.3853248559868725,
1379
+ "learning_rate": 2e-05,
1380
+ "loss": 0.8247,
1381
+ "step": 92
1382
+ },
1383
+ {
1384
+ "epoch": 2.875,
1385
+ "eval_loss": 0.7703633308410645,
1386
+ "eval_runtime": 194.0457,
1387
+ "eval_samples_per_second": 1.031,
1388
+ "eval_steps_per_second": 0.129,
1389
+ "step": 92
1390
+ },
1391
+ {
1392
+ "epoch": 2.90625,
1393
+ "grad_norm": 0.38111471762069055,
1394
+ "learning_rate": 2e-05,
1395
+ "loss": 0.855,
1396
+ "step": 93
1397
+ },
1398
+ {
1399
+ "epoch": 2.90625,
1400
+ "eval_loss": 0.7690189480781555,
1401
+ "eval_runtime": 194.3506,
1402
+ "eval_samples_per_second": 1.029,
1403
+ "eval_steps_per_second": 0.129,
1404
+ "step": 93
1405
+ },
1406
+ {
1407
+ "epoch": 2.9375,
1408
+ "grad_norm": 0.3701270310997752,
1409
+ "learning_rate": 2e-05,
1410
+ "loss": 0.7518,
1411
+ "step": 94
1412
+ },
1413
+ {
1414
+ "epoch": 2.9375,
1415
+ "eval_loss": 0.7675644159317017,
1416
+ "eval_runtime": 194.3756,
1417
+ "eval_samples_per_second": 1.029,
1418
+ "eval_steps_per_second": 0.129,
1419
+ "step": 94
1420
+ },
1421
+ {
1422
+ "epoch": 2.96875,
1423
+ "grad_norm": 0.40489524752286055,
1424
+ "learning_rate": 2e-05,
1425
+ "loss": 0.8559,
1426
+ "step": 95
1427
+ },
1428
+ {
1429
+ "epoch": 2.96875,
1430
+ "eval_loss": 0.766002357006073,
1431
+ "eval_runtime": 193.9472,
1432
+ "eval_samples_per_second": 1.031,
1433
+ "eval_steps_per_second": 0.129,
1434
+ "step": 95
1435
+ },
1436
+ {
1437
+ "epoch": 3.0,
1438
+ "grad_norm": 0.39220887464051457,
1439
+ "learning_rate": 2e-05,
1440
+ "loss": 0.8629,
1441
+ "step": 96
1442
+ },
1443
+ {
1444
+ "epoch": 3.0,
1445
+ "eval_loss": 0.7644355893135071,
1446
+ "eval_runtime": 196.1686,
1447
+ "eval_samples_per_second": 1.02,
1448
+ "eval_steps_per_second": 0.127,
1449
+ "step": 96
1450
+ },
1451
+ {
1452
+ "epoch": 3.03125,
1453
+ "grad_norm": 0.3644925708419195,
1454
+ "learning_rate": 2e-05,
1455
+ "loss": 0.7434,
1456
+ "step": 97
1457
+ },
1458
+ {
1459
+ "epoch": 3.03125,
1460
+ "eval_loss": 0.7628399133682251,
1461
+ "eval_runtime": 196.1515,
1462
+ "eval_samples_per_second": 1.02,
1463
+ "eval_steps_per_second": 0.127,
1464
+ "step": 97
1465
+ },
1466
+ {
1467
+ "epoch": 3.0625,
1468
+ "grad_norm": 0.407089942317534,
1469
+ "learning_rate": 2e-05,
1470
+ "loss": 0.8038,
1471
+ "step": 98
1472
+ },
1473
+ {
1474
+ "epoch": 3.0625,
1475
+ "eval_loss": 0.7609645128250122,
1476
+ "eval_runtime": 196.8662,
1477
+ "eval_samples_per_second": 1.016,
1478
+ "eval_steps_per_second": 0.127,
1479
+ "step": 98
1480
+ },
1481
+ {
1482
+ "epoch": 3.09375,
1483
+ "grad_norm": 0.38849177572880716,
1484
+ "learning_rate": 2e-05,
1485
+ "loss": 0.8106,
1486
+ "step": 99
1487
+ },
1488
+ {
1489
+ "epoch": 3.09375,
1490
+ "eval_loss": 0.7598288059234619,
1491
+ "eval_runtime": 196.1846,
1492
+ "eval_samples_per_second": 1.019,
1493
+ "eval_steps_per_second": 0.127,
1494
+ "step": 99
1495
+ },
1496
+ {
1497
+ "epoch": 3.125,
1498
+ "grad_norm": 0.41885563528617265,
1499
+ "learning_rate": 2e-05,
1500
+ "loss": 0.808,
1501
+ "step": 100
1502
+ },
1503
+ {
1504
+ "epoch": 3.125,
1505
+ "eval_loss": 0.7587143778800964,
1506
+ "eval_runtime": 195.7296,
1507
+ "eval_samples_per_second": 1.022,
1508
+ "eval_steps_per_second": 0.128,
1509
+ "step": 100
1510
+ },
1511
+ {
1512
+ "epoch": 3.15625,
1513
+ "grad_norm": 0.4003909227323588,
1514
+ "learning_rate": 2e-05,
1515
+ "loss": 0.791,
1516
+ "step": 101
1517
+ },
1518
+ {
1519
+ "epoch": 3.15625,
1520
+ "eval_loss": 0.7578326463699341,
1521
+ "eval_runtime": 195.2831,
1522
+ "eval_samples_per_second": 1.024,
1523
+ "eval_steps_per_second": 0.128,
1524
+ "step": 101
1525
+ },
1526
+ {
1527
+ "epoch": 3.1875,
1528
+ "grad_norm": 0.4014550365826672,
1529
+ "learning_rate": 2e-05,
1530
+ "loss": 0.7402,
1531
+ "step": 102
1532
+ },
1533
+ {
1534
+ "epoch": 3.1875,
1535
+ "eval_loss": 0.7573958039283752,
1536
+ "eval_runtime": 189.5234,
1537
+ "eval_samples_per_second": 1.055,
1538
+ "eval_steps_per_second": 0.132,
1539
+ "step": 102
1540
+ },
1541
+ {
1542
+ "epoch": 3.21875,
1543
+ "grad_norm": 0.4018554316691014,
1544
+ "learning_rate": 2e-05,
1545
+ "loss": 0.8165,
1546
+ "step": 103
1547
+ },
1548
+ {
1549
+ "epoch": 3.21875,
1550
+ "eval_loss": 0.7571737766265869,
1551
+ "eval_runtime": 190.0146,
1552
+ "eval_samples_per_second": 1.053,
1553
+ "eval_steps_per_second": 0.132,
1554
+ "step": 103
1555
+ },
1556
+ {
1557
+ "epoch": 3.25,
1558
+ "grad_norm": 0.39691385018938347,
1559
+ "learning_rate": 2e-05,
1560
+ "loss": 0.7806,
1561
+ "step": 104
1562
+ },
1563
+ {
1564
+ "epoch": 3.25,
1565
+ "eval_loss": 0.7581367492675781,
1566
+ "eval_runtime": 190.1851,
1567
+ "eval_samples_per_second": 1.052,
1568
+ "eval_steps_per_second": 0.131,
1569
+ "step": 104
1570
+ },
1571
+ {
1572
+ "epoch": 3.28125,
1573
+ "grad_norm": 0.390373263306042,
1574
+ "learning_rate": 2e-05,
1575
+ "loss": 0.7454,
1576
+ "step": 105
1577
+ },
1578
+ {
1579
+ "epoch": 3.28125,
1580
+ "eval_loss": 0.7590533494949341,
1581
+ "eval_runtime": 190.1255,
1582
+ "eval_samples_per_second": 1.052,
1583
+ "eval_steps_per_second": 0.131,
1584
+ "step": 105
1585
+ },
1586
+ {
1587
+ "epoch": 3.3125,
1588
+ "grad_norm": 0.45093404603350434,
1589
+ "learning_rate": 2e-05,
1590
+ "loss": 0.8598,
1591
+ "step": 106
1592
+ },
1593
+ {
1594
+ "epoch": 3.3125,
1595
+ "eval_loss": 0.7584137916564941,
1596
+ "eval_runtime": 193.5956,
1597
+ "eval_samples_per_second": 1.033,
1598
+ "eval_steps_per_second": 0.129,
1599
+ "step": 106
1600
+ },
1601
+ {
1602
+ "epoch": 3.34375,
1603
+ "grad_norm": 0.4112664411035318,
1604
+ "learning_rate": 2e-05,
1605
+ "loss": 0.8612,
1606
+ "step": 107
1607
+ },
1608
+ {
1609
+ "epoch": 3.34375,
1610
+ "eval_loss": 0.757759690284729,
1611
+ "eval_runtime": 191.7864,
1612
+ "eval_samples_per_second": 1.043,
1613
+ "eval_steps_per_second": 0.13,
1614
+ "step": 107
1615
+ },
1616
+ {
1617
+ "epoch": 3.375,
1618
+ "grad_norm": 0.4158875890717671,
1619
+ "learning_rate": 2e-05,
1620
+ "loss": 0.7916,
1621
+ "step": 108
1622
+ },
1623
+ {
1624
+ "epoch": 3.375,
1625
+ "eval_loss": 0.756908655166626,
1626
+ "eval_runtime": 190.1833,
1627
+ "eval_samples_per_second": 1.052,
1628
+ "eval_steps_per_second": 0.131,
1629
+ "step": 108
1630
+ },
1631
+ {
1632
+ "epoch": 3.40625,
1633
+ "grad_norm": 0.4234644828447959,
1634
+ "learning_rate": 2e-05,
1635
+ "loss": 0.798,
1636
+ "step": 109
1637
+ },
1638
+ {
1639
+ "epoch": 3.40625,
1640
+ "eval_loss": 0.7559736371040344,
1641
+ "eval_runtime": 190.0515,
1642
+ "eval_samples_per_second": 1.052,
1643
+ "eval_steps_per_second": 0.132,
1644
+ "step": 109
1645
+ },
1646
+ {
1647
+ "epoch": 3.4375,
1648
+ "grad_norm": 0.480506693884699,
1649
+ "learning_rate": 2e-05,
1650
+ "loss": 0.7964,
1651
+ "step": 110
1652
+ },
1653
+ {
1654
+ "epoch": 3.4375,
1655
+ "eval_loss": 0.7547717094421387,
1656
+ "eval_runtime": 189.9579,
1657
+ "eval_samples_per_second": 1.053,
1658
+ "eval_steps_per_second": 0.132,
1659
+ "step": 110
1660
+ },
1661
+ {
1662
+ "epoch": 3.46875,
1663
+ "grad_norm": 0.4540166631930203,
1664
+ "learning_rate": 2e-05,
1665
+ "loss": 0.8172,
1666
+ "step": 111
1667
+ },
1668
+ {
1669
+ "epoch": 3.46875,
1670
+ "eval_loss": 0.7538467645645142,
1671
+ "eval_runtime": 194.2136,
1672
+ "eval_samples_per_second": 1.03,
1673
+ "eval_steps_per_second": 0.129,
1674
+ "step": 111
1675
+ },
1676
+ {
1677
+ "epoch": 3.5,
1678
+ "grad_norm": 0.46782505650509537,
1679
+ "learning_rate": 2e-05,
1680
+ "loss": 0.7826,
1681
+ "step": 112
1682
+ },
1683
+ {
1684
+ "epoch": 3.5,
1685
+ "eval_loss": 0.7537503838539124,
1686
+ "eval_runtime": 194.396,
1687
+ "eval_samples_per_second": 1.029,
1688
+ "eval_steps_per_second": 0.129,
1689
+ "step": 112
1690
+ },
1691
+ {
1692
+ "epoch": 3.53125,
1693
+ "grad_norm": 0.5212465522615498,
1694
+ "learning_rate": 2e-05,
1695
+ "loss": 0.7715,
1696
+ "step": 113
1697
+ },
1698
+ {
1699
+ "epoch": 3.53125,
1700
+ "eval_loss": 0.7527998089790344,
1701
+ "eval_runtime": 193.1123,
1702
+ "eval_samples_per_second": 1.036,
1703
+ "eval_steps_per_second": 0.129,
1704
+ "step": 113
1705
+ },
1706
+ {
1707
+ "epoch": 3.5625,
1708
+ "grad_norm": 0.4869709286188453,
1709
+ "learning_rate": 2e-05,
1710
+ "loss": 0.8007,
1711
+ "step": 114
1712
+ },
1713
+ {
1714
+ "epoch": 3.5625,
1715
+ "eval_loss": 0.7510444521903992,
1716
+ "eval_runtime": 193.3613,
1717
+ "eval_samples_per_second": 1.034,
1718
+ "eval_steps_per_second": 0.129,
1719
+ "step": 114
1720
+ },
1721
+ {
1722
+ "epoch": 3.59375,
1723
+ "grad_norm": 0.45218808224844204,
1724
+ "learning_rate": 2e-05,
1725
+ "loss": 0.7183,
1726
+ "step": 115
1727
+ },
1728
+ {
1729
+ "epoch": 3.59375,
1730
+ "eval_loss": 0.7502281069755554,
1731
+ "eval_runtime": 192.9756,
1732
+ "eval_samples_per_second": 1.036,
1733
+ "eval_steps_per_second": 0.13,
1734
+ "step": 115
1735
+ }
1736
+ ],
1737
+ "logging_steps": 1.0,
1738
+ "max_steps": 128,
1739
+ "num_input_tokens_seen": 0,
1740
+ "num_train_epochs": 4,
1741
+ "save_steps": 5,
1742
+ "stateful_callbacks": {
1743
+ "TrainerControl": {
1744
+ "args": {
1745
+ "should_epoch_stop": false,
1746
+ "should_evaluate": false,
1747
+ "should_log": false,
1748
+ "should_save": true,
1749
+ "should_training_stop": false
1750
+ },
1751
+ "attributes": {}
1752
+ }
1753
+ },
1754
+ "total_flos": 254953078521856.0,
1755
+ "train_batch_size": 8,
1756
+ "trial_name": null,
1757
+ "trial_params": null
1758
+ }
checkpoint-115/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bad0ba8130e4e14127bba6f309b7c1a7c64fbb53a44b7e0d241978c150aa92ea
3
+ size 8312
checkpoint-115/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)