File size: 1,958 Bytes
cc62fa2 6a668c6 49170e2 cc62fa2 6a668c6 49170e2 6a668c6 cc62fa2 6a668c6 cc62fa2 49170e2 6a668c6 cc62fa2 6a668c6 cc62fa2 6a668c6 cc62fa2 6a668c6 cc62fa2 6a668c6 cc62fa2 6a668c6 cc62fa2 6a668c6 cc62fa2 6a668c6 cc62fa2 6a668c6 cc62fa2 6a668c6 cc62fa2 6a668c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
base_model: Qwen/Qwen2-VL-2B-Instruct
datasets: MMInstruction/Clevr_CoGenT_TrainA_R1
library_name: transformers
model_name: Qwen2-VL-2B-Instruct-SFT-Clevr_CoGenT_TrainA_R1
tags:
- generated_from_trainer
- R1-V
- trl
- sft
licence: license
---
# Model Card for Qwen2-VL-2B-Instruct-SFT-Clevr_CoGenT_TrainA_R1
This model is a fine-tuned version of [Qwen/Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) on the [MMInstruction/Clevr_CoGenT_TrainA_R1](https://huggingface.co/datasets/MMInstruction/Clevr_CoGenT_TrainA_R1) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="BleachNick/Qwen2-VL-2B-Instruct-SFT-Clevr_CoGenT_TrainA_R1", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/haozhezhao/huggingface/runs/9hjq1oia)
This model was trained with SFT.
### Framework versions
- TRL: 0.14.0
- Transformers: 4.49.0.dev0
- Pytorch: 2.5.1+cu121
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |