File size: 1,958 Bytes
cc62fa2
6a668c6
49170e2
cc62fa2
6a668c6
 
 
49170e2
6a668c6
 
 
cc62fa2
 
6a668c6
cc62fa2
49170e2
6a668c6
cc62fa2
6a668c6
cc62fa2
6a668c6
 
cc62fa2
6a668c6
 
 
 
 
cc62fa2
6a668c6
cc62fa2
6a668c6
cc62fa2
 
6a668c6
cc62fa2
6a668c6
cc62fa2
6a668c6
 
 
 
 
cc62fa2
6a668c6
cc62fa2
 
 
6a668c6
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
base_model: Qwen/Qwen2-VL-2B-Instruct
datasets: MMInstruction/Clevr_CoGenT_TrainA_R1
library_name: transformers
model_name: Qwen2-VL-2B-Instruct-SFT-Clevr_CoGenT_TrainA_R1
tags:
- generated_from_trainer
- R1-V
- trl
- sft
licence: license
---

# Model Card for Qwen2-VL-2B-Instruct-SFT-Clevr_CoGenT_TrainA_R1

This model is a fine-tuned version of [Qwen/Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) on the [MMInstruction/Clevr_CoGenT_TrainA_R1](https://huggingface.co/datasets/MMInstruction/Clevr_CoGenT_TrainA_R1) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).

## Quick start

```python
from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="BleachNick/Qwen2-VL-2B-Instruct-SFT-Clevr_CoGenT_TrainA_R1", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```

## Training procedure

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/haozhezhao/huggingface/runs/9hjq1oia) 


This model was trained with SFT.

### Framework versions

- TRL: 0.14.0
- Transformers: 4.49.0.dev0
- Pytorch: 2.5.1+cu121
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citations



Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
```