File size: 33,852 Bytes
19cf692 391ce47 19cf692 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
---
base_model: jinaai/jina-embeddings-v3
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:498970
- loss:BPRLoss
widget:
- source_sentence: meaning of the prefix em
sentences:
- Word Origin and History for em- Expand. from French assimilation of en- to following
labial (see en- (1)). Also a prefix used to form verbs from adjectives and nouns.
representing Latin ex- assimilated to following -m- (see ex-).
- 'Hawaii: Aloha! Whether you are hoping to travel to Hawaii for a tropical green
Christmas or you are hoping to make this island paradise your home, we can help
you find the information you need! The state of Hawaii, located in the middle
of the Pacific Ocean, is farther away from any other landmass than any other island
on the earth.'
- 'Prefixes: Un, Dis, Im, Mis. A prefix is placed at the beginning of a word to
change its meaning. For example, the suffix re- means either again or back as
in return, repeat or refurbish. The following 4 prefixes are easy to confuse because
they all have a negative meaning. un-.'
- source_sentence: how long does engine take to cool down
sentences:
- It takes roughly 30 minutes for the laptop to cool down to a normal state.Or if
you want to use it soon it could take I guess 10-15 minutes.
- "Turn off the engine. If you can pop the hood from the driverâ\x80\x99s seat,\
\ do so â\x80\x94 but donâ\x80\x99t risk opening it by hand until the engine has\
\ cooled, especially if you see steam wafting off the engine. It typically takes\
\ a solid 30 minutes for an engine to cool down enough for it to be safe to handle."
- Zeppelin was invented in 1900 by a military officer of German origin named Count
Ferdinand von Zeppelin.It was a stiff framed airship, LZ-I that flew on 2nd July,
1900 carrying five passengers near Lake Constance in Germany. Zeppelins were used
in the times of peace as well as war.eppelin was invented in 1900 by a military
officer of German origin named Count Ferdinand von Zeppelin.
- source_sentence: how long does it take to get an undergraduate
sentences:
- How Long Does It Take To Become a Nurse Anesthetist (CRNA)? How Long Does It Take
To Become a Nurse Practitioner? How Long Does It Take To Become a Nutritionist?
How Long Does It Take To Become A Pharmacist? How Long Does It Take To Become
a Physician Assistant? How Long Does It Take To Become a Social Worker? (ANSWERED)
How Long Does It Take To Become a Vet Tech? How Long Does It Take To Become An
LPN? How Long Does It Take To Become an OB/GYN? How Long Does It Take To Become
an Ultrasound Technician? How Long Does It Take To Get a Medical Degree? How Long
Does It Take To Get a Nursing Degree? Your first stepping stone toward a rewarding
nursing career is completing the education and becoming registered. Ill answer
the age old question about how long it takes to get a registered nursing degree.
- A depositary receipt (DR) is a type of negotiable (transferable) financial security
that is traded on a local stock exchange but represents a security, usually in
the form of equity, that is issued by a foreign publicly listed company. U.S.
broker may also sell ADRs back into the local Russian market. This is known as
cross-border trading. When this happens, an amount of ADRs is canceled by the
depository and the local shares are released from the custodian bank and delivered
back to the Russian broker who bought them.
- Undergraduate Studies. To become a doctor, a student must first complete high
school, then go on to college. During the typical four-year undergraduate period,
the aspiring doctor will study topics such as anatomy, physiology, biology, chemistry
and other college courses necessary for a degree, such as English or math.
- source_sentence: fees definition
sentences:
- fees. 1 veterinarians' charges rendered to clients for services. 2 Justifiable
professional fees are based on the amount of time spent on the case, with a varying
fee per hour depending on the difficulty and complexity of the problem, and on
the specialist superiority of the veterinarian.
- 'Summary: The Catbird Seat by James Thurber is about Mr. Martin who has decided
he must kill Mrs Barrows because she is destroying the firm he works for, but
in the end he tricks his boss into thinking she has had a mental breakdown.'
- Cost, in common usage, the monetary value of goods and services that producers
and consumers purchase. In a basic economic sense, cost is the measure of the
alternative opportunities foregone in the choice of one good or activity over
others.
- source_sentence: what is a fermentation lock used for
sentences:
- "Remember, fermentation is a method of preserving food. Leaving it on your counter\
\ gives it more time for the LAB activity to increase â\x80\x94 which, in turn,\
\ lowers pH â\x80\x94 and prevents spoilage. As long as your jar can keep out\
\ the oxygen, you shouldnâ\x80\x99t be worried. Which leads me toâ\x80¦."
- The fermentation lock or airlock is a device used in beer brewing and wine making
that allows carbon dioxide released by the beer to escape the fermenter, while
not allowing air to enter the fermenter, thus avoiding oxidation. There are two
main designs for the fermentation lock, or airlock.
- The New River is formed by the confluence of the South Fork New River and the
North Fork New River in Ashe County, North Carolina. It then flows north into
southwestern Virginia, passing near Galax, Virginia and through a gorge in the
Iron Mountains. Continuing north, the river enters Pulaski County, Virginia, where
it is impounded by Claytor Dam, creating Claytor Lake.
---
# SentenceTransformer based on jinaai/jina-embeddings-v3
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
Finetuned from [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) (trained with msmarco-v3 dataset).
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) <!-- at revision 4be32c2f5d65b95e4bcce473545b7883ec8d2edd -->
- **Maximum Sequence Length:** 8194 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(transformer): Transformer(
(auto_model): XLMRobertaLoRA(
(roberta): XLMRobertaModel(
(embeddings): XLMRobertaEmbeddings(
(word_embeddings): ParametrizedEmbedding(
250002, 1024, padding_idx=1
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(token_type_embeddings): ParametrizedEmbedding(
1, 1024
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(emb_drop): Dropout(p=0.1, inplace=False)
(emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(encoder): XLMRobertaEncoder(
(layers): ModuleList(
(0-23): 24 x Block(
(mixer): MHA(
(rotary_emb): RotaryEmbedding()
(Wqkv): ParametrizedLinearResidual(
in_features=1024, out_features=3072, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(inner_attn): FlashSelfAttention(
(drop): Dropout(p=0.1, inplace=False)
)
(inner_cross_attn): FlashCrossAttention(
(drop): Dropout(p=0.1, inplace=False)
)
(out_proj): ParametrizedLinear(
in_features=1024, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(dropout1): Dropout(p=0.1, inplace=False)
(drop_path1): StochasticDepth(p=0.0, mode=row)
(norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
(mlp): Mlp(
(fc1): ParametrizedLinear(
in_features=1024, out_features=4096, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(fc2): ParametrizedLinear(
in_features=4096, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
)
(dropout2): Dropout(p=0.1, inplace=False)
(drop_path2): StochasticDepth(p=0.0, mode=row)
(norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
)
)
)
(pooler): XLMRobertaPooler(
(dense): ParametrizedLinear(
in_features=1024, out_features=1024, bias=True
(parametrizations): ModuleDict(
(weight): ParametrizationList(
(0): LoRAParametrization()
)
)
)
(activation): Tanh()
)
)
)
)
(pooler): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(normalizer): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("BlackBeenie/jina-embeddings-v3-msmarco-v3-bpr")
# Run inference
sentences = [
'what is a fermentation lock used for',
'The fermentation lock or airlock is a device used in beer brewing and wine making that allows carbon dioxide released by the beer to escape the fermenter, while not allowing air to enter the fermenter, thus avoiding oxidation. There are two main designs for the fermentation lock, or airlock.',
'Remember, fermentation is a method of preserving food. Leaving it on your counter gives it more time for the LAB activity to increase â\x80\x94 which, in turn, lowers pH â\x80\x94 and prevents spoilage. As long as your jar can keep out the oxygen, you shouldnâ\x80\x99t be worried. Which leads me toâ\x80¦.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 498,970 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | sentence_2 |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 9.93 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 90.01 tokens</li><li>max: 239 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 88.24 tokens</li><li>max: 258 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 | sentence_2 |
|:-------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>how much does it cost to paint a interior house</code> | <code>Interior House Painting Cost Factors. Generally, it will take a minimum of two gallons of paint to cover a room. At the highest end, paint will cost anywhere between $30 and $60 per gallon and come in three different finishes: flat, semi-gloss or high-gloss.Flat finishes are the least shiny and are best suited for areas requiring frequent cleaning.rovide a few details about your project and receive competitive quotes from local pros. The average national cost to paint a home interior is $1,671, with most homeowners spending between $966 and $2,426.</code> | <code>Question DetailsAsked on 3/12/2014. Guest_... How much does it cost per square foot to paint the interior of a house? We just bought roughly a 1500 sg ft townhouse and want to get the entire house, including ceilings painted (including a roughly 400 sq ft finished basement not included in square footage).</code> |
| <code>when is s corp taxes due</code> | <code>If you form a corporate entity for your small business, regardless of whether it's taxed as a C or S corporation, a tax return must be filed with the Internal Revenue Service on its due date each year. Corporate tax returns are always due on the 15th day of the third month following the close of the tax year. The actual day that the tax return filing deadline falls on, however, isn't the same for every corporation.</code> | <code>Before Jan. 1, 2026 After Dec. 31, 2025 Starting with 2016 tax returns, all. other C corps besides Dec. 31 and. June 30 year-ends (including those with. other fiscal year-ends) will be due on. the 15th of the 4th month after the.</code> |
| <code>what are disaccharides</code> | <code>Disaccharides are formed when two monosaccharides are joined together and a molecule of water is removed, a process known as dehydration reaction. For example; milk sugar (lactose) is made from glucose and galactose whereas the sugar from sugar cane and sugar beets (sucrose) is made from glucose and fructose.altose, another notable disaccharide, is made up of two glucose molecules. The two monosaccharides are bonded via a dehydration reaction (also called a condensation reaction or dehydration synthesis) that leads to the loss of a molecule of water and formation of a glycosidic bond.</code> | <code>Disaccharides- Another type of carbohydrate. How many sugar units are disaccharides composed of?_____ What elements make up disaccharides? _____ How does the body use disaccharides? _____ There is no chemical test for disaccharides. Table sugar (white granulated sugar) is an example of a disaccharide. List some foods that contain a lot of disaccharides: _____</code> |
* Loss: <code>beir.losses.bpr_loss.BPRLoss</code>
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 8
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 8
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss |
|:------:|:------:|:-------------:|
| 0.0321 | 500 | 1.7204 |
| 0.0641 | 1000 | 0.6847 |
| 0.0962 | 1500 | 0.4782 |
| 0.1283 | 2000 | 0.4001 |
| 0.1603 | 2500 | 0.3773 |
| 0.1924 | 3000 | 0.3538 |
| 0.2245 | 3500 | 0.3424 |
| 0.2565 | 4000 | 0.3375 |
| 0.2886 | 4500 | 0.3286 |
| 0.3207 | 5000 | 0.3289 |
| 0.3527 | 5500 | 0.3266 |
| 0.3848 | 6000 | 0.3226 |
| 0.4169 | 6500 | 0.3266 |
| 0.4489 | 7000 | 0.3262 |
| 0.4810 | 7500 | 0.3241 |
| 0.5131 | 8000 | 0.3216 |
| 0.5451 | 8500 | 0.3232 |
| 0.5772 | 9000 | 0.3186 |
| 0.6092 | 9500 | 0.3194 |
| 0.6413 | 10000 | 0.314 |
| 0.6734 | 10500 | 0.3217 |
| 0.7054 | 11000 | 0.3156 |
| 0.7375 | 11500 | 0.3244 |
| 0.7696 | 12000 | 0.3189 |
| 0.8016 | 12500 | 0.3235 |
| 0.8337 | 13000 | 0.3305 |
| 0.8658 | 13500 | 0.3284 |
| 0.8978 | 14000 | 0.3213 |
| 0.9299 | 14500 | 0.3283 |
| 0.9620 | 15000 | 0.3219 |
| 0.9940 | 15500 | 0.3247 |
| 1.0 | 15593 | - |
| 1.0261 | 16000 | 0.3287 |
| 1.0582 | 16500 | 0.3346 |
| 1.0902 | 17000 | 0.3245 |
| 1.1223 | 17500 | 0.3202 |
| 1.1544 | 18000 | 0.332 |
| 1.1864 | 18500 | 0.3298 |
| 1.2185 | 19000 | 0.332 |
| 1.2506 | 19500 | 0.3258 |
| 1.2826 | 20000 | 0.3291 |
| 1.3147 | 20500 | 0.334 |
| 1.3468 | 21000 | 0.3328 |
| 1.3788 | 21500 | 0.3362 |
| 1.4109 | 22000 | 0.3348 |
| 1.4430 | 22500 | 0.3402 |
| 1.4750 | 23000 | 0.3346 |
| 1.5071 | 23500 | 0.339 |
| 1.5392 | 24000 | 0.3406 |
| 1.5712 | 24500 | 0.3239 |
| 1.6033 | 25000 | 0.3275 |
| 1.6353 | 25500 | 0.3287 |
| 1.6674 | 26000 | 0.3271 |
| 1.6995 | 26500 | 0.3337 |
| 1.7315 | 27000 | 0.3352 |
| 1.7636 | 27500 | 0.3244 |
| 1.7957 | 28000 | 0.3418 |
| 1.8277 | 28500 | 0.349 |
| 1.8598 | 29000 | 0.3395 |
| 1.8919 | 29500 | 0.3386 |
| 1.9239 | 30000 | 0.3379 |
| 1.9560 | 30500 | 0.3412 |
| 1.9881 | 31000 | 0.3364 |
| 2.0 | 31186 | - |
| 2.0201 | 31500 | 0.3386 |
| 2.0522 | 32000 | 0.3417 |
| 2.0843 | 32500 | 0.3362 |
| 2.1163 | 33000 | 0.3251 |
| 2.1484 | 33500 | 0.3563 |
| 2.1805 | 34000 | 0.3341 |
| 2.2125 | 34500 | 0.3478 |
| 2.2446 | 35000 | 0.3389 |
| 2.2767 | 35500 | 0.342 |
| 2.3087 | 36000 | 0.3467 |
| 2.3408 | 36500 | 0.3419 |
| 2.3729 | 37000 | 0.3513 |
| 2.4049 | 37500 | 0.3441 |
| 2.4370 | 38000 | 0.3484 |
| 2.4691 | 38500 | 0.3457 |
| 2.5011 | 39000 | 0.3503 |
| 2.5332 | 39500 | 0.3446 |
| 2.5653 | 40000 | 0.3461 |
| 2.5973 | 40500 | 0.3399 |
| 2.6294 | 41000 | 0.3405 |
| 2.6615 | 41500 | 0.3382 |
| 2.6935 | 42000 | 0.3388 |
| 2.7256 | 42500 | 0.3378 |
| 2.7576 | 43000 | 0.336 |
| 2.7897 | 43500 | 0.3471 |
| 2.8218 | 44000 | 0.3563 |
| 2.8538 | 44500 | 0.3465 |
| 2.8859 | 45000 | 0.3501 |
| 2.9180 | 45500 | 0.3439 |
| 2.9500 | 46000 | 0.3546 |
| 2.9821 | 46500 | 0.3414 |
| 3.0 | 46779 | - |
| 3.0142 | 47000 | 0.3498 |
| 3.0462 | 47500 | 0.3484 |
| 3.0783 | 48000 | 0.3496 |
| 3.1104 | 48500 | 0.3392 |
| 3.1424 | 49000 | 0.3583 |
| 3.1745 | 49500 | 0.3505 |
| 3.2066 | 50000 | 0.3547 |
| 3.2386 | 50500 | 0.3469 |
| 3.2707 | 51000 | 0.3489 |
| 3.3028 | 51500 | 0.3473 |
| 3.3348 | 52000 | 0.3579 |
| 3.3669 | 52500 | 0.3523 |
| 3.3990 | 53000 | 0.3427 |
| 3.4310 | 53500 | 0.3685 |
| 3.4631 | 54000 | 0.3479 |
| 3.4952 | 54500 | 0.355 |
| 3.5272 | 55000 | 0.3464 |
| 3.5593 | 55500 | 0.3473 |
| 3.5914 | 56000 | 0.348 |
| 3.6234 | 56500 | 0.3426 |
| 3.6555 | 57000 | 0.3394 |
| 3.6876 | 57500 | 0.3454 |
| 3.7196 | 58000 | 0.345 |
| 3.7517 | 58500 | 0.3411 |
| 3.7837 | 59000 | 0.3557 |
| 3.8158 | 59500 | 0.3505 |
| 3.8479 | 60000 | 0.3605 |
| 3.8799 | 60500 | 0.3554 |
| 3.9120 | 61000 | 0.349 |
| 3.9441 | 61500 | 0.3629 |
| 3.9761 | 62000 | 0.3456 |
| 4.0 | 62372 | - |
| 4.0082 | 62500 | 0.3562 |
| 4.0403 | 63000 | 0.3531 |
| 4.0723 | 63500 | 0.3569 |
| 4.1044 | 64000 | 0.3494 |
| 4.1365 | 64500 | 0.3513 |
| 4.1685 | 65000 | 0.3599 |
| 4.2006 | 65500 | 0.3487 |
| 4.2327 | 66000 | 0.3561 |
| 4.2647 | 66500 | 0.3583 |
| 4.2968 | 67000 | 0.3539 |
| 4.3289 | 67500 | 0.3614 |
| 4.3609 | 68000 | 0.3558 |
| 4.3930 | 68500 | 0.3485 |
| 4.4251 | 69000 | 0.3715 |
| 4.4571 | 69500 | 0.3585 |
| 4.4892 | 70000 | 0.3571 |
| 4.5213 | 70500 | 0.3498 |
| 4.5533 | 71000 | 0.3576 |
| 4.5854 | 71500 | 0.3498 |
| 4.6175 | 72000 | 0.3507 |
| 4.6495 | 72500 | 0.3436 |
| 4.6816 | 73000 | 0.3461 |
| 4.7137 | 73500 | 0.3451 |
| 4.7457 | 74000 | 0.3554 |
| 4.7778 | 74500 | 0.354 |
| 4.8099 | 75000 | 0.3514 |
| 4.8419 | 75500 | 0.3688 |
| 4.8740 | 76000 | 0.3573 |
| 4.9060 | 76500 | 0.3557 |
| 4.9381 | 77000 | 0.3607 |
| 4.9702 | 77500 | 0.3488 |
| 5.0 | 77965 | - |
| 5.0022 | 78000 | 0.3555 |
| 5.0343 | 78500 | 0.3596 |
| 5.0664 | 79000 | 0.3572 |
| 5.0984 | 79500 | 0.355 |
| 5.1305 | 80000 | 0.3427 |
| 5.1626 | 80500 | 0.3669 |
| 5.1946 | 81000 | 0.3578 |
| 5.2267 | 81500 | 0.3589 |
| 5.2588 | 82000 | 0.3586 |
| 5.2908 | 82500 | 0.3581 |
| 5.3229 | 83000 | 0.3607 |
| 5.3550 | 83500 | 0.3563 |
| 5.3870 | 84000 | 0.3597 |
| 5.4191 | 84500 | 0.3712 |
| 5.4512 | 85000 | 0.3574 |
| 5.4832 | 85500 | 0.359 |
| 5.5153 | 86000 | 0.3598 |
| 5.5474 | 86500 | 0.3604 |
| 5.5794 | 87000 | 0.3535 |
| 5.6115 | 87500 | 0.3606 |
| 5.6436 | 88000 | 0.3469 |
| 5.6756 | 88500 | 0.3568 |
| 5.7077 | 89000 | 0.3497 |
| 5.7398 | 89500 | 0.3597 |
| 5.7718 | 90000 | 0.3582 |
| 5.8039 | 90500 | 0.3556 |
| 5.8360 | 91000 | 0.3716 |
| 5.8680 | 91500 | 0.3615 |
| 5.9001 | 92000 | 0.3532 |
| 5.9321 | 92500 | 0.3747 |
| 5.9642 | 93000 | 0.3521 |
| 5.9963 | 93500 | 0.362 |
| 6.0 | 93558 | - |
| 6.0283 | 94000 | 0.3701 |
| 6.0604 | 94500 | 0.3636 |
| 6.0925 | 95000 | 0.3556 |
| 6.1245 | 95500 | 0.3508 |
| 6.1566 | 96000 | 0.3626 |
| 6.1887 | 96500 | 0.3618 |
| 6.2207 | 97000 | 0.3683 |
| 6.2528 | 97500 | 0.362 |
| 6.2849 | 98000 | 0.3534 |
| 6.3169 | 98500 | 0.3643 |
| 6.3490 | 99000 | 0.36 |
| 6.3811 | 99500 | 0.3592 |
| 6.4131 | 100000 | 0.3606 |
| 6.4452 | 100500 | 0.369 |
| 6.4773 | 101000 | 0.3607 |
| 6.5093 | 101500 | 0.3683 |
| 6.5414 | 102000 | 0.3648 |
| 6.5735 | 102500 | 0.3481 |
| 6.6055 | 103000 | 0.3565 |
| 6.6376 | 103500 | 0.3555 |
| 6.6697 | 104000 | 0.347 |
| 6.7017 | 104500 | 0.3585 |
| 6.7338 | 105000 | 0.3553 |
| 6.7659 | 105500 | 0.3539 |
| 6.7979 | 106000 | 0.3638 |
| 6.8300 | 106500 | 0.3674 |
| 6.8621 | 107000 | 0.3674 |
| 6.8941 | 107500 | 0.3617 |
| 6.9262 | 108000 | 0.3655 |
| 6.9583 | 108500 | 0.3593 |
| 6.9903 | 109000 | 0.3603 |
| 7.0 | 109151 | - |
| 7.0224 | 109500 | 0.3614 |
| 7.0544 | 110000 | 0.3655 |
| 7.0865 | 110500 | 0.3597 |
| 7.1186 | 111000 | 0.3443 |
| 7.1506 | 111500 | 0.3781 |
| 7.1827 | 112000 | 0.3587 |
| 7.2148 | 112500 | 0.3676 |
| 7.2468 | 113000 | 0.357 |
| 7.2789 | 113500 | 0.3639 |
| 7.3110 | 114000 | 0.3691 |
| 7.3430 | 114500 | 0.3606 |
| 7.3751 | 115000 | 0.3679 |
| 7.4072 | 115500 | 0.3697 |
| 7.4392 | 116000 | 0.3726 |
| 7.4713 | 116500 | 0.3603 |
| 7.5034 | 117000 | 0.3655 |
| 7.5354 | 117500 | 0.3639 |
| 7.5675 | 118000 | 0.3557 |
| 7.5996 | 118500 | 0.358 |
| 7.6316 | 119000 | 0.3526 |
| 7.6637 | 119500 | 0.3579 |
| 7.6958 | 120000 | 0.3584 |
| 7.7278 | 120500 | 0.3507 |
| 7.7599 | 121000 | 0.3472 |
| 7.7920 | 121500 | 0.3757 |
| 7.8240 | 122000 | 0.3717 |
| 7.8561 | 122500 | 0.3646 |
| 7.8882 | 123000 | 0.3662 |
| 7.9202 | 123500 | 0.3668 |
| 7.9523 | 124000 | 0.3677 |
| 7.9844 | 124500 | 0.3588 |
| 8.0 | 124744 | - |
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |