File size: 33,852 Bytes
19cf692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
391ce47
 
19cf692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
---
base_model: jinaai/jina-embeddings-v3
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:498970
- loss:BPRLoss
widget:
- source_sentence: meaning of the prefix em
  sentences:
  - Word Origin and History for em- Expand. from French assimilation of en- to following
    labial (see en- (1)). Also a prefix used to form verbs from adjectives and nouns.
    representing Latin ex- assimilated to following -m- (see ex-).
  - 'Hawaii: Aloha! Whether you are hoping to travel to Hawaii for a tropical green
    Christmas or you are hoping to make this island paradise your home, we can help
    you find the information you need! The state of Hawaii, located in the middle
    of the Pacific Ocean, is farther away from any other landmass than any other island
    on the earth.'
  - 'Prefixes: Un, Dis, Im, Mis. A prefix is placed at the beginning of a word to
    change its meaning. For example, the suffix re- means either again or back as
    in return, repeat or refurbish. The following 4 prefixes are easy to confuse because
    they all have a negative meaning. un-.'
- source_sentence: how long does engine take to cool down
  sentences:
  - It takes roughly 30 minutes for the laptop to cool down to a normal state.Or if
    you want to use it soon it could take I guess 10-15 minutes.
  - "Turn off the engine. If you can pop the hood from the driverâ\x80\x99s seat,\
    \ do so â\x80\x94 but donâ\x80\x99t risk opening it by hand until the engine has\
    \ cooled, especially if you see steam wafting off the engine. It typically takes\
    \ a solid 30 minutes for an engine to cool down enough for it to be safe to handle."
  - Zeppelin was invented in 1900 by a military officer of German origin named Count
    Ferdinand von Zeppelin.It was a stiff framed airship, LZ-I that flew on 2nd July,
    1900 carrying five passengers near Lake Constance in Germany. Zeppelins were used
    in the times of peace as well as war.eppelin was invented in 1900 by a military
    officer of German origin named Count Ferdinand von Zeppelin.
- source_sentence: how long does it take to get an undergraduate
  sentences:
  - How Long Does It Take To Become a Nurse Anesthetist (CRNA)? How Long Does It Take
    To Become a Nurse Practitioner? How Long Does It Take To Become a Nutritionist?
    How Long Does It Take To Become A Pharmacist? How Long Does It Take To Become
    a Physician Assistant? How Long Does It Take To Become a Social Worker? (ANSWERED)
    How Long Does It Take To Become a Vet Tech? How Long Does It Take To Become An
    LPN? How Long Does It Take To Become an OB/GYN? How Long Does It Take To Become
    an Ultrasound Technician? How Long Does It Take To Get a Medical Degree? How Long
    Does It Take To Get a Nursing Degree? Your first stepping stone toward a rewarding
    nursing career is completing the education and becoming registered. Ill answer
    the age old question about how long it takes to get a registered nursing degree.
  - A depositary receipt (DR) is a type of negotiable (transferable) financial security
    that is traded on a local stock exchange but represents a security, usually in
    the form of equity, that is issued by a foreign publicly listed company. U.S.
    broker may also sell ADRs back into the local Russian market. This is known as
    cross-border trading. When this happens, an amount of ADRs is canceled by the
    depository and the local shares are released from the custodian bank and delivered
    back to the Russian broker who bought them.
  - Undergraduate Studies. To become a doctor, a student must first complete high
    school, then go on to college. During the typical four-year undergraduate period,
    the aspiring doctor will study topics such as anatomy, physiology, biology, chemistry
    and other college courses necessary for a degree, such as English or math.
- source_sentence: fees definition
  sentences:
  - fees. 1  veterinarians' charges rendered to clients for services. 2  Justifiable
    professional fees are based on the amount of time spent on the case, with a varying
    fee per hour depending on the difficulty and complexity of the problem, and on
    the specialist superiority of the veterinarian.
  - 'Summary: The Catbird Seat by James Thurber is about Mr. Martin who has decided
    he must kill Mrs Barrows because she is destroying the firm he works for, but
    in the end he tricks his boss into thinking she has had a mental breakdown.'
  - Cost, in common usage, the monetary value of goods and services that producers
    and consumers purchase. In a basic economic sense, cost is the measure of the
    alternative opportunities foregone in the choice of one good or activity over
    others.
- source_sentence: what is a fermentation lock used for
  sentences:
  - "Remember, fermentation is a method of preserving food. Leaving it on your counter\
    \ gives it more time for the LAB activity to increase â\x80\x94 which, in turn,\
    \ lowers pH â\x80\x94 and prevents spoilage. As long as your jar can keep out\
    \ the oxygen, you shouldnâ\x80\x99t be worried. Which leads me toâ\x80¦."
  - The fermentation lock or airlock is a device used in beer brewing and wine making
    that allows carbon dioxide released by the beer to escape the fermenter, while
    not allowing air to enter the fermenter, thus avoiding oxidation. There are two
    main designs for the fermentation lock, or airlock.
  - The New River is formed by the confluence of the South Fork New River and the
    North Fork New River in Ashe County, North Carolina. It then flows north into
    southwestern Virginia, passing near Galax, Virginia and through a gorge in the
    Iron Mountains. Continuing north, the river enters Pulaski County, Virginia, where
    it is impounded by Claytor Dam, creating Claytor Lake.
---

# SentenceTransformer based on jinaai/jina-embeddings-v3

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

Finetuned from [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) (trained with msmarco-v3 dataset).

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) <!-- at revision 4be32c2f5d65b95e4bcce473545b7883ec8d2edd -->
- **Maximum Sequence Length:** 8194 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (transformer): Transformer(
    (auto_model): XLMRobertaLoRA(
      (roberta): XLMRobertaModel(
        (embeddings): XLMRobertaEmbeddings(
          (word_embeddings): ParametrizedEmbedding(
            250002, 1024, padding_idx=1
            (parametrizations): ModuleDict(
              (weight): ParametrizationList(
                (0): LoRAParametrization()
              )
            )
          )
          (token_type_embeddings): ParametrizedEmbedding(
            1, 1024
            (parametrizations): ModuleDict(
              (weight): ParametrizationList(
                (0): LoRAParametrization()
              )
            )
          )
        )
        (emb_drop): Dropout(p=0.1, inplace=False)
        (emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
        (encoder): XLMRobertaEncoder(
          (layers): ModuleList(
            (0-23): 24 x Block(
              (mixer): MHA(
                (rotary_emb): RotaryEmbedding()
                (Wqkv): ParametrizedLinearResidual(
                  in_features=1024, out_features=3072, bias=True
                  (parametrizations): ModuleDict(
                    (weight): ParametrizationList(
                      (0): LoRAParametrization()
                    )
                  )
                )
                (inner_attn): FlashSelfAttention(
                  (drop): Dropout(p=0.1, inplace=False)
                )
                (inner_cross_attn): FlashCrossAttention(
                  (drop): Dropout(p=0.1, inplace=False)
                )
                (out_proj): ParametrizedLinear(
                  in_features=1024, out_features=1024, bias=True
                  (parametrizations): ModuleDict(
                    (weight): ParametrizationList(
                      (0): LoRAParametrization()
                    )
                  )
                )
              )
              (dropout1): Dropout(p=0.1, inplace=False)
              (drop_path1): StochasticDepth(p=0.0, mode=row)
              (norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
              (mlp): Mlp(
                (fc1): ParametrizedLinear(
                  in_features=1024, out_features=4096, bias=True
                  (parametrizations): ModuleDict(
                    (weight): ParametrizationList(
                      (0): LoRAParametrization()
                    )
                  )
                )
                (fc2): ParametrizedLinear(
                  in_features=4096, out_features=1024, bias=True
                  (parametrizations): ModuleDict(
                    (weight): ParametrizationList(
                      (0): LoRAParametrization()
                    )
                  )
                )
              )
              (dropout2): Dropout(p=0.1, inplace=False)
              (drop_path2): StochasticDepth(p=0.0, mode=row)
              (norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            )
          )
        )
        (pooler): XLMRobertaPooler(
          (dense): ParametrizedLinear(
            in_features=1024, out_features=1024, bias=True
            (parametrizations): ModuleDict(
              (weight): ParametrizationList(
                (0): LoRAParametrization()
              )
            )
          )
          (activation): Tanh()
        )
      )
    )
  )
  (pooler): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (normalizer): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("BlackBeenie/jina-embeddings-v3-msmarco-v3-bpr")
# Run inference
sentences = [
    'what is a fermentation lock used for',
    'The fermentation lock or airlock is a device used in beer brewing and wine making that allows carbon dioxide released by the beer to escape the fermenter, while not allowing air to enter the fermenter, thus avoiding oxidation. There are two main designs for the fermentation lock, or airlock.',
    'Remember, fermentation is a method of preserving food. Leaving it on your counter gives it more time for the LAB activity to increase â\x80\x94 which, in turn, lowers pH â\x80\x94 and prevents spoilage. As long as your jar can keep out the oxygen, you shouldnâ\x80\x99t be worried. Which leads me toâ\x80¦.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 498,970 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                       | sentence_1                                                                          | sentence_2                                                                          |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              | string                                                                              |
  | details | <ul><li>min: 4 tokens</li><li>mean: 9.93 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 90.01 tokens</li><li>max: 239 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 88.24 tokens</li><li>max: 258 tokens</li></ul> |
* Samples:
  | sentence_0                                                   | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sentence_2                                                                                                                                                                                                                                                                                                                                                                             |
  |:-------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>how much does it cost to paint a interior house</code> | <code>Interior House Painting Cost Factors. Generally, it will take a minimum of two gallons of paint to cover a room. At the highest end, paint will cost anywhere between $30 and $60 per gallon and come in three different finishes: flat, semi-gloss or high-gloss.Flat finishes are the least shiny and are best suited for areas requiring frequent cleaning.rovide a few details about your project and receive competitive quotes from local pros. The average national cost to paint a home interior is $1,671, with most homeowners spending between $966 and $2,426.</code>                                      | <code>Question DetailsAsked on 3/12/2014. Guest_... How much does it cost per square foot to paint the interior of a house? We just bought roughly a 1500 sg ft townhouse and want to get the entire house, including ceilings painted (including a roughly 400 sq ft finished basement not included in square footage).</code>                                                        |
  | <code>when is s corp taxes due</code>                        | <code>If you form a corporate entity for your small business, regardless of whether it's taxed as a C or S corporation, a tax return must be filed with the Internal Revenue Service on its due date each year. Corporate tax returns are always due on the 15th day of the third month following the close of the tax year. The actual day that the tax return filing deadline falls on, however, isn't the same for every corporation.</code>                                                                                                                                                                              | <code>Before Jan. 1, 2026 After Dec. 31, 2025 Starting with 2016 tax returns, all. other C corps besides Dec. 31 and. June 30 year-ends (including those with. other fiscal year-ends) will be due on. the 15th of the 4th month after the.</code>                                                                                                                                     |
  | <code>what are disaccharides</code>                          | <code>Disaccharides are formed when two monosaccharides are joined together and a molecule of water is removed, a process known as dehydration reaction. For example; milk sugar (lactose) is made from glucose and galactose whereas the sugar from sugar cane and sugar beets (sucrose) is made from glucose and fructose.altose, another notable disaccharide, is made up of two glucose molecules. The two monosaccharides are bonded via a dehydration reaction (also called a condensation reaction or dehydration synthesis) that leads to the loss of a molecule of water and formation of a glycosidic bond.</code> | <code>Disaccharides- Another type of carbohydrate. How many sugar units are disaccharides composed of?_____ What elements make up disaccharides? _____ How does the body use disaccharides? _____ There is no chemical test for disaccharides. Table sugar (white granulated sugar) is an example of a disaccharide. List some foods that contain a lot of disaccharides: _____</code> |
* Loss: <code>beir.losses.bpr_loss.BPRLoss</code>

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 8
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 8
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step   | Training Loss |
|:------:|:------:|:-------------:|
| 0.0321 | 500    | 1.7204        |
| 0.0641 | 1000   | 0.6847        |
| 0.0962 | 1500   | 0.4782        |
| 0.1283 | 2000   | 0.4001        |
| 0.1603 | 2500   | 0.3773        |
| 0.1924 | 3000   | 0.3538        |
| 0.2245 | 3500   | 0.3424        |
| 0.2565 | 4000   | 0.3375        |
| 0.2886 | 4500   | 0.3286        |
| 0.3207 | 5000   | 0.3289        |
| 0.3527 | 5500   | 0.3266        |
| 0.3848 | 6000   | 0.3226        |
| 0.4169 | 6500   | 0.3266        |
| 0.4489 | 7000   | 0.3262        |
| 0.4810 | 7500   | 0.3241        |
| 0.5131 | 8000   | 0.3216        |
| 0.5451 | 8500   | 0.3232        |
| 0.5772 | 9000   | 0.3186        |
| 0.6092 | 9500   | 0.3194        |
| 0.6413 | 10000  | 0.314         |
| 0.6734 | 10500  | 0.3217        |
| 0.7054 | 11000  | 0.3156        |
| 0.7375 | 11500  | 0.3244        |
| 0.7696 | 12000  | 0.3189        |
| 0.8016 | 12500  | 0.3235        |
| 0.8337 | 13000  | 0.3305        |
| 0.8658 | 13500  | 0.3284        |
| 0.8978 | 14000  | 0.3213        |
| 0.9299 | 14500  | 0.3283        |
| 0.9620 | 15000  | 0.3219        |
| 0.9940 | 15500  | 0.3247        |
| 1.0    | 15593  | -             |
| 1.0261 | 16000  | 0.3287        |
| 1.0582 | 16500  | 0.3346        |
| 1.0902 | 17000  | 0.3245        |
| 1.1223 | 17500  | 0.3202        |
| 1.1544 | 18000  | 0.332         |
| 1.1864 | 18500  | 0.3298        |
| 1.2185 | 19000  | 0.332         |
| 1.2506 | 19500  | 0.3258        |
| 1.2826 | 20000  | 0.3291        |
| 1.3147 | 20500  | 0.334         |
| 1.3468 | 21000  | 0.3328        |
| 1.3788 | 21500  | 0.3362        |
| 1.4109 | 22000  | 0.3348        |
| 1.4430 | 22500  | 0.3402        |
| 1.4750 | 23000  | 0.3346        |
| 1.5071 | 23500  | 0.339         |
| 1.5392 | 24000  | 0.3406        |
| 1.5712 | 24500  | 0.3239        |
| 1.6033 | 25000  | 0.3275        |
| 1.6353 | 25500  | 0.3287        |
| 1.6674 | 26000  | 0.3271        |
| 1.6995 | 26500  | 0.3337        |
| 1.7315 | 27000  | 0.3352        |
| 1.7636 | 27500  | 0.3244        |
| 1.7957 | 28000  | 0.3418        |
| 1.8277 | 28500  | 0.349         |
| 1.8598 | 29000  | 0.3395        |
| 1.8919 | 29500  | 0.3386        |
| 1.9239 | 30000  | 0.3379        |
| 1.9560 | 30500  | 0.3412        |
| 1.9881 | 31000  | 0.3364        |
| 2.0    | 31186  | -             |
| 2.0201 | 31500  | 0.3386        |
| 2.0522 | 32000  | 0.3417        |
| 2.0843 | 32500  | 0.3362        |
| 2.1163 | 33000  | 0.3251        |
| 2.1484 | 33500  | 0.3563        |
| 2.1805 | 34000  | 0.3341        |
| 2.2125 | 34500  | 0.3478        |
| 2.2446 | 35000  | 0.3389        |
| 2.2767 | 35500  | 0.342         |
| 2.3087 | 36000  | 0.3467        |
| 2.3408 | 36500  | 0.3419        |
| 2.3729 | 37000  | 0.3513        |
| 2.4049 | 37500  | 0.3441        |
| 2.4370 | 38000  | 0.3484        |
| 2.4691 | 38500  | 0.3457        |
| 2.5011 | 39000  | 0.3503        |
| 2.5332 | 39500  | 0.3446        |
| 2.5653 | 40000  | 0.3461        |
| 2.5973 | 40500  | 0.3399        |
| 2.6294 | 41000  | 0.3405        |
| 2.6615 | 41500  | 0.3382        |
| 2.6935 | 42000  | 0.3388        |
| 2.7256 | 42500  | 0.3378        |
| 2.7576 | 43000  | 0.336         |
| 2.7897 | 43500  | 0.3471        |
| 2.8218 | 44000  | 0.3563        |
| 2.8538 | 44500  | 0.3465        |
| 2.8859 | 45000  | 0.3501        |
| 2.9180 | 45500  | 0.3439        |
| 2.9500 | 46000  | 0.3546        |
| 2.9821 | 46500  | 0.3414        |
| 3.0    | 46779  | -             |
| 3.0142 | 47000  | 0.3498        |
| 3.0462 | 47500  | 0.3484        |
| 3.0783 | 48000  | 0.3496        |
| 3.1104 | 48500  | 0.3392        |
| 3.1424 | 49000  | 0.3583        |
| 3.1745 | 49500  | 0.3505        |
| 3.2066 | 50000  | 0.3547        |
| 3.2386 | 50500  | 0.3469        |
| 3.2707 | 51000  | 0.3489        |
| 3.3028 | 51500  | 0.3473        |
| 3.3348 | 52000  | 0.3579        |
| 3.3669 | 52500  | 0.3523        |
| 3.3990 | 53000  | 0.3427        |
| 3.4310 | 53500  | 0.3685        |
| 3.4631 | 54000  | 0.3479        |
| 3.4952 | 54500  | 0.355         |
| 3.5272 | 55000  | 0.3464        |
| 3.5593 | 55500  | 0.3473        |
| 3.5914 | 56000  | 0.348         |
| 3.6234 | 56500  | 0.3426        |
| 3.6555 | 57000  | 0.3394        |
| 3.6876 | 57500  | 0.3454        |
| 3.7196 | 58000  | 0.345         |
| 3.7517 | 58500  | 0.3411        |
| 3.7837 | 59000  | 0.3557        |
| 3.8158 | 59500  | 0.3505        |
| 3.8479 | 60000  | 0.3605        |
| 3.8799 | 60500  | 0.3554        |
| 3.9120 | 61000  | 0.349         |
| 3.9441 | 61500  | 0.3629        |
| 3.9761 | 62000  | 0.3456        |
| 4.0    | 62372  | -             |
| 4.0082 | 62500  | 0.3562        |
| 4.0403 | 63000  | 0.3531        |
| 4.0723 | 63500  | 0.3569        |
| 4.1044 | 64000  | 0.3494        |
| 4.1365 | 64500  | 0.3513        |
| 4.1685 | 65000  | 0.3599        |
| 4.2006 | 65500  | 0.3487        |
| 4.2327 | 66000  | 0.3561        |
| 4.2647 | 66500  | 0.3583        |
| 4.2968 | 67000  | 0.3539        |
| 4.3289 | 67500  | 0.3614        |
| 4.3609 | 68000  | 0.3558        |
| 4.3930 | 68500  | 0.3485        |
| 4.4251 | 69000  | 0.3715        |
| 4.4571 | 69500  | 0.3585        |
| 4.4892 | 70000  | 0.3571        |
| 4.5213 | 70500  | 0.3498        |
| 4.5533 | 71000  | 0.3576        |
| 4.5854 | 71500  | 0.3498        |
| 4.6175 | 72000  | 0.3507        |
| 4.6495 | 72500  | 0.3436        |
| 4.6816 | 73000  | 0.3461        |
| 4.7137 | 73500  | 0.3451        |
| 4.7457 | 74000  | 0.3554        |
| 4.7778 | 74500  | 0.354         |
| 4.8099 | 75000  | 0.3514        |
| 4.8419 | 75500  | 0.3688        |
| 4.8740 | 76000  | 0.3573        |
| 4.9060 | 76500  | 0.3557        |
| 4.9381 | 77000  | 0.3607        |
| 4.9702 | 77500  | 0.3488        |
| 5.0    | 77965  | -             |
| 5.0022 | 78000  | 0.3555        |
| 5.0343 | 78500  | 0.3596        |
| 5.0664 | 79000  | 0.3572        |
| 5.0984 | 79500  | 0.355         |
| 5.1305 | 80000  | 0.3427        |
| 5.1626 | 80500  | 0.3669        |
| 5.1946 | 81000  | 0.3578        |
| 5.2267 | 81500  | 0.3589        |
| 5.2588 | 82000  | 0.3586        |
| 5.2908 | 82500  | 0.3581        |
| 5.3229 | 83000  | 0.3607        |
| 5.3550 | 83500  | 0.3563        |
| 5.3870 | 84000  | 0.3597        |
| 5.4191 | 84500  | 0.3712        |
| 5.4512 | 85000  | 0.3574        |
| 5.4832 | 85500  | 0.359         |
| 5.5153 | 86000  | 0.3598        |
| 5.5474 | 86500  | 0.3604        |
| 5.5794 | 87000  | 0.3535        |
| 5.6115 | 87500  | 0.3606        |
| 5.6436 | 88000  | 0.3469        |
| 5.6756 | 88500  | 0.3568        |
| 5.7077 | 89000  | 0.3497        |
| 5.7398 | 89500  | 0.3597        |
| 5.7718 | 90000  | 0.3582        |
| 5.8039 | 90500  | 0.3556        |
| 5.8360 | 91000  | 0.3716        |
| 5.8680 | 91500  | 0.3615        |
| 5.9001 | 92000  | 0.3532        |
| 5.9321 | 92500  | 0.3747        |
| 5.9642 | 93000  | 0.3521        |
| 5.9963 | 93500  | 0.362         |
| 6.0    | 93558  | -             |
| 6.0283 | 94000  | 0.3701        |
| 6.0604 | 94500  | 0.3636        |
| 6.0925 | 95000  | 0.3556        |
| 6.1245 | 95500  | 0.3508        |
| 6.1566 | 96000  | 0.3626        |
| 6.1887 | 96500  | 0.3618        |
| 6.2207 | 97000  | 0.3683        |
| 6.2528 | 97500  | 0.362         |
| 6.2849 | 98000  | 0.3534        |
| 6.3169 | 98500  | 0.3643        |
| 6.3490 | 99000  | 0.36          |
| 6.3811 | 99500  | 0.3592        |
| 6.4131 | 100000 | 0.3606        |
| 6.4452 | 100500 | 0.369         |
| 6.4773 | 101000 | 0.3607        |
| 6.5093 | 101500 | 0.3683        |
| 6.5414 | 102000 | 0.3648        |
| 6.5735 | 102500 | 0.3481        |
| 6.6055 | 103000 | 0.3565        |
| 6.6376 | 103500 | 0.3555        |
| 6.6697 | 104000 | 0.347         |
| 6.7017 | 104500 | 0.3585        |
| 6.7338 | 105000 | 0.3553        |
| 6.7659 | 105500 | 0.3539        |
| 6.7979 | 106000 | 0.3638        |
| 6.8300 | 106500 | 0.3674        |
| 6.8621 | 107000 | 0.3674        |
| 6.8941 | 107500 | 0.3617        |
| 6.9262 | 108000 | 0.3655        |
| 6.9583 | 108500 | 0.3593        |
| 6.9903 | 109000 | 0.3603        |
| 7.0    | 109151 | -             |
| 7.0224 | 109500 | 0.3614        |
| 7.0544 | 110000 | 0.3655        |
| 7.0865 | 110500 | 0.3597        |
| 7.1186 | 111000 | 0.3443        |
| 7.1506 | 111500 | 0.3781        |
| 7.1827 | 112000 | 0.3587        |
| 7.2148 | 112500 | 0.3676        |
| 7.2468 | 113000 | 0.357         |
| 7.2789 | 113500 | 0.3639        |
| 7.3110 | 114000 | 0.3691        |
| 7.3430 | 114500 | 0.3606        |
| 7.3751 | 115000 | 0.3679        |
| 7.4072 | 115500 | 0.3697        |
| 7.4392 | 116000 | 0.3726        |
| 7.4713 | 116500 | 0.3603        |
| 7.5034 | 117000 | 0.3655        |
| 7.5354 | 117500 | 0.3639        |
| 7.5675 | 118000 | 0.3557        |
| 7.5996 | 118500 | 0.358         |
| 7.6316 | 119000 | 0.3526        |
| 7.6637 | 119500 | 0.3579        |
| 7.6958 | 120000 | 0.3584        |
| 7.7278 | 120500 | 0.3507        |
| 7.7599 | 121000 | 0.3472        |
| 7.7920 | 121500 | 0.3757        |
| 7.8240 | 122000 | 0.3717        |
| 7.8561 | 122500 | 0.3646        |
| 7.8882 | 123000 | 0.3662        |
| 7.9202 | 123500 | 0.3668        |
| 7.9523 | 124000 | 0.3677        |
| 7.9844 | 124500 | 0.3588        |
| 8.0    | 124744 | -             |

</details>

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->