File size: 2,582 Bytes
194b80a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from typing import Optional, Tuple, Union

import torch
from torch import nn
from transformers import CLIPTextConfig, CLIPTextModel
from transformers.modeling_outputs import MaskedLMOutput
from transformers.models.clip.modeling_clip import CLIPPreTrainedModel
from transformers.models.roberta.modeling_roberta import RobertaLMHead


class CLIPTextModelForMaskedLM(CLIPPreTrainedModel):
    config_class = CLIPTextConfig

    def __init__(self, config: CLIPTextConfig):
        super().__init__(config)
        self.clip_text_model = CLIPTextModel(config)
        self.lm_head = RobertaLMHead(config)

        self.post_init()

    def get_input_embeddings(self):
        return self.clip_text_model.text_model.embeddings.token_embedding

    def set_input_embeddings(self, value):
        self.clip_text_model.text_model.embeddings.token_embedding = value

    def get_output_embeddings(self):
        return self.lm_head.decoder

    def set_output_embeddings(self, new_embeddings):
        self.lm_head.decoder = new_embeddings

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        outputs = self.clip_text_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]
        prediction_scores = self.lm_head(sequence_output)

        mlm_loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            mlm_loss = loss_fct(
                prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)
            )

        if not return_dict:
            output = (prediction_scores,) + outputs[2:]
            return ((mlm_loss,) + output) if mlm_loss is not None else output

        return MaskedLMOutput(
            loss=mlm_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )