--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:3560 - loss:MultipleNegativesRankingLoss - loss:CosineSimilarityLoss base_model: jinaai/jina-embedding-b-en-v1 widget: - source_sentence: show my best performing investments over the past 5 years sentences: - show my holdings that have performed well over the past 5 years - 'Show me the geographic distribution of my investments ' - Can you break down my exposure to X? - source_sentence: How to address the red flags I have? sentences: - Which of my stocks are most volatile? - Do I hold any equity mutual funds in my portfolio? - How to deal with my red flags? - source_sentence: Mere funds ki situation kya hai? sentences: - Do I hold any equity mutual funds in my portfolio? - Mere funds kese chal rahe hai? - Show my riskiest mutual funds - source_sentence: Is my selection of mutual funds effective for the current market? sentences: - What are my riskiest holdings - Is my mutual fund selection good for the current market? - What is the expected return of my portfolio? - source_sentence: What is the performance of my portfolio? sentences: - Sell recommendations, do I have any ? - How am I doing compared to other investors - How is my portfolio performing pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: SentenceTransformer based on jinaai/jina-embedding-b-en-v1 results: - task: type: information-retrieval name: Information Retrieval dataset: name: test eval type: test-eval metrics: - type: cosine_accuracy@1 value: 0.8735955056179775 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.9915730337078652 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.9971910112359551 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 1.0 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.8735955056179775 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.33052434456928836 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.199438202247191 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09999999999999998 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.8735955056179775 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.9915730337078652 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.9971910112359551 name: Cosine Recall@5 - type: cosine_recall@10 value: 1.0 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9477733494874759 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.9297752808988763 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9297752808988764 name: Cosine Map@100 --- # SentenceTransformer based on jinaai/jina-embedding-b-en-v1 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embedding-b-en-v1](https://huggingface.co/jinaai/jina-embedding-b-en-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [jinaai/jina-embedding-b-en-v1](https://huggingface.co/jinaai/jina-embedding-b-en-v1) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: T5EncoderModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'What is the performance of my portfolio?', 'How is my portfolio performing', 'Sell recommendations, do I have any ?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `test-eval` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.8736 | | cosine_accuracy@3 | 0.9916 | | cosine_accuracy@5 | 0.9972 | | cosine_accuracy@10 | 1.0 | | cosine_precision@1 | 0.8736 | | cosine_precision@3 | 0.3305 | | cosine_precision@5 | 0.1994 | | cosine_precision@10 | 0.1 | | cosine_recall@1 | 0.8736 | | cosine_recall@3 | 0.9916 | | cosine_recall@5 | 0.9972 | | cosine_recall@10 | 1.0 | | **cosine_ndcg@10** | **0.9478** | | cosine_mrr@10 | 0.9298 | | cosine_map@100 | 0.9298 | ## Training Details ### Training Datasets #### Unnamed Dataset * Size: 1,780 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------|:-----------------| | List my recommendations for investments | Show me my recommendations | 1.0 | | Can you provide python code to locate the best funds in my portfolio? | Give me python code to find best funds in my portfolio | 1.0 | | what's the equity vs debt ratio for my investments? | what's the equity to debt ratio of my portfolio? | 1.0 | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` #### Unnamed Dataset * Size: 1,780 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:------------------------------------------------------------------|:----------------------------------------------------------------|:-----------------| | Can you tell me if I own equity funds? | Do I hold any equity funds? | 1.0 | | what are some strategies to lower my portfolio risk? | are there any ways to lower risk in my portfolio ? | 1.0 | | What are the risks associated with my portfolio? | Details on my portfolio risk | 1.0 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `num_train_epochs`: 10 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 10 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | test-eval_cosine_ndcg@10 | |:------:|:----:|:-------------:|:------------------------:| | 1.0 | 112 | - | 0.9084 | | 2.0 | 224 | - | 0.9168 | | 3.0 | 336 | - | 0.9292 | | 4.0 | 448 | - | 0.9358 | | 4.4643 | 500 | 0.1968 | 0.9343 | | 5.0 | 560 | - | 0.9389 | | 6.0 | 672 | - | 0.9413 | | 7.0 | 784 | - | 0.9437 | | 8.0 | 896 | - | 0.9456 | | 8.9286 | 1000 | 0.1307 | 0.9478 | ### Framework Versions - Python: 3.12.5 - Sentence Transformers: 3.4.1 - Transformers: 4.49.0 - PyTorch: 2.6.0 - Accelerate: 1.5.2 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```