File size: 4,532 Bytes
eba1327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
library_name: transformers
base_model: OpenMeditron/Meditron3-8B
tags:
- generated_from_trainer
model-index:
- name: mloscratch/homes/bbernath/meditron_instruct/instruction_tuned_model_with_ml4science_data
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: OpenMeditron/Meditron3-8B
bf16: auto
output_dir: /mloscratch/homes/bbernath/meditron_instruct/instruction_tuned_model_with_ml4science_data
chat_template: llama3
datasets:
  - path: /mloscratch/homes/bbernath/meditron_instruct/datasets/mixtures/Instruction_tuning_mixture.jsonl
    type: chat_template
    ds_type: json
    split: train
    field_messages: conversations
    message_field_role: from
    message_field_content: value
  - path: /mloscratch/homes/bbernath/meditron_instruct/datasets/replay_data/datasets/pubmed_3B.jsonl
    type: completion
    ds_type: json
    field: text
    sample_ratio: 0.1
  - path: /mloscratch/homes/bbernath/meditron_instruct/datasets/replay_data/datasets/amboss_article.jsonl
    type: completion
    ds_type: json
    field: text
  - path: /mloscratch/homes/bbernath/meditron_instruct/datasets/replay_data/datasets/medmcqa.jsonl
    type: chat_template
    ds_type: json
    split: train
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    sample_ratio: 0.5
  - path: /mloscratch/homes/bbernath/meditron_instruct/datasets/replay_data/datasets/pubmedqa.jsonl
    type: chat_template
    ds_type: json
    split: train
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    sample_ratio: 0.2
  - path: /mloscratch/homes/bbernath/meditron_instruct/datasets/replay_data/datasets/medqa.jsonl
    type: chat_template
    ds_type: json
    split: train
    field_messages: conversations
    message_field_role: from
    message_field_content: value
shuffle_merged_datasets: true
dataset_processes: 64
flash_attention: true
sequence_len: 8192
gradient_accumulation_steps: 2
micro_batch_size: 2
train_on_inputs: false
group_by_length: false
pad_to_sequence_len: true
sample_packing: true
optimizer: adamw_torch
optim_args:
  fused: true
cosine_min_lr_ratio: 0.1
learning_rate: 1.0e-5
warmup_ratio: 0.0
weight_decay: 0.05
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
load_in_4bit: false
load_in_8bit: false
logging_steps: 1
num_epochs: 1
# saves_per_epoch: 1
# evals_per_epoch: 2
eval_set_size: 0.0
eval_table_size: null
lr_scheduler: cosine
max_grad_norm: 1.0
resume_from_checkpoint: null
special_tokens:
  pad_token: <|end_of_text|>
tf32: false
tokenizer_type: AutoTokenizer
type: LlamaForCausalLM
seed: 42
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
early_stopping_patience: 0
eval_steps: 3000
save_steps: 3000
load_best_model_at_end: true
xformers_attention: null
distributed:
  world_size: 5
  backend: nccl
deepspeed: /mloscratch/homes/bbernath/meditron_instruct/axolotl_config/ds_config.json

wandb_project: Meditron DDX
wandb_entity: alexs-team     
wandb_name: Instruction_tune_Meditron_8b_with_ML4Science_dataset_10000_first_try
```

</details><br>

# mloscratch/homes/bbernath/meditron_instruct/instruction_tuned_model_with_ml4science_data

This model is a fine-tuned version of [OpenMeditron/Meditron3-8B](https://huggingface.co/OpenMeditron/Meditron3-8B) on the None dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 6
- gradient_accumulation_steps: 2
- total_train_batch_size: 24
- total_eval_batch_size: 12
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=fused=True
- lr_scheduler_type: cosine
- num_epochs: 1

### Training results



### Framework versions

- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.0.1
- Tokenizers 0.20.3