Initial commit
Browse files- README.md +37 -0
- a2c-PandaPushDense-v2.zip +3 -0
- a2c-PandaPushDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaPushDense-v2/data +94 -0
- a2c-PandaPushDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaPushDense-v2/policy.pth +3 -0
- a2c-PandaPushDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaPushDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPushDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPushDense-v2
|
16 |
+
type: PandaPushDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -7.94 +/- 4.62
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaPushDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaPushDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaPushDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6af7f046e9941ba6b7130685e5854717ce76dd4c2ccf23aa1af6a7a092d3e9d0
|
3 |
+
size 119711
|
a2c-PandaPushDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaPushDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f354e5d93a0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f354e5d2630>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVygMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLEoWUaBpoHSiWSAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLEoWUaCB0lFKUaCNoHSiWSAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLEoWUaCB0lFKUaChoHSiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCxLEoWUaCB0lFKUaDJoHSiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCxLEoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10.\n -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.], (18,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 1,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1675775093216252925,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVWwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAjBy1vyBz0D/16XQ9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAyZlTP9F3FL8FDKAylGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWSAAAAAAAAADSaG4+w35fvUkOEzxzjf89bOvDu2YEjjyMHLW/IHPQP/XpdD0cEpK7ByLtvIt44zrQRmA8VVVXPJcI3zy8Nb27zW5KvDR8LzeUaA5LAUsShpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[-1.4149337 1.6285133 0.05979343]]",
|
60 |
+
"desired_goal": "[[ 8.2656533e-01 -5.7995325e-01 1.8631917e-08]]",
|
61 |
+
"observation": "[[ 2.32821733e-01 -5.45642488e-02 8.97557382e-03 1.24781512e-01\n -5.97899221e-03 1.73360817e-02 -1.41493368e+00 1.62851334e+00\n 5.97934313e-02 -4.45772521e-03 -2.89468896e-02 1.73546502e-03\n 1.36887580e-02 1.31429033e-02 2.72257756e-02 -5.77422790e-03\n -1.23555185e-02 1.04597311e-05]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVWwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAlzamvJ+KCD4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAASQMLPqeQKL0K16M8lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWSAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACXNqa8n4oIPgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaA5LAUsShpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[-0.0202897 0.1333413 0.02 ]]",
|
71 |
+
"desired_goal": "[[ 0.13575472 -0.04115358 0.02 ]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -2.0289702e-02 1.3334130e-01\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsU6V7xnhJcCUhpRSlIwBbJRLMowBdJRHQLcFXFnIyTJ1fZQoaAZoCWgPQwjCTxxAvy8awJSGlFKUaBVLMmgWR0C3BbmpqASWdX2UKGgGaAloD0MI73GmCdufF8CUhpRSlGgVSzJoFkdAtwYiucMEzXV9lChoBmgJaA9DCOW4UzpYXyrAlIaUUpRoFUsyaBZHQLcGibr1M/R1fZQoaAZoCWgPQwjKi0zAr6EhwJSGlFKUaBVLMmgWR0C3Bu8189fUdX2UKGgGaAloD0MIKGGm7V9JFMCUhpRSlGgVSzJoFkdAtwdPoW56MXV9lChoBmgJaA9DCNMtO8Q//CDAlIaUUpRoFUsyaBZHQLcHvyhzvJB1fZQoaAZoCWgPQwjURQpl4fsmwJSGlFKUaBVLMmgWR0C3CCJxm03PdX2UKGgGaAloD0MIKV36l6QSJsCUhpRSlGgVSzJoFkdAtwiSCL/CInV9lChoBmgJaA9DCCrkSj0LshjAlIaUUpRoFUsyaBZHQLcJAum78Nx1fZQoaAZoCWgPQwhm+boM/0EwwJSGlFKUaBVLMmgWR0C3CWhYvFm4dX2UKGgGaAloD0MI1/m3y34dAMCUhpRSlGgVSzJoFkdAtwmpGOMl1XV9lChoBmgJaA9DCD5d3bHYZiHAlIaUUpRoFUsyaBZHQLcJ4YzSCvp1fZQoaAZoCWgPQwiho1Ut6cgGwJSGlFKUaBVLMmgWR0C3Ch6dlNDddX2UKGgGaAloD0MIU5YhjnUx+r+UhpRSlGgVSzJoFkdAtwphccENfHV9lChoBmgJaA9DCEfjUL8LOxLAlIaUUpRoFUsyaBZHQLcKnXYUWVN1fZQoaAZoCWgPQwgtW+uLhPYFwJSGlFKUaBVLMmgWR0C3Ct04JeE7dX2UKGgGaAloD0MILXqnAu5JJsCUhpRSlGgVSzJoFkdAtwsV89fTkXV9lChoBmgJaA9DCE8+PbZlgPS/lIaUUpRoFUsyaBZHQLcLWjin5zp1fZQoaAZoCWgPQwgEV3kCYbcVwJSGlFKUaBVLMmgWR0C3C6ZZntfHdX2UKGgGaAloD0MIGF3eHK71JMCUhpRSlGgVSzJoFkdAtwvqHTI/7nV9lChoBmgJaA9DCNU/iGTIESTAlIaUUpRoFUsyaBZHQLcMJBPKuCB1fZQoaAZoCWgPQwi7ZBwj2WMMwJSGlFKUaBVLMmgWR0C3DGS4nWrfdX2UKGgGaAloD0MIp658ludNPMCUhpRSlGgVSzJoFkdAtwypTAFgUnV9lChoBmgJaA9DCNZW7C+7lyvAlIaUUpRoFUsyaBZHQLcM4xp+MIh1fZQoaAZoCWgPQwiKARJNoIgAwJSGlFKUaBVLMmgWR0C3DSFf/m1ZdX2UKGgGaAloD0MIlstG5/wkHcCUhpRSlGgVSzJoFkdAtw1pQLux8nV9lChoBmgJaA9DCBNjmX6JQCPAlIaUUpRoFUsyaBZHQLcNrRuTA311fZQoaAZoCWgPQwhrDDohdHAQwJSGlFKUaBVLMmgWR0C3De0d3jdYdX2UKGgGaAloD0MIy0dS0sPwJMCUhpRSlGgVSzJoFkdAtw4jvE0iyXV9lChoBmgJaA9DCHFxVG6ili/AlIaUUpRoFUsyaBZHQLcOZl+mWMV1fZQoaAZoCWgPQwg1zxH5Lu0kwJSGlFKUaBVLMmgWR0C3Dp+WOZLJdX2UKGgGaAloD0MI/u+ICtXN+7+UhpRSlGgVSzJoFkdAtw7fmdRR/HV9lChoBmgJaA9DCLoxPWGJ9xTAlIaUUpRoFUsyaBZHQLcPIaCL/CJ1fZQoaAZoCWgPQwhHHR1XI7sUwJSGlFKUaBVLMmgWR0C3D2EWRA8kdX2UKGgGaAloD0MIZK4Mqg1OKcCUhpRSlGgVSzJoFkdAtw+cOskpqnV9lChoBmgJaA9DCOzdH+9VYyTAlIaUUpRoFUsyaBZHQLcP4APNFBp1fZQoaAZoCWgPQwj60tufi+YYwJSGlFKUaBVLMmgWR0C3EBggX/HYdX2UKGgGaAloD0MIM/59xoUrI8CUhpRSlGgVSzJoFkdAtxBbOv+wT3V9lChoBmgJaA9DCFYOLbKdXxrAlIaUUpRoFUsyaBZHQLcQnYBeXzF1fZQoaAZoCWgPQwhLlL2lnPcnwJSGlFKUaBVLMmgWR0C3EN1RpDeCdX2UKGgGaAloD0MI46dxb37jDMCUhpRSlGgVSzJoFkdAtxEd+EytWHV9lChoBmgJaA9DCF97ZkmAihPAlIaUUpRoFUsyaBZHQLcRWSHM2WJ1fZQoaAZoCWgPQwi6oL5lTpcCwJSGlFKUaBVLMmgWR0C3EZgUg0TDdX2UKGgGaAloD0MItykeF9VKI8CUhpRSlGgVSzJoFkdAtxHXNnoPkXV9lChoBmgJaA9DCBeBsb6B+RPAlIaUUpRoFUsyaBZHQLcSEXl8w6B1fZQoaAZoCWgPQwj+74gK1V0TwJSGlFKUaBVLMmgWR0C3Ekt3jdYXdX2UKGgGaAloD0MIio9PyM7b3b+UhpRSlGgVSzJoFkdAtxKIkPczqXV9lChoBmgJaA9DCEt0llmE0hDAlIaUUpRoFUsyaBZHQLcSwpcHGCJ1fZQoaAZoCWgPQwjZmNcRh8wgwJSGlFKUaBVLMmgWR0C3Evqc7QsxdX2UKGgGaAloD0MIWp2cobjDGsCUhpRSlGgVSzJoFkdAtxM3JT2nKnV9lChoBmgJaA9DCO2ePCzUuhjAlIaUUpRoFUsyaBZHQLcTl+aBqbl1fZQoaAZoCWgPQwjWHCCYo2cewJSGlFKUaBVLMmgWR0C3FAEjTrmhdX2UKGgGaAloD0MIS3ZsBOKFMMCUhpRSlGgVSzJoFkdAtxRnTMJQcnV9lChoBmgJaA9DCJ88LNSaZi3AlIaUUpRoFUsyaBZHQLcUv98qnWJ1fZQoaAZoCWgPQwhfRrHc0hoiwJSGlFKUaBVLMmgWR0C3FSghr30xdX2UKGgGaAloD0MImuyfpwEDL8CUhpRSlGgVSzJoFkdAtxWWiVSn+HV9lChoBmgJaA9DCFb0h2aefCfAlIaUUpRoFUsyaBZHQLcWAf0VafV1fZQoaAZoCWgPQwhy/bs+cy4iwJSGlFKUaBVLMmgWR0C3FmQhB7eEdX2UKGgGaAloD0MIYTWWsDbuIMCUhpRSlGgVSzJoFkdAtxbPeHi3onV9lChoBmgJaA9DCP5hS4+mCiDAlIaUUpRoFUsyaBZHQLcXQrpqynl1fZQoaAZoCWgPQwhGBrmLMMXsv5SGlFKUaBVLMmgWR0C3F6CpiqhldX2UKGgGaAloD0MISS7/If12IMCUhpRSlGgVSzJoFkdAtxgEOMERrnV9lChoBmgJaA9DCH7IW65+LB/AlIaUUpRoFUsyaBZHQLcYRFL39Jl1fZQoaAZoCWgPQwjdPxaiQ9AUwJSGlFKUaBVLMmgWR0C3GIEs8PnTdX2UKGgGaAloD0MI3gN0X878HMCUhpRSlGgVSzJoFkdAtxi6wJPZZnV9lChoBmgJaA9DCGbdPxaikyLAlIaUUpRoFUsyaBZHQLcY+7aZhKF1fZQoaAZoCWgPQwime53Ul50swJSGlFKUaBVLMmgWR0C3GTl2mpEQdX2UKGgGaAloD0MIjlw3pbwCMcCUhpRSlGgVSzJoFkdAtxl25Fw1i3V9lChoBmgJaA9DCNYe9kIBaxDAlIaUUpRoFUsyaBZHQLcZsBjWkJt1fZQoaAZoCWgPQwizzY3pCWshwJSGlFKUaBVLMmgWR0C3GfOGGmDUdX2UKGgGaAloD0MIWd3qOemdHcCUhpRSlGgVSzJoFkdAtxowF1SwW3V9lChoBmgJaA9DCCaqtwa2yiPAlIaUUpRoFUsyaBZHQLcadGSIP9V1fZQoaAZoCWgPQwjLEp1lFrEdwJSGlFKUaBVLMmgWR0C3GrToMa0hdX2UKGgGaAloD0MIOGkaFM37I8CUhpRSlGgVSzJoFkdAtxr0T238XXV9lChoBmgJaA9DCGlznNuESzDAlIaUUpRoFUsyaBZHQLcbMrJbMX91fZQoaAZoCWgPQwhiga/o1rsdwJSGlFKUaBVLMmgWR0C3G24/qxC6dX2UKGgGaAloD0MICYfe4uGNHMCUhpRSlGgVSzJoFkdAtxuoE2YOUnV9lChoBmgJaA9DCGKFWz6SaifAlIaUUpRoFUsyaBZHQLcb6IQvpQl1fZQoaAZoCWgPQwi/R/31CqsewJSGlFKUaBVLMmgWR0C3HC6fra/RdX2UKGgGaAloD0MIgzP4+8Vs/7+UhpRSlGgVSzJoFkdAtxxsHIIWxnV9lChoBmgJaA9DCB78xAH0OyrAlIaUUpRoFUsyaBZHQLccqg9/z8R1fZQoaAZoCWgPQwi05zI1CV7yv5SGlFKUaBVLMmgWR0C3HOXvUjLTdX2UKGgGaAloD0MImSuDaoPrI8CUhpRSlGgVSzJoFkdAtx0j2L5yl3V9lChoBmgJaA9DCJM4K6ImahHAlIaUUpRoFUsyaBZHQLcdYtWdVed1fZQoaAZoCWgPQwgQzNHj9wYswJSGlFKUaBVLMmgWR0C3HaTvmYBvdX2UKGgGaAloD0MIKT3TS4wtJcCUhpRSlGgVSzJoFkdAtx3fGgi/wnV9lChoBmgJaA9DCM6qz9VWZCPAlIaUUpRoFUsyaBZHQLceJIPsiSt1fZQoaAZoCWgPQwgr24e85VoUwJSGlFKUaBVLMmgWR0C3HnRCIDYAdX2UKGgGaAloD0MIyNEcWflVH8CUhpRSlGgVSzJoFkdAtx677N0NjXV9lChoBmgJaA9DCLhzYaQXrSbAlIaUUpRoFUsyaBZHQLce+YplSTB1fZQoaAZoCWgPQwhNv0S8dR4ZwJSGlFKUaBVLMmgWR0C3Hzqi0v4/dX2UKGgGaAloD0MI+3lTkQqjF8CUhpRSlGgVSzJoFkdAtx90V/MGHHV9lChoBmgJaA9DCPZ7Yp0qvwfAlIaUUpRoFUsyaBZHQLcfsh+OOsF1fZQoaAZoCWgPQwi7fyxEh4AXwJSGlFKUaBVLMmgWR0C3H+si0OVgdX2UKGgGaAloD0MIjgOvljvDH8CUhpRSlGgVSzJoFkdAtyAmveP7vXV9lChoBmgJaA9DCLsM/+kGChzAlIaUUpRoFUsyaBZHQLcgYcMVk+Z1fZQoaAZoCWgPQwibcoV3uegnwJSGlFKUaBVLMmgWR0C3IKFfVqetdX2UKGgGaAloD0MI0jWTb7aRIcCUhpRSlGgVSzJoFkdAtyDdA2Q4j3V9lChoBmgJaA9DCLwi+N9KHinAlIaUUpRoFUsyaBZHQLchH8zQ/ot1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 200000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaPushDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4453aa6dcc447e5c00d1eb9f9be4790b868bfd8a12b37cef80c1cc825d6589ae
|
3 |
+
size 50878
|
a2c-PandaPushDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0329637de2aeb3b199c96048a7ad5f97c026334e60267feb2c5ddaf8eceeee06
|
3 |
+
size 52158
|
a2c-PandaPushDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaPushDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f354e5d93a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f354e5d2630>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVygMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLEoWUaBpoHSiWSAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLEoWUaCB0lFKUaCNoHSiWSAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLEoWUaCB0lFKUaChoHSiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCxLEoWUaCB0lFKUaDJoHSiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCxLEoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10.\n -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.], (18,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675775093216252925, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVWwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAjBy1vyBz0D/16XQ9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAyZlTP9F3FL8FDKAylGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWSAAAAAAAAADSaG4+w35fvUkOEzxzjf89bOvDu2YEjjyMHLW/IHPQP/XpdD0cEpK7ByLtvIt44zrQRmA8VVVXPJcI3zy8Nb27zW5KvDR8LzeUaA5LAUsShpRoEnSUUpR1Lg==", "achieved_goal": "[[-1.4149337 1.6285133 0.05979343]]", "desired_goal": "[[ 8.2656533e-01 -5.7995325e-01 1.8631917e-08]]", "observation": "[[ 2.32821733e-01 -5.45642488e-02 8.97557382e-03 1.24781512e-01\n -5.97899221e-03 1.73360817e-02 -1.41493368e+00 1.62851334e+00\n 5.97934313e-02 -4.45772521e-03 -2.89468896e-02 1.73546502e-03\n 1.36887580e-02 1.31429033e-02 2.72257756e-02 -5.77422790e-03\n -1.23555185e-02 1.04597311e-05]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVWwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAlzamvJ+KCD4K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAASQMLPqeQKL0K16M8lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWSAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACXNqa8n4oIPgrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaA5LAUsShpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.0202897 0.1333413 0.02 ]]", "desired_goal": "[[ 0.13575472 -0.04115358 0.02 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -2.0289702e-02 1.3334130e-01\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsU6V7xnhJcCUhpRSlIwBbJRLMowBdJRHQLcFXFnIyTJ1fZQoaAZoCWgPQwjCTxxAvy8awJSGlFKUaBVLMmgWR0C3BbmpqASWdX2UKGgGaAloD0MI73GmCdufF8CUhpRSlGgVSzJoFkdAtwYiucMEzXV9lChoBmgJaA9DCOW4UzpYXyrAlIaUUpRoFUsyaBZHQLcGibr1M/R1fZQoaAZoCWgPQwjKi0zAr6EhwJSGlFKUaBVLMmgWR0C3Bu8189fUdX2UKGgGaAloD0MIKGGm7V9JFMCUhpRSlGgVSzJoFkdAtwdPoW56MXV9lChoBmgJaA9DCNMtO8Q//CDAlIaUUpRoFUsyaBZHQLcHvyhzvJB1fZQoaAZoCWgPQwjURQpl4fsmwJSGlFKUaBVLMmgWR0C3CCJxm03PdX2UKGgGaAloD0MIKV36l6QSJsCUhpRSlGgVSzJoFkdAtwiSCL/CInV9lChoBmgJaA9DCCrkSj0LshjAlIaUUpRoFUsyaBZHQLcJAum78Nx1fZQoaAZoCWgPQwhm+boM/0EwwJSGlFKUaBVLMmgWR0C3CWhYvFm4dX2UKGgGaAloD0MI1/m3y34dAMCUhpRSlGgVSzJoFkdAtwmpGOMl1XV9lChoBmgJaA9DCD5d3bHYZiHAlIaUUpRoFUsyaBZHQLcJ4YzSCvp1fZQoaAZoCWgPQwiho1Ut6cgGwJSGlFKUaBVLMmgWR0C3Ch6dlNDddX2UKGgGaAloD0MIU5YhjnUx+r+UhpRSlGgVSzJoFkdAtwphccENfHV9lChoBmgJaA9DCEfjUL8LOxLAlIaUUpRoFUsyaBZHQLcKnXYUWVN1fZQoaAZoCWgPQwgtW+uLhPYFwJSGlFKUaBVLMmgWR0C3Ct04JeE7dX2UKGgGaAloD0MILXqnAu5JJsCUhpRSlGgVSzJoFkdAtwsV89fTkXV9lChoBmgJaA9DCE8+PbZlgPS/lIaUUpRoFUsyaBZHQLcLWjin5zp1fZQoaAZoCWgPQwgEV3kCYbcVwJSGlFKUaBVLMmgWR0C3C6ZZntfHdX2UKGgGaAloD0MIGF3eHK71JMCUhpRSlGgVSzJoFkdAtwvqHTI/7nV9lChoBmgJaA9DCNU/iGTIESTAlIaUUpRoFUsyaBZHQLcMJBPKuCB1fZQoaAZoCWgPQwi7ZBwj2WMMwJSGlFKUaBVLMmgWR0C3DGS4nWrfdX2UKGgGaAloD0MIp658ludNPMCUhpRSlGgVSzJoFkdAtwypTAFgUnV9lChoBmgJaA9DCNZW7C+7lyvAlIaUUpRoFUsyaBZHQLcM4xp+MIh1fZQoaAZoCWgPQwiKARJNoIgAwJSGlFKUaBVLMmgWR0C3DSFf/m1ZdX2UKGgGaAloD0MIlstG5/wkHcCUhpRSlGgVSzJoFkdAtw1pQLux8nV9lChoBmgJaA9DCBNjmX6JQCPAlIaUUpRoFUsyaBZHQLcNrRuTA311fZQoaAZoCWgPQwhrDDohdHAQwJSGlFKUaBVLMmgWR0C3De0d3jdYdX2UKGgGaAloD0MIy0dS0sPwJMCUhpRSlGgVSzJoFkdAtw4jvE0iyXV9lChoBmgJaA9DCHFxVG6ili/AlIaUUpRoFUsyaBZHQLcOZl+mWMV1fZQoaAZoCWgPQwg1zxH5Lu0kwJSGlFKUaBVLMmgWR0C3Dp+WOZLJdX2UKGgGaAloD0MI/u+ICtXN+7+UhpRSlGgVSzJoFkdAtw7fmdRR/HV9lChoBmgJaA9DCLoxPWGJ9xTAlIaUUpRoFUsyaBZHQLcPIaCL/CJ1fZQoaAZoCWgPQwhHHR1XI7sUwJSGlFKUaBVLMmgWR0C3D2EWRA8kdX2UKGgGaAloD0MIZK4Mqg1OKcCUhpRSlGgVSzJoFkdAtw+cOskpqnV9lChoBmgJaA9DCOzdH+9VYyTAlIaUUpRoFUsyaBZHQLcP4APNFBp1fZQoaAZoCWgPQwj60tufi+YYwJSGlFKUaBVLMmgWR0C3EBggX/HYdX2UKGgGaAloD0MIM/59xoUrI8CUhpRSlGgVSzJoFkdAtxBbOv+wT3V9lChoBmgJaA9DCFYOLbKdXxrAlIaUUpRoFUsyaBZHQLcQnYBeXzF1fZQoaAZoCWgPQwhLlL2lnPcnwJSGlFKUaBVLMmgWR0C3EN1RpDeCdX2UKGgGaAloD0MI46dxb37jDMCUhpRSlGgVSzJoFkdAtxEd+EytWHV9lChoBmgJaA9DCF97ZkmAihPAlIaUUpRoFUsyaBZHQLcRWSHM2WJ1fZQoaAZoCWgPQwi6oL5lTpcCwJSGlFKUaBVLMmgWR0C3EZgUg0TDdX2UKGgGaAloD0MItykeF9VKI8CUhpRSlGgVSzJoFkdAtxHXNnoPkXV9lChoBmgJaA9DCBeBsb6B+RPAlIaUUpRoFUsyaBZHQLcSEXl8w6B1fZQoaAZoCWgPQwj+74gK1V0TwJSGlFKUaBVLMmgWR0C3Ekt3jdYXdX2UKGgGaAloD0MIio9PyM7b3b+UhpRSlGgVSzJoFkdAtxKIkPczqXV9lChoBmgJaA9DCEt0llmE0hDAlIaUUpRoFUsyaBZHQLcSwpcHGCJ1fZQoaAZoCWgPQwjZmNcRh8wgwJSGlFKUaBVLMmgWR0C3Evqc7QsxdX2UKGgGaAloD0MIWp2cobjDGsCUhpRSlGgVSzJoFkdAtxM3JT2nKnV9lChoBmgJaA9DCO2ePCzUuhjAlIaUUpRoFUsyaBZHQLcTl+aBqbl1fZQoaAZoCWgPQwjWHCCYo2cewJSGlFKUaBVLMmgWR0C3FAEjTrmhdX2UKGgGaAloD0MIS3ZsBOKFMMCUhpRSlGgVSzJoFkdAtxRnTMJQcnV9lChoBmgJaA9DCJ88LNSaZi3AlIaUUpRoFUsyaBZHQLcUv98qnWJ1fZQoaAZoCWgPQwhfRrHc0hoiwJSGlFKUaBVLMmgWR0C3FSghr30xdX2UKGgGaAloD0MImuyfpwEDL8CUhpRSlGgVSzJoFkdAtxWWiVSn+HV9lChoBmgJaA9DCFb0h2aefCfAlIaUUpRoFUsyaBZHQLcWAf0VafV1fZQoaAZoCWgPQwhy/bs+cy4iwJSGlFKUaBVLMmgWR0C3FmQhB7eEdX2UKGgGaAloD0MIYTWWsDbuIMCUhpRSlGgVSzJoFkdAtxbPeHi3onV9lChoBmgJaA9DCP5hS4+mCiDAlIaUUpRoFUsyaBZHQLcXQrpqynl1fZQoaAZoCWgPQwhGBrmLMMXsv5SGlFKUaBVLMmgWR0C3F6CpiqhldX2UKGgGaAloD0MISS7/If12IMCUhpRSlGgVSzJoFkdAtxgEOMERrnV9lChoBmgJaA9DCH7IW65+LB/AlIaUUpRoFUsyaBZHQLcYRFL39Jl1fZQoaAZoCWgPQwjdPxaiQ9AUwJSGlFKUaBVLMmgWR0C3GIEs8PnTdX2UKGgGaAloD0MI3gN0X878HMCUhpRSlGgVSzJoFkdAtxi6wJPZZnV9lChoBmgJaA9DCGbdPxaikyLAlIaUUpRoFUsyaBZHQLcY+7aZhKF1fZQoaAZoCWgPQwime53Ul50swJSGlFKUaBVLMmgWR0C3GTl2mpEQdX2UKGgGaAloD0MIjlw3pbwCMcCUhpRSlGgVSzJoFkdAtxl25Fw1i3V9lChoBmgJaA9DCNYe9kIBaxDAlIaUUpRoFUsyaBZHQLcZsBjWkJt1fZQoaAZoCWgPQwizzY3pCWshwJSGlFKUaBVLMmgWR0C3GfOGGmDUdX2UKGgGaAloD0MIWd3qOemdHcCUhpRSlGgVSzJoFkdAtxowF1SwW3V9lChoBmgJaA9DCCaqtwa2yiPAlIaUUpRoFUsyaBZHQLcadGSIP9V1fZQoaAZoCWgPQwjLEp1lFrEdwJSGlFKUaBVLMmgWR0C3GrToMa0hdX2UKGgGaAloD0MIOGkaFM37I8CUhpRSlGgVSzJoFkdAtxr0T238XXV9lChoBmgJaA9DCGlznNuESzDAlIaUUpRoFUsyaBZHQLcbMrJbMX91fZQoaAZoCWgPQwhiga/o1rsdwJSGlFKUaBVLMmgWR0C3G24/qxC6dX2UKGgGaAloD0MICYfe4uGNHMCUhpRSlGgVSzJoFkdAtxuoE2YOUnV9lChoBmgJaA9DCGKFWz6SaifAlIaUUpRoFUsyaBZHQLcb6IQvpQl1fZQoaAZoCWgPQwi/R/31CqsewJSGlFKUaBVLMmgWR0C3HC6fra/RdX2UKGgGaAloD0MIgzP4+8Vs/7+UhpRSlGgVSzJoFkdAtxxsHIIWxnV9lChoBmgJaA9DCB78xAH0OyrAlIaUUpRoFUsyaBZHQLccqg9/z8R1fZQoaAZoCWgPQwi05zI1CV7yv5SGlFKUaBVLMmgWR0C3HOXvUjLTdX2UKGgGaAloD0MImSuDaoPrI8CUhpRSlGgVSzJoFkdAtx0j2L5yl3V9lChoBmgJaA9DCJM4K6ImahHAlIaUUpRoFUsyaBZHQLcdYtWdVed1fZQoaAZoCWgPQwgQzNHj9wYswJSGlFKUaBVLMmgWR0C3HaTvmYBvdX2UKGgGaAloD0MIKT3TS4wtJcCUhpRSlGgVSzJoFkdAtx3fGgi/wnV9lChoBmgJaA9DCM6qz9VWZCPAlIaUUpRoFUsyaBZHQLceJIPsiSt1fZQoaAZoCWgPQwgr24e85VoUwJSGlFKUaBVLMmgWR0C3HnRCIDYAdX2UKGgGaAloD0MIyNEcWflVH8CUhpRSlGgVSzJoFkdAtx677N0NjXV9lChoBmgJaA9DCLhzYaQXrSbAlIaUUpRoFUsyaBZHQLce+YplSTB1fZQoaAZoCWgPQwhNv0S8dR4ZwJSGlFKUaBVLMmgWR0C3Hzqi0v4/dX2UKGgGaAloD0MI+3lTkQqjF8CUhpRSlGgVSzJoFkdAtx90V/MGHHV9lChoBmgJaA9DCPZ7Yp0qvwfAlIaUUpRoFUsyaBZHQLcfsh+OOsF1fZQoaAZoCWgPQwi7fyxEh4AXwJSGlFKUaBVLMmgWR0C3H+si0OVgdX2UKGgGaAloD0MIjgOvljvDH8CUhpRSlGgVSzJoFkdAtyAmveP7vXV9lChoBmgJaA9DCLsM/+kGChzAlIaUUpRoFUsyaBZHQLcgYcMVk+Z1fZQoaAZoCWgPQwibcoV3uegnwJSGlFKUaBVLMmgWR0C3IKFfVqetdX2UKGgGaAloD0MI0jWTb7aRIcCUhpRSlGgVSzJoFkdAtyDdA2Q4j3V9lChoBmgJaA9DCLwi+N9KHinAlIaUUpRoFUsyaBZHQLchH8zQ/ot1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 200000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (806 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -7.944003396108746, "std_reward": 4.6218910848501995, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-07T14:53:06.846176"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fce79bd297a2aad1dfbce2516d353caa12783d54c9a8ce8f407ee9445e5e7cae
|
3 |
+
size 3536
|