Upload DiCoWForConditionalGeneration
Browse files- README.md +199 -0
- config.json +78 -0
- config.py +85 -0
- decoding.py +397 -0
- encoder.py +364 -0
- generation.py +1770 -0
- generation_config.json +12 -0
- model.safetensors +3 -0
- modeling_dicow.py +362 -0
- utils.py +96 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BUT-FIT/DiCoW_v3_MLC",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"additional_layer": false,
|
6 |
+
"additional_self_attention_layer": true,
|
7 |
+
"apply_fddt_to_n_layers": -1,
|
8 |
+
"apply_spec_augment": false,
|
9 |
+
"architectures": [
|
10 |
+
"DiCoWForConditionalGeneration"
|
11 |
+
],
|
12 |
+
"attention_dropout": 0.0,
|
13 |
+
"auto_map": {
|
14 |
+
"AutoConfig": "config.DiCoWConfig",
|
15 |
+
"AutoModelForSpeechSeq2Seq": "modeling_dicow.DiCoWForConditionalGeneration"
|
16 |
+
},
|
17 |
+
"begin_suppress_tokens": [
|
18 |
+
220,
|
19 |
+
50256
|
20 |
+
],
|
21 |
+
"blank_token_id": null,
|
22 |
+
"bos_token_id": 50257,
|
23 |
+
"classifier_proj_size": 256,
|
24 |
+
"ctc_loss_reduction": "mean",
|
25 |
+
"ctc_weight": 0.3,
|
26 |
+
"ctc_zero_infinity": false,
|
27 |
+
"d_model": 1280,
|
28 |
+
"decoder_attention_heads": 20,
|
29 |
+
"decoder_ffn_dim": 5120,
|
30 |
+
"decoder_layerdrop": 0.0,
|
31 |
+
"decoder_layers": 4,
|
32 |
+
"decoder_start_token_id": 50258,
|
33 |
+
"dropout": 0.0,
|
34 |
+
"encoder_attention_heads": 20,
|
35 |
+
"encoder_ffn_dim": 5120,
|
36 |
+
"encoder_layerdrop": 0.0,
|
37 |
+
"encoder_layers": 32,
|
38 |
+
"eos_token_id": 50257,
|
39 |
+
"fddt_bias_only": false,
|
40 |
+
"fddt_init": "disparagement",
|
41 |
+
"fddt_is_diagonal": true,
|
42 |
+
"fddt_use_non_target": true,
|
43 |
+
"fddt_use_overlap": true,
|
44 |
+
"fddt_use_silence": true,
|
45 |
+
"fddt_use_target": true,
|
46 |
+
"final_dropout": 0.0,
|
47 |
+
"forced_decoder_ids": null,
|
48 |
+
"init_std": 0.02,
|
49 |
+
"is_encoder_decoder": true,
|
50 |
+
"mask_feature_length": 10,
|
51 |
+
"mask_feature_min_masks": 0,
|
52 |
+
"mask_feature_prob": 0.0,
|
53 |
+
"mask_time_length": 10,
|
54 |
+
"mask_time_min_masks": 2,
|
55 |
+
"mask_time_prob": 0.05,
|
56 |
+
"max_source_positions": 1500,
|
57 |
+
"max_target_positions": 448,
|
58 |
+
"median_filter_width": 7,
|
59 |
+
"model_type": "whisper",
|
60 |
+
"mt_num_speakers": 1,
|
61 |
+
"n_soft_prompts": 16,
|
62 |
+
"non_target_fddt_value": 0.5,
|
63 |
+
"num_hidden_layers": 32,
|
64 |
+
"num_mel_bins": 128,
|
65 |
+
"pad_token_id": 50257,
|
66 |
+
"remove_timestamps_from_ctc": false,
|
67 |
+
"scale_embedding": false,
|
68 |
+
"scb_layers": -1,
|
69 |
+
"scb_method": null,
|
70 |
+
"sub_sample": true,
|
71 |
+
"torch_dtype": "float32",
|
72 |
+
"transformers_version": "4.42.0",
|
73 |
+
"use_cache": true,
|
74 |
+
"use_fddt": true,
|
75 |
+
"use_initial_fddt": true,
|
76 |
+
"use_weighted_layer_sum": false,
|
77 |
+
"vocab_size": 51866
|
78 |
+
}
|
config.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from transformers import WhisperConfig
|
6 |
+
from transformers.modeling_outputs import Seq2SeqLMOutput, BaseModelOutput, Seq2SeqModelOutput
|
7 |
+
|
8 |
+
|
9 |
+
@dataclass
|
10 |
+
class Seq2SeqLMOutputLosses(Seq2SeqLMOutput):
|
11 |
+
enc_loss: Optional[torch.FloatTensor] = None
|
12 |
+
dec_loss: Optional[torch.FloatTensor] = None
|
13 |
+
encoder_logits: Optional[torch.FloatTensor] = None
|
14 |
+
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class BaseModelOutputLogit(BaseModelOutput):
|
18 |
+
logits: Optional[torch.FloatTensor] = None
|
19 |
+
|
20 |
+
|
21 |
+
@dataclass
|
22 |
+
class Seq2SeqModelOutputLogit(Seq2SeqModelOutput):
|
23 |
+
encoder_logits: Optional[torch.FloatTensor] = None
|
24 |
+
|
25 |
+
|
26 |
+
class DiCoWConfig(WhisperConfig):
|
27 |
+
"""This is a modified version of the `WhisperEncoder` model from the `transformers` library.
|
28 |
+
The model has been modified to support CTC loss computation in the forward pass."""
|
29 |
+
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
ctc_loss_reduction: str = "mean",
|
33 |
+
final_dropout: float = 0.0,
|
34 |
+
ctc_zero_infinity: bool = False,
|
35 |
+
ctc_weight: float = 0.0,
|
36 |
+
blank_token_id: Optional[int] = None,
|
37 |
+
additional_layer: bool = False,
|
38 |
+
additional_self_attention_layer: bool = False,
|
39 |
+
sub_sample: bool = False,
|
40 |
+
use_fddt: bool = True,
|
41 |
+
fddt_is_diagonal: bool = True,
|
42 |
+
fddt_bias_only: bool = False,
|
43 |
+
fddt_use_silence: bool = True,
|
44 |
+
fddt_use_target: bool = True,
|
45 |
+
fddt_use_overlap: bool = True,
|
46 |
+
fddt_use_non_target: bool = True,
|
47 |
+
remove_timestamps_from_ctc: bool = False,
|
48 |
+
apply_fddt_to_n_layers: int = -1,
|
49 |
+
fddt_init: str = 'non-disturbing', # random, non-disturbing, dispargement
|
50 |
+
n_soft_prompts: int = 16,
|
51 |
+
mt_num_speakers: int = 1,
|
52 |
+
non_target_fddt_value: float = 0.0,
|
53 |
+
use_initial_fddt: bool = False,
|
54 |
+
scb_method: str = None,
|
55 |
+
scb_layers: int = -1,
|
56 |
+
**kwargs,
|
57 |
+
):
|
58 |
+
super().__init__(**kwargs)
|
59 |
+
self.ctc_loss_reduction = ctc_loss_reduction
|
60 |
+
self.final_dropout = final_dropout
|
61 |
+
self.ctc_zero_infinity = ctc_zero_infinity
|
62 |
+
self.ctc_weight = ctc_weight
|
63 |
+
self.blank_token_id = blank_token_id
|
64 |
+
self.additional_layer = additional_layer
|
65 |
+
self.additional_self_attention_layer = additional_self_attention_layer
|
66 |
+
self.sub_sample = sub_sample
|
67 |
+
self.use_fddt = use_fddt
|
68 |
+
self.fddt_is_diagonal = fddt_is_diagonal
|
69 |
+
self.fddt_bias_only = fddt_bias_only
|
70 |
+
self.fddt_use_silence = fddt_use_silence
|
71 |
+
self.fddt_use_target = fddt_use_target
|
72 |
+
self.fddt_use_overlap = fddt_use_overlap
|
73 |
+
self.fddt_use_non_target = fddt_use_non_target
|
74 |
+
self.remove_timestamps_from_ctc = remove_timestamps_from_ctc
|
75 |
+
self.apply_fddt_to_n_layers = apply_fddt_to_n_layers
|
76 |
+
self.fddt_init = fddt_init
|
77 |
+
self.n_soft_prompts = n_soft_prompts
|
78 |
+
self.mt_num_speakers = mt_num_speakers
|
79 |
+
self.non_target_fddt_value = non_target_fddt_value
|
80 |
+
self.use_initial_fddt = use_initial_fddt
|
81 |
+
self.scb_method = scb_method
|
82 |
+
self.scb_layers = scb_layers
|
83 |
+
|
84 |
+
|
85 |
+
_HIDDEN_STATES_START_POSITION = 2
|
decoding.py
ADDED
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pylint: skip-file
|
2 |
+
# Copied from: https://github.com/espnet/espnet/blob/master/espnet/nets/ctc_prefix_score.py
|
3 |
+
import itertools as it
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
import torch
|
8 |
+
from transformers import LogitsProcessor, PreTrainedTokenizer
|
9 |
+
|
10 |
+
|
11 |
+
class CTCPrefixScore(object):
|
12 |
+
"""Compute CTC label sequence scores
|
13 |
+
|
14 |
+
which is based on Algorithm 2 in WATANABE et al.
|
15 |
+
"HYBRID CTC/ATTENTION ARCHITECTURE FOR END-TO-END SPEECH RECOGNITION,"
|
16 |
+
but extended to efficiently compute the label probabilities for multiple
|
17 |
+
hypotheses simultaneously
|
18 |
+
See also Seki et al. "Vectorized Beam Search for CTC-Attention-Based
|
19 |
+
Speech Recognition," In INTERSPEECH (pp. 3825-3829), 2019.
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __init__(self, x, blank, eos):
|
23 |
+
self.logzero = -1e10
|
24 |
+
self.blank = blank
|
25 |
+
self.eos = eos
|
26 |
+
self.input_length = x.shape[1]
|
27 |
+
self.batch_size = x.shape[0]
|
28 |
+
self.x = x
|
29 |
+
self.device = x.device
|
30 |
+
|
31 |
+
# Preallocate `r` and `xs` tensors
|
32 |
+
# `num_labels` will be set dynamically in __call__ but preallocated with maximum capacity
|
33 |
+
self.max_num_labels = x.shape[2] # Set to a max value that can be dynamically resized
|
34 |
+
self.r = torch.full((self.batch_size, self.input_length, 2, self.max_num_labels), self.logzero,
|
35 |
+
device=self.device)
|
36 |
+
self.xs = torch.full((self.batch_size, self.input_length, self.max_num_labels), self.logzero,
|
37 |
+
device=self.device)
|
38 |
+
|
39 |
+
def initial_state(self):
|
40 |
+
"""Obtain an initial CTC state."""
|
41 |
+
# Create initial CTC state tensor and use in-place operations to fill
|
42 |
+
r = torch.full((self.batch_size, self.input_length, 2), self.logzero, device=self.device)
|
43 |
+
r[..., 1] = torch.cumsum(self.x[..., self.blank], dim=1)
|
44 |
+
s = torch.zeros((self.batch_size, 1), device=self.device)
|
45 |
+
|
46 |
+
return r, s
|
47 |
+
|
48 |
+
def _resize_tensors(self, number_of_current_samples, num_labels):
|
49 |
+
if self.r.shape[0] != number_of_current_samples:
|
50 |
+
self.r = self.r[:number_of_current_samples, ...]
|
51 |
+
self.xs = self.xs[:number_of_current_samples, ...]
|
52 |
+
|
53 |
+
if self.r.shape[3] != num_labels:
|
54 |
+
self.r = self.r[:, :, :, :num_labels].fill_(self.logzero)
|
55 |
+
self.xs = self.xs[:, :, :num_labels].fill_(self.logzero)
|
56 |
+
else:
|
57 |
+
self.r.fill_(self.logzero)
|
58 |
+
self.xs.fill_(self.logzero)
|
59 |
+
|
60 |
+
def _initialize_r(self, decoded_len):
|
61 |
+
mask = (decoded_len == 0)
|
62 |
+
self.r[mask, 0, 0, :] = self.xs[mask, 0]
|
63 |
+
|
64 |
+
def _compute_log_phi(self, r_sum, cs, last, decoded_len, r_prev):
|
65 |
+
# Expand r_sum for num_labels and initialize log_phi
|
66 |
+
log_phi = r_sum[..., None].expand(-1, -1, cs.shape[1])
|
67 |
+
|
68 |
+
# Create mask for cases where `decoded_len > 0` and to identify where `c == last[i]` for all `i`
|
69 |
+
non_zero_mask = (decoded_len > 0)
|
70 |
+
label_match_mask = (cs == last.unsqueeze(1))
|
71 |
+
|
72 |
+
# Update log_phi where both `decoded_len > 0` and `c == last[i]`
|
73 |
+
log_phi = torch.where((non_zero_mask.unsqueeze(1) & label_match_mask)[:, None, :], r_prev[..., 1:2], log_phi)
|
74 |
+
return log_phi
|
75 |
+
|
76 |
+
def _compute_log_psi(self, decoded_len, log_phi, x_current):
|
77 |
+
"""This function computes forward probabilities log(r_t^n(h)), log(r_t^b(h)),
|
78 |
+
and log prefix probabilities log(psi) for all labels in the batch.
|
79 |
+
|
80 |
+
:param decoded_len: tensor of shape (batch_size,) containing the length of the decoded sequence
|
81 |
+
:param log_phi: tensor of shape (batch_size, input_length, num_labels) containing the forward probabilities
|
82 |
+
:param x_current: tensor of shape (batch_size, input_length, num_labels) containing the input frame
|
83 |
+
|
84 |
+
:return log_psi: tensor of shape (batch_size,num_labels) containing the log prefix probabilities
|
85 |
+
"""
|
86 |
+
B, T, V = log_phi.shape
|
87 |
+
start = torch.clamp(decoded_len, min=1) # Ensure start is at least 1 to avoid out-of-bounds
|
88 |
+
|
89 |
+
# Initialize log_psi with the start position of r[:, start - 1, 0, :]
|
90 |
+
log_psi = self.r[torch.arange(B), start - 1, 0, :]
|
91 |
+
|
92 |
+
# Mask for handling sequence lengths based on decoded_len
|
93 |
+
mask_t = torch.arange(1, T, device=decoded_len.device).expand(B, T - 1) >= decoded_len.unsqueeze(1)
|
94 |
+
|
95 |
+
# Accumulate log_psi only up to the last valid time step for each sequence
|
96 |
+
log_psi = torch.logaddexp(log_psi, torch.logsumexp(
|
97 |
+
torch.where(mask_t.unsqueeze(-1), log_phi[:, :-1] + self.xs[:, 1:], self.logzero), dim=1))
|
98 |
+
|
99 |
+
start = torch.clamp(decoded_len, 1)
|
100 |
+
|
101 |
+
# TODO: Vectorize this loop by compute suffix xs and multiplying with log_phi
|
102 |
+
# xs = self.xs[:,1:,:].clone()
|
103 |
+
# xs_cum = torch.cumsum(xs, dim=1)
|
104 |
+
# xs_cum_expanded = xs_cum.unsqueeze(1).repeat(1, T-1, 1, 1)
|
105 |
+
# xs_u = (xs_cum_expanded - torch.nn.functional.pad(xs_cum[:,:-1,:], (0,0,1,0), value=0).unsqueeze(2).repeat(1, 1,T-1,1)).permute(0,2,1,3)
|
106 |
+
#
|
107 |
+
# phis_new = log_phi[:,:-1].clone()
|
108 |
+
# phis_new[:, 0] = torch.logaddexp(phis_new[:, 0], self.r[:, 0, 0, :])
|
109 |
+
# phis_new = phis_new.unsqueeze(1).repeat(1, T-1, 1, 1)
|
110 |
+
# causal_mask = torch.ones((T-1,T-1), dtype=torch.bool, device=self.device).tril().unsqueeze(0).unsqueeze(-1).repeat(B,1,1,1)
|
111 |
+
# mask = causal_mask & mask_t.unsqueeze(2).unsqueeze(-1)
|
112 |
+
# r_zero = torch.logsumexp(torch.where(mask, xs_u + phis_new, self.logzero), dim=2)
|
113 |
+
# self.r[:,1:,0] = r_zero
|
114 |
+
|
115 |
+
for t in range(start.min(), self.input_length):
|
116 |
+
should_decode = decoded_len <= t
|
117 |
+
self.r[:, t, 0] = torch.logaddexp(self.r[:, t - 1, 0],
|
118 |
+
log_phi[:, t - 1]) + self.xs[:, t]
|
119 |
+
self.r[:, t, 1] = (
|
120 |
+
torch.logaddexp(self.r[:, t - 1, 0], self.r[:, t - 1, 1]) + x_current[:, t, self.blank][:, None]
|
121 |
+
)
|
122 |
+
if ~should_decode.any():
|
123 |
+
self.r[:, t] = torch.where(should_decode.unsqueeze(-1).unsqueeze(-1), self.r[:, t], self.logzero)
|
124 |
+
|
125 |
+
return log_psi
|
126 |
+
|
127 |
+
def _update_log_psi_with_eos(self, log_psi, cs, r_sum):
|
128 |
+
# Update log_psi for eos positions
|
129 |
+
eos_mask = (cs == self.eos)
|
130 |
+
log_psi[eos_mask] = r_sum[:, -1].unsqueeze(1).expand_as(log_psi)[eos_mask]
|
131 |
+
|
132 |
+
# Exclude blank probabilities if eos is not the blank
|
133 |
+
if self.eos != self.blank:
|
134 |
+
blank_mask = (cs == self.blank)
|
135 |
+
log_psi[blank_mask] = self.logzero
|
136 |
+
return log_psi
|
137 |
+
|
138 |
+
def __call__(self, y, cs, decoded_len, samples_to_be_decoded, r_prev):
|
139 |
+
"""Compute CTC prefix scores for next labels
|
140 |
+
|
141 |
+
:param y : prefix label sequence
|
142 |
+
:param cs : array of next labels
|
143 |
+
:param r_prev: previous CTC state
|
144 |
+
:return ctc_scores, ctc_states
|
145 |
+
"""
|
146 |
+
# initialize CTC states
|
147 |
+
# output_length = y.shape[1] - 1 # ignore sos
|
148 |
+
# new CTC states are prepared as a frame x (n or b) x n_labels tensor
|
149 |
+
# that corresponds to r_t^n(h) and r_t^b(h).
|
150 |
+
|
151 |
+
# Dynamically resize r and xs to match num_labels if necessary
|
152 |
+
num_labels = cs.shape[1]
|
153 |
+
number_of_current_samples = cs.shape[0]
|
154 |
+
self._resize_tensors(number_of_current_samples, num_labels)
|
155 |
+
|
156 |
+
# Create a view of the current input frame
|
157 |
+
x_current = self.x[samples_to_be_decoded]
|
158 |
+
self.xs = torch.gather(x_current, 2, cs.unsqueeze(1).expand(-1, self.input_length, -1))
|
159 |
+
|
160 |
+
# Initialize r for the first frame
|
161 |
+
self._initialize_r(decoded_len)
|
162 |
+
|
163 |
+
# prepare forward probabilities for the last label
|
164 |
+
r_sum = torch.logaddexp(r_prev[:, :, 0], r_prev[:, :, 1]) # log(r_t^n(g) + r_t^b(g))
|
165 |
+
last = y[:, -1]
|
166 |
+
|
167 |
+
# precompute log_phi
|
168 |
+
log_phi = self._compute_log_phi(r_sum, cs, last, decoded_len, r_prev)
|
169 |
+
|
170 |
+
# compute forward probabilities log(r_t^n(h)), log(r_t^b(h)),
|
171 |
+
# and log prefix probabilities log(psi)
|
172 |
+
log_psi = self._compute_log_psi(decoded_len, log_phi, x_current)
|
173 |
+
|
174 |
+
# get P(...eos|X) that ends with the prefix itself
|
175 |
+
log_psi = self._update_log_psi_with_eos(log_psi, cs, r_sum)
|
176 |
+
|
177 |
+
# return the log prefix probability and CTC states, where the label axis
|
178 |
+
# of the CTC states is moved to the first axis to slice it easily
|
179 |
+
return log_psi, self.r
|
180 |
+
|
181 |
+
|
182 |
+
class CTCRescorerLogitsProcessor(LogitsProcessor):
|
183 |
+
def __init__(
|
184 |
+
self,
|
185 |
+
encoder_logits: torch.FloatTensor,
|
186 |
+
encoder_output_lens: torch.Tensor,
|
187 |
+
blank_token_id: int,
|
188 |
+
pad_token_id: int,
|
189 |
+
eos_token_id: int,
|
190 |
+
bos_token_id: int,
|
191 |
+
tokenizer: PreTrainedTokenizer,
|
192 |
+
ctc_margin: int,
|
193 |
+
ctc_weight: float,
|
194 |
+
num_beams: int,
|
195 |
+
debug: bool = False,
|
196 |
+
ctc_tokens_to_score: int = 500
|
197 |
+
):
|
198 |
+
super().__init__()
|
199 |
+
same_logits = torch.tensor(list((tokenizer.upper_cased_tokens.items())))
|
200 |
+
|
201 |
+
logits = torch.nn.functional.log_softmax(encoder_logits, dim=-1)
|
202 |
+
logits[..., same_logits[:, 1]] = logits[..., same_logits[:, 0]]
|
203 |
+
|
204 |
+
self.logits = logits
|
205 |
+
|
206 |
+
self.ctc_prefix_scorer = CTCPrefixScore(
|
207 |
+
self.logits,
|
208 |
+
blank_token_id,
|
209 |
+
eos_token_id,
|
210 |
+
)
|
211 |
+
self.batch_size = logits.shape[0]
|
212 |
+
self.input_length = logits.shape[1]
|
213 |
+
self.num_tokens = logits.shape[2]
|
214 |
+
self.device = logits.device
|
215 |
+
self.ctc_weight = ctc_weight
|
216 |
+
self.num_beams = num_beams
|
217 |
+
self.ctc_state_prev, self.ctc_score_prev = self.ctc_prefix_scorer.initial_state()
|
218 |
+
self.eos_token_id = eos_token_id
|
219 |
+
self.bos_token_id = bos_token_id
|
220 |
+
self.tokenizer = tokenizer
|
221 |
+
self.pad_token_id = pad_token_id
|
222 |
+
self.blank_token_id = blank_token_id
|
223 |
+
self.debug = False
|
224 |
+
self.first_timestamp_token_id = tokenizer.get_vocab()["<|0.00|>"]
|
225 |
+
self.tmp_ctc_scores = torch.empty((self.batch_size, self.num_tokens - 1), device=self.device)
|
226 |
+
self.tmp_ctc_states = torch.empty((self.batch_size, self.num_tokens - 1, self.input_length, 2),
|
227 |
+
device=self.device)
|
228 |
+
self.ctc_tokens_to_score = ctc_tokens_to_score
|
229 |
+
|
230 |
+
def analyze_predictions(self,
|
231 |
+
scores, ctc_scores, next_token_scores, input_ids, k=10):
|
232 |
+
print("\n" + "#" * 100)
|
233 |
+
|
234 |
+
batch_size = input_ids.shape[0]
|
235 |
+
|
236 |
+
best_att_ids = scores.topk(k=k, dim=1)
|
237 |
+
ctc_scores[:, self.first_timestamp_token_id:] = self.ctc_prefix_scorer.logzero
|
238 |
+
best_ctc_ids = ctc_scores.topk(k=k, dim=1)
|
239 |
+
best_ids = next_token_scores.topk(k=k, dim=1)
|
240 |
+
|
241 |
+
decoded_prefixes = self.tokenizer.batch_decode(
|
242 |
+
input_ids, decode_with_timestamps=True, skip_special_tokens=False
|
243 |
+
)
|
244 |
+
|
245 |
+
def prepare_and_decode(best_ids_tensor):
|
246 |
+
new_tensor = torch.zeros((batch_size, k * 2), dtype=torch.long)
|
247 |
+
new_tensor[:, 0::2] = best_ids_tensor.indices
|
248 |
+
new_tensor[:, 1::2] = self.tokenizer.vocab['#']
|
249 |
+
|
250 |
+
# Flatten to (batch_size * k, 2)
|
251 |
+
flat_tensor = new_tensor.view(-1, 2)
|
252 |
+
decoded = self.tokenizer.batch_decode(
|
253 |
+
flat_tensor, decode_with_timestamps=True, skip_special_tokens=False
|
254 |
+
)
|
255 |
+
# Reshape back to (batch_size, k)
|
256 |
+
decoded = [(decoded[i * k:(i + 1) * k]) for i in range(batch_size)]
|
257 |
+
return decoded
|
258 |
+
|
259 |
+
decoded_att = prepare_and_decode(best_att_ids)
|
260 |
+
decoded_ctc = prepare_and_decode(best_ctc_ids)
|
261 |
+
decoded_next = prepare_and_decode(best_ids)
|
262 |
+
|
263 |
+
for idx in range(batch_size):
|
264 |
+
print("-" * 80)
|
265 |
+
print(f"HYPOTHESIS {idx}")
|
266 |
+
print("\nPREFIX:")
|
267 |
+
print(decoded_prefixes[idx])
|
268 |
+
|
269 |
+
def print_with_pandas(tokens, scores, title):
|
270 |
+
df = pd.DataFrame([tokens, [f"{s.item():.2f}" for s in scores]])
|
271 |
+
df.index = [f"{title}", "Score"]
|
272 |
+
print(f"\n{title}:")
|
273 |
+
print(df.to_string(index=True, header=False))
|
274 |
+
|
275 |
+
print_with_pandas(decoded_att[idx], best_att_ids.values[idx], "ATT_TOKENS")
|
276 |
+
print_with_pandas(decoded_ctc[idx], best_ctc_ids.values[idx], "CTC_TOKENS")
|
277 |
+
print_with_pandas(decoded_next[idx], best_ids.values[idx], "NEXT_TOKENS")
|
278 |
+
|
279 |
+
print(f"\nCTC_EOS: {ctc_scores[idx, self.tokenizer.eos_token_id].item():.2f}")
|
280 |
+
print()
|
281 |
+
|
282 |
+
print("#" * 100)
|
283 |
+
|
284 |
+
def update_state(self, best_ids, beam_idx):
|
285 |
+
mask = best_ids < self.first_timestamp_token_id
|
286 |
+
self.ctc_state_prev = torch.where(mask.unsqueeze(-1).unsqueeze(-1),
|
287 |
+
self.tmp_ctc_states[beam_idx, best_ids],
|
288 |
+
self.ctc_state_prev[beam_idx])
|
289 |
+
self.ctc_score_prev = torch.where(mask.unsqueeze(-1),
|
290 |
+
self.tmp_ctc_scores[beam_idx, best_ids].unsqueeze(-1),
|
291 |
+
self.ctc_score_prev[beam_idx])
|
292 |
+
|
293 |
+
def __call__(self, input_ids_orig: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
294 |
+
input_ids = input_ids_orig.clone()
|
295 |
+
|
296 |
+
# Remove prefix from CTC scoring
|
297 |
+
if (input_ids[:, 0] != self.bos_token_id).any():
|
298 |
+
input_ids = torch.stack(
|
299 |
+
[row[(row == self.bos_token_id).nonzero(as_tuple=True)[0].item():] for row in input_ids])
|
300 |
+
|
301 |
+
# Remove task/lang/timestamp tokens from input_ids
|
302 |
+
input_prefix_len = len(self.tokenizer.prefix_tokens)
|
303 |
+
if input_prefix_len > 1:
|
304 |
+
input_ids = input_ids[:, input_prefix_len - 1:]
|
305 |
+
|
306 |
+
# Setup the first token to be the blank token(sos)
|
307 |
+
input_ids[:, 0] = self.blank_token_id
|
308 |
+
|
309 |
+
# If there is last token in input_ids timestamp replicate last non-timestamp token which could be potentially even the first token
|
310 |
+
decoded_len = torch.logical_and(input_ids <= self.first_timestamp_token_id,
|
311 |
+
input_ids != self.blank_token_id).sum(dim=1)
|
312 |
+
mask = torch.logical_and(input_ids[:, -1] >= self.first_timestamp_token_id,
|
313 |
+
input_ids[:, -1] != self.blank_token_id)
|
314 |
+
last_non_timestamp_token = torch.gather(input_ids, 1,
|
315 |
+
torch.logical_or(input_ids < self.first_timestamp_token_id,
|
316 |
+
input_ids == self.blank_token_id).sum(dim=1,
|
317 |
+
keepdim=True) - 1)
|
318 |
+
input_ids[mask, -1] = last_non_timestamp_token[mask, 0]
|
319 |
+
|
320 |
+
# If there is no eos token in the last position, we need to continue decoding
|
321 |
+
to_be_decoded = input_ids[:, -1] != self.eos_token_id
|
322 |
+
self.tmp_ctc_scores[:] = self.ctc_prefix_scorer.logzero
|
323 |
+
|
324 |
+
input_ids_local = input_ids[to_be_decoded]
|
325 |
+
ids_to_score = torch.topk(scores[:, :self.first_timestamp_token_id], k=self.ctc_tokens_to_score).indices
|
326 |
+
|
327 |
+
# always score EOS token if not present put on position of last id
|
328 |
+
is_eos_present = (ids_to_score == self.eos_token_id).any(dim=1)
|
329 |
+
ids_to_score[~is_eos_present, self.ctc_tokens_to_score - 1] = self.eos_token_id
|
330 |
+
|
331 |
+
decoded_len_local = decoded_len[to_be_decoded]
|
332 |
+
|
333 |
+
ctc_scores_local, ctc_states_local = self.ctc_prefix_scorer(input_ids_local, ids_to_score[to_be_decoded],
|
334 |
+
decoded_len_local, to_be_decoded,
|
335 |
+
self.ctc_state_prev[to_be_decoded])
|
336 |
+
|
337 |
+
# As the CTC scorer might run on subset of samples, we need to scatter the results back to the original batch
|
338 |
+
self.tmp_ctc_scores[to_be_decoded] = (self.tmp_ctc_scores[to_be_decoded]
|
339 |
+
.scatter(1, ids_to_score[to_be_decoded], ctc_scores_local))
|
340 |
+
self.tmp_ctc_states[to_be_decoded] = (self.tmp_ctc_states[to_be_decoded].permute(0, 2, 3, 1)
|
341 |
+
.scatter(3, ids_to_score[to_be_decoded].unsqueeze(1).unsqueeze(1)
|
342 |
+
.repeat(1, *ctc_states_local.shape[1:3], 1), ctc_states_local)
|
343 |
+
.permute(0, 3, 1, 2))
|
344 |
+
|
345 |
+
# Set the CTC score for the timestamp tokens to the maximum to prefer them over the rest
|
346 |
+
self.tmp_ctc_scores[:, self.first_timestamp_token_id:] = self.tmp_ctc_scores.max(dim=1).values[:, None]
|
347 |
+
ctc_scores = self.tmp_ctc_scores - self.ctc_score_prev
|
348 |
+
|
349 |
+
next_token_scores = (1 - self.ctc_weight) * scores + self.ctc_weight * ctc_scores
|
350 |
+
|
351 |
+
if self.debug:
|
352 |
+
self.analyze_predictions(scores, ctc_scores, next_token_scores, input_ids_orig)
|
353 |
+
|
354 |
+
return next_token_scores
|
355 |
+
|
356 |
+
|
357 |
+
class LogSoftmaxProcessor(LogitsProcessor):
|
358 |
+
def __init__(
|
359 |
+
self,
|
360 |
+
):
|
361 |
+
super().__init__()
|
362 |
+
|
363 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
364 |
+
scores = torch.nn.functional.log_softmax(scores, dim=-1)
|
365 |
+
return scores
|
366 |
+
|
367 |
+
|
368 |
+
class GreedyCTCDecoder(torch.nn.Module):
|
369 |
+
def __init__(self, tokenizer, blank=0):
|
370 |
+
super().__init__()
|
371 |
+
self.blank = blank
|
372 |
+
self.tokenizer = tokenizer
|
373 |
+
|
374 |
+
def forward(self, emission: torch.Tensor) -> List[str]:
|
375 |
+
"""Given a sequence emission over labels, get the best path
|
376 |
+
Args:
|
377 |
+
emission (Tensor): Logit tensors. Shape `[num_seq, num_label]`.
|
378 |
+
|
379 |
+
Returns:
|
380 |
+
List[str]: The resulting transcript
|
381 |
+
"""
|
382 |
+
indices = torch.argmax(emission, dim=-1) # [num_seq,]
|
383 |
+
indices = [torch.unique_consecutive(index, dim=-1) for index in indices]
|
384 |
+
indices = [index[index != self.blank] for index in indices]
|
385 |
+
indices = torch.nn.utils.rnn.pad_sequence(indices, batch_first=True,
|
386 |
+
padding_value=self.tokenizer.pad_token_id)
|
387 |
+
indices[indices >= len(self.tokenizer)] = self.tokenizer.unk_token_id
|
388 |
+
return indices
|
389 |
+
|
390 |
+
|
391 |
+
def ctc_greedy_decode(logits: torch.Tensor, blank, pad_token_id) -> torch.Tensor:
|
392 |
+
idxs = torch.argmax(logits, dim=-1)
|
393 |
+
for i, prediction in enumerate(idxs):
|
394 |
+
deduplicated = [k for k, g in it.groupby(prediction) if k != blank]
|
395 |
+
idxs[i, : len(deduplicated)] = torch.tensor(deduplicated)
|
396 |
+
idxs[i, len(deduplicated):] = pad_token_id
|
397 |
+
return idxs
|
encoder.py
ADDED
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from transformers.modeling_outputs import CausalLMOutput, BaseModelOutput
|
6 |
+
from transformers.models.whisper.modeling_whisper import WhisperEncoder, WhisperEncoderLayer, WHISPER_ATTENTION_CLASSES
|
7 |
+
|
8 |
+
from .config import DiCoWConfig
|
9 |
+
|
10 |
+
|
11 |
+
class CustomLinear(nn.Linear):
|
12 |
+
def __init__(self, *args, init_eye_val=0.0, is_diagonal=False, **kwargs):
|
13 |
+
super().__init__(*args, **kwargs)
|
14 |
+
self.init_eye_val = init_eye_val
|
15 |
+
|
16 |
+
|
17 |
+
class CustomDiagonalLinear(nn.Module):
|
18 |
+
def __init__(self, d_model, bias=True, init_eye_val=0.0):
|
19 |
+
super().__init__()
|
20 |
+
self.init_eye_val = init_eye_val
|
21 |
+
self.weight = nn.Parameter(torch.full((d_model,), init_eye_val))
|
22 |
+
self.bias = nn.Parameter(torch.zeros(d_model)) if bias else None
|
23 |
+
|
24 |
+
def forward(self, input):
|
25 |
+
out = input * self.weight
|
26 |
+
if self.bias is not None:
|
27 |
+
out += self.bias
|
28 |
+
return out
|
29 |
+
|
30 |
+
|
31 |
+
class FDDT(nn.Module):
|
32 |
+
def __init__(self, d_model, non_target_rate=0.01, is_diagonal=False, bias_only=False, use_silence=True,
|
33 |
+
use_target=True, use_overlap=True, use_non_target=True, use_interaction=False,
|
34 |
+
scb_module: Optional[nn.Module] = None, ):
|
35 |
+
super().__init__()
|
36 |
+
if use_target:
|
37 |
+
self.target_linear = nn.Parameter(torch.zeros(d_model)) if bias_only else (
|
38 |
+
CustomDiagonalLinear(d_model, bias=True, init_eye_val=1.0) if is_diagonal else CustomLinear(d_model,
|
39 |
+
d_model,
|
40 |
+
bias=True,
|
41 |
+
init_eye_val=1.0))
|
42 |
+
if use_non_target:
|
43 |
+
self.non_target_linear = nn.Parameter(torch.zeros(d_model)) if bias_only else (
|
44 |
+
CustomDiagonalLinear(d_model, bias=True, init_eye_val=non_target_rate) if is_diagonal else CustomLinear(
|
45 |
+
d_model, d_model, bias=True, init_eye_val=non_target_rate))
|
46 |
+
if use_overlap:
|
47 |
+
self.overlap_linear = nn.Parameter(torch.zeros(d_model)) if bias_only else (
|
48 |
+
CustomDiagonalLinear(d_model, bias=True, init_eye_val=1.0) if is_diagonal else CustomLinear(d_model,
|
49 |
+
d_model,
|
50 |
+
bias=True,
|
51 |
+
init_eye_val=1.0))
|
52 |
+
if use_silence:
|
53 |
+
self.silence_linear = nn.Parameter(torch.zeros(d_model)) if bias_only else (
|
54 |
+
CustomDiagonalLinear(d_model, bias=True, init_eye_val=non_target_rate) if is_diagonal else CustomLinear(
|
55 |
+
d_model, d_model, bias=True, init_eye_val=non_target_rate))
|
56 |
+
|
57 |
+
if use_interaction:
|
58 |
+
self.scb = scb_module if scb_module is not None else (nn.Parameter(torch.zeros(d_model)) if bias_only else (
|
59 |
+
CustomDiagonalLinear(d_model, bias=True, init_eye_val=1.0) if is_diagonal else CustomLinear(
|
60 |
+
d_model, d_model, bias=True, init_eye_val=1.0)))
|
61 |
+
|
62 |
+
self.use_silence = use_silence
|
63 |
+
self.use_target = use_target
|
64 |
+
self.use_overlap = use_overlap
|
65 |
+
self.use_non_target = use_non_target
|
66 |
+
self.use_interaction = use_interaction
|
67 |
+
self.bias_only = bias_only
|
68 |
+
|
69 |
+
@staticmethod
|
70 |
+
def mask_out_non_interaction_signal(hidden_states, mask):
|
71 |
+
mask = torch.round(mask).bool()
|
72 |
+
masked_hidden_states = hidden_states * mask
|
73 |
+
return masked_hidden_states
|
74 |
+
|
75 |
+
def forward(self, hidden_states, stno_mask):
|
76 |
+
stno_mask = stno_mask.to(hidden_states.device)[..., None]
|
77 |
+
if self.bias_only:
|
78 |
+
if self.use_silence:
|
79 |
+
hidden_states += stno_mask[:, 0, ...] * self.silence_linear
|
80 |
+
if self.use_target:
|
81 |
+
hidden_states += stno_mask[:, 1, ...] * self.target_linear
|
82 |
+
if self.use_non_target:
|
83 |
+
hidden_states += stno_mask[:, 2, ...] * self.non_target_linear
|
84 |
+
if self.use_overlap:
|
85 |
+
hidden_states += stno_mask[:, 3, ...] * self.overlap_linear
|
86 |
+
if self.use_interaction:
|
87 |
+
hidden_states += stno_mask[:, 4, ...] * self.scb
|
88 |
+
else:
|
89 |
+
orig_hidden_states = hidden_states
|
90 |
+
hidden_states = (self.silence_linear(
|
91 |
+
orig_hidden_states) if self.use_silence else orig_hidden_states) * stno_mask[:, 0, :] + \
|
92 |
+
(self.target_linear(
|
93 |
+
orig_hidden_states) if self.use_target else orig_hidden_states) * stno_mask[:, 1, :] + \
|
94 |
+
(self.non_target_linear(
|
95 |
+
orig_hidden_states) if self.use_non_target else orig_hidden_states) * stno_mask[:, 2,
|
96 |
+
:] + \
|
97 |
+
(self.overlap_linear(
|
98 |
+
orig_hidden_states) if self.use_overlap else orig_hidden_states) * stno_mask[:, 3, :] + \
|
99 |
+
(self.scb(
|
100 |
+
self.mask_out_non_interaction_signal(orig_hidden_states,
|
101 |
+
stno_mask[:, 4, :])) * stno_mask[:, 4,
|
102 |
+
:] if self.use_interaction else (
|
103 |
+
0 if stno_mask.size(
|
104 |
+
1) == 4 else orig_hidden_states * stno_mask[:, 4,
|
105 |
+
:]))
|
106 |
+
return hidden_states
|
107 |
+
|
108 |
+
|
109 |
+
class DiCoWEncoder(WhisperEncoder):
|
110 |
+
config_class = DiCoWConfig
|
111 |
+
|
112 |
+
def __init__(self, config: DiCoWConfig):
|
113 |
+
super().__init__(config)
|
114 |
+
self.ctc_weight = config.ctc_weight
|
115 |
+
if config.additional_layer and self.ctc_weight > 0.0:
|
116 |
+
self.additional_layer = WhisperEncoderLayer(config)
|
117 |
+
if config.additional_self_attention_layer and self.ctc_weight > 0.0:
|
118 |
+
self.additional_self_attention_layer = WHISPER_ATTENTION_CLASSES[config._attn_implementation](
|
119 |
+
embed_dim=config.d_model,
|
120 |
+
num_heads=config.encoder_attention_heads,
|
121 |
+
dropout=config.attention_dropout,
|
122 |
+
config=config,
|
123 |
+
)
|
124 |
+
if config.sub_sample and self.ctc_weight > 0.0:
|
125 |
+
self.subsample_conv1 = nn.Conv1d(
|
126 |
+
in_channels=config.d_model,
|
127 |
+
out_channels=config.d_model,
|
128 |
+
kernel_size=3,
|
129 |
+
stride=2,
|
130 |
+
padding=1,
|
131 |
+
bias=False,
|
132 |
+
)
|
133 |
+
self.subsample_conv2 = nn.Conv1d(
|
134 |
+
in_channels=config.d_model,
|
135 |
+
out_channels=config.d_model,
|
136 |
+
kernel_size=3,
|
137 |
+
stride=2,
|
138 |
+
padding=1,
|
139 |
+
bias=False,
|
140 |
+
)
|
141 |
+
if self.ctc_weight > 0.0:
|
142 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size + 1, bias=False)
|
143 |
+
self.final_dropout = nn.Dropout(config.final_dropout)
|
144 |
+
if config.use_fddt:
|
145 |
+
num_fddts = self.config.apply_fddt_to_n_layers if self.config.apply_fddt_to_n_layers != -1 else len(
|
146 |
+
self.layers)
|
147 |
+
self.initial_fddt = FDDT(config.d_model,
|
148 |
+
non_target_rate=config.non_target_fddt_value,
|
149 |
+
is_diagonal=config.fddt_is_diagonal,
|
150 |
+
bias_only=config.fddt_bias_only,
|
151 |
+
use_silence=config.fddt_use_silence,
|
152 |
+
use_target=config.fddt_use_target,
|
153 |
+
use_overlap=config.fddt_use_overlap,
|
154 |
+
use_non_target=config.fddt_use_non_target)
|
155 |
+
is_mt = config.mt_num_speakers > 1
|
156 |
+
num_scbs = (self.config.scb_layers if self.config.scb_layers != -1 else len(
|
157 |
+
self.layers)) if is_mt else 0
|
158 |
+
self.scbs_identity_layers = config.encoder_layers - num_scbs
|
159 |
+
self.fddts = nn.ModuleList([
|
160 |
+
FDDT(config.d_model,
|
161 |
+
non_target_rate=1.0,
|
162 |
+
is_diagonal=config.fddt_is_diagonal,
|
163 |
+
bias_only=config.fddt_bias_only,
|
164 |
+
use_silence=config.fddt_use_silence,
|
165 |
+
use_target=config.fddt_use_target,
|
166 |
+
use_overlap=config.fddt_use_overlap,
|
167 |
+
use_non_target=config.fddt_use_non_target,
|
168 |
+
use_interaction=is_mt,
|
169 |
+
)
|
170 |
+
for i in range(num_fddts)
|
171 |
+
])
|
172 |
+
self.first_task_token = self.config.vocab_size - 30 * 50 - 1 - 6 # 30 seconds of 50 Hz timestamps -1 to get to 0.0 and -6 number of tasks
|
173 |
+
self.post_init()
|
174 |
+
|
175 |
+
@classmethod
|
176 |
+
def _load_pretrained_model(
|
177 |
+
cls,
|
178 |
+
model,
|
179 |
+
state_dict,
|
180 |
+
loaded_keys,
|
181 |
+
resolved_archive_file,
|
182 |
+
pretrained_model_name_or_path,
|
183 |
+
**kwargs
|
184 |
+
):
|
185 |
+
for key in list(state_dict.keys()):
|
186 |
+
if key.startswith("encoder."):
|
187 |
+
state_dict[key[8:]] = state_dict.pop(key)
|
188 |
+
loaded_keys.remove(key)
|
189 |
+
loaded_keys.append(key[8:])
|
190 |
+
output = super()._load_pretrained_model(
|
191 |
+
model,
|
192 |
+
state_dict,
|
193 |
+
loaded_keys,
|
194 |
+
resolved_archive_file,
|
195 |
+
pretrained_model_name_or_path,
|
196 |
+
**kwargs
|
197 |
+
)
|
198 |
+
return output
|
199 |
+
|
200 |
+
def get_loss(self, logits, labels):
|
201 |
+
if labels.max() >= self.config.vocab_size:
|
202 |
+
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
|
203 |
+
if self.config.remove_timestamps_from_ctc:
|
204 |
+
labels = torch.nn.utils.rnn.pad_sequence([label[label < self.first_task_token] for label in labels],
|
205 |
+
padding_value=-100).T
|
206 |
+
input_lengths = torch.full((logits.shape[0],), fill_value=logits.shape[1],
|
207 |
+
device=logits.device)
|
208 |
+
|
209 |
+
# assuming that padded tokens are filled with -100
|
210 |
+
# when not being attended to
|
211 |
+
labels_mask = labels >= 0
|
212 |
+
target_lengths = labels_mask.sum(-1)
|
213 |
+
# flattened_targets = labels_enc.masked_select(labels_mask)
|
214 |
+
|
215 |
+
# ctc_loss doesn't support fp16
|
216 |
+
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
|
217 |
+
|
218 |
+
with torch.backends.cudnn.flags(enabled=True):
|
219 |
+
ctc_loss = nn.functional.ctc_loss(
|
220 |
+
log_probs,
|
221 |
+
labels,
|
222 |
+
input_lengths,
|
223 |
+
target_lengths,
|
224 |
+
blank=logits.shape[-1] - 1,
|
225 |
+
reduction=self.config.ctc_loss_reduction,
|
226 |
+
zero_infinity=True,
|
227 |
+
)
|
228 |
+
return ctc_loss
|
229 |
+
|
230 |
+
def forward(
|
231 |
+
self,
|
232 |
+
input_features,
|
233 |
+
attention_mask=None,
|
234 |
+
head_mask=None,
|
235 |
+
output_attentions=None,
|
236 |
+
output_hidden_states=None,
|
237 |
+
return_dict=None,
|
238 |
+
stno_mask=None,
|
239 |
+
per_group_sizes=None
|
240 |
+
):
|
241 |
+
# For MT-ASR the input has shape (B X S) x F x T
|
242 |
+
# we can use torch.view(B, S, F, -1) to obtain
|
243 |
+
# new tensor with speaker dim
|
244 |
+
expected_seq_length = self.config.max_source_positions * self.conv1.stride[0] * self.conv2.stride[0]
|
245 |
+
if input_features.shape[-1] != expected_seq_length:
|
246 |
+
if input_features.shape[-1] > expected_seq_length:
|
247 |
+
return CausalLMOutput(
|
248 |
+
logits=None,
|
249 |
+
hidden_states=None,
|
250 |
+
attentions=None,
|
251 |
+
)
|
252 |
+
else:
|
253 |
+
raise ValueError(
|
254 |
+
f"Whisper expects the mel input features to be of length {expected_seq_length}, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
|
255 |
+
)
|
256 |
+
|
257 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
258 |
+
output_hidden_states = (
|
259 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
260 |
+
)
|
261 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
262 |
+
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
|
263 |
+
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
|
264 |
+
|
265 |
+
inputs_embeds = inputs_embeds.permute(0, 2, 1)
|
266 |
+
embed_pos = self.embed_positions.weight
|
267 |
+
if hasattr(self, "shift_embeds") and self.shift_embeds:
|
268 |
+
embed_pos = embed_pos[
|
269 |
+
torch.clamp(((stno_mask[:, 1, :] + stno_mask[:, 3, :]).cumsum(dim=-1) - 1), min=0).to(torch.long)]
|
270 |
+
|
271 |
+
if self.config.use_fddt:
|
272 |
+
inputs_embeds = self.initial_fddt(inputs_embeds, stno_mask)
|
273 |
+
|
274 |
+
hidden_states = inputs_embeds + embed_pos
|
275 |
+
|
276 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
277 |
+
|
278 |
+
encoder_states = () if output_hidden_states else None
|
279 |
+
all_attentions = () if output_attentions else None
|
280 |
+
|
281 |
+
# check if head_mask has a correct number of layers specified if desired
|
282 |
+
if head_mask is not None:
|
283 |
+
assert head_mask.size()[0] == (
|
284 |
+
len(self.layers)
|
285 |
+
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
286 |
+
|
287 |
+
for idx, encoder_layer in enumerate(self.layers):
|
288 |
+
if output_hidden_states:
|
289 |
+
encoder_states = encoder_states + (hidden_states,)
|
290 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
291 |
+
to_drop = False
|
292 |
+
if self.training:
|
293 |
+
dropout_probability = torch.rand([])
|
294 |
+
if dropout_probability < self.layerdrop: # skip the layer
|
295 |
+
to_drop = True
|
296 |
+
|
297 |
+
if self.config.use_fddt and idx < len(self.fddts):
|
298 |
+
hidden_states = self.fddts[idx](hidden_states, stno_mask)
|
299 |
+
|
300 |
+
if to_drop:
|
301 |
+
layer_outputs = (None, None)
|
302 |
+
else:
|
303 |
+
if self.gradient_checkpointing and self.training:
|
304 |
+
layer_outputs = self._gradient_checkpointing_func(
|
305 |
+
encoder_layer.__call__,
|
306 |
+
hidden_states,
|
307 |
+
None,
|
308 |
+
(head_mask[idx] if head_mask is not None else None),
|
309 |
+
output_attentions,
|
310 |
+
)
|
311 |
+
else:
|
312 |
+
layer_outputs = encoder_layer(
|
313 |
+
hidden_states,
|
314 |
+
None,
|
315 |
+
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
316 |
+
output_attentions=output_attentions,
|
317 |
+
)
|
318 |
+
|
319 |
+
hidden_states = layer_outputs[0]
|
320 |
+
|
321 |
+
if output_attentions:
|
322 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
323 |
+
|
324 |
+
hidden_states = self.layer_norm(hidden_states)
|
325 |
+
if output_hidden_states:
|
326 |
+
encoder_states = encoder_states + (hidden_states,)
|
327 |
+
|
328 |
+
if not return_dict:
|
329 |
+
outputs = tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
330 |
+
else:
|
331 |
+
outputs = BaseModelOutput(
|
332 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
333 |
+
)
|
334 |
+
|
335 |
+
if hasattr(self, "additional_layer"):
|
336 |
+
inter_output, = self.additional_layer(
|
337 |
+
outputs.last_hidden_state,
|
338 |
+
attention_mask=None,
|
339 |
+
output_attentions=output_attentions,
|
340 |
+
layer_head_mask=None,
|
341 |
+
)
|
342 |
+
elif hasattr(self, "additional_self_attention_layer"):
|
343 |
+
inter_output, _, __ = self.additional_self_attention_layer(
|
344 |
+
outputs.last_hidden_state,
|
345 |
+
attention_mask=None,
|
346 |
+
output_attentions=output_attentions,
|
347 |
+
layer_head_mask=None,
|
348 |
+
)
|
349 |
+
else:
|
350 |
+
inter_output = outputs.last_hidden_state
|
351 |
+
|
352 |
+
inter_output = self.final_dropout(inter_output)
|
353 |
+
if hasattr(self, "subsample_conv2"):
|
354 |
+
inter_output = self.subsample_conv2(self.subsample_conv1(inter_output.transpose(1, 2))).transpose(1, 2)
|
355 |
+
if self.ctc_weight > 0.0:
|
356 |
+
logits = self.lm_head(inter_output)
|
357 |
+
else:
|
358 |
+
logits = None
|
359 |
+
|
360 |
+
return CausalLMOutput(
|
361 |
+
logits=logits,
|
362 |
+
hidden_states=outputs.hidden_states,
|
363 |
+
attentions=outputs.attentions,
|
364 |
+
)
|
generation.py
ADDED
@@ -0,0 +1,1770 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
3 |
+
from typing import Iterator
|
4 |
+
import warnings
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.utils.checkpoint
|
9 |
+
import torch.utils.checkpoint
|
10 |
+
from torch import nn
|
11 |
+
from torch.nn.utils.rnn import pad_sequence
|
12 |
+
|
13 |
+
from decimal import Decimal, ROUND_HALF_UP
|
14 |
+
|
15 |
+
|
16 |
+
from transformers import LogitsProcessorList, SuppressTokensLogitsProcessor, \
|
17 |
+
SuppressTokensAtBeginLogitsProcessor
|
18 |
+
from transformers.generation.configuration_utils import GenerationConfig
|
19 |
+
from transformers.generation.configuration_utils import GenerationMode
|
20 |
+
from transformers.generation.logits_process import (
|
21 |
+
LogitsProcessorList,
|
22 |
+
SuppressTokensAtBeginLogitsProcessor,
|
23 |
+
SuppressTokensLogitsProcessor, )
|
24 |
+
from transformers.generation.logits_process import WhisperNoSpeechDetection
|
25 |
+
from transformers.generation.stopping_criteria import (
|
26 |
+
StoppingCriteriaList,
|
27 |
+
)
|
28 |
+
from transformers.generation.utils import GenerateBeamOutput, BeamScorer, GenerateBeamDecoderOnlyOutput, \
|
29 |
+
stack_model_outputs, GenerateBeamEncoderDecoderOutput, _split_model_inputs, GenerateNonBeamOutput, \
|
30 |
+
GenerateEncoderDecoderOutput, GenerateDecoderOnlyOutput
|
31 |
+
from transformers.modeling_outputs import BaseModelOutput
|
32 |
+
from transformers.models.whisper.modeling_whisper import (
|
33 |
+
WhisperForConditionalGeneration,
|
34 |
+
)
|
35 |
+
from transformers.models.whisper.generation_whisper import _get_attr_from_logit_processors, _pad_to_max_length
|
36 |
+
from transformers.models.whisper.tokenization_whisper import TASK_IDS, TO_LANGUAGE_CODE
|
37 |
+
from transformers.utils import logging
|
38 |
+
|
39 |
+
from .utils import WhisperTimeStampLogitsProcessorCustom
|
40 |
+
from .decoding import CTCRescorerLogitsProcessor, LogSoftmaxProcessor
|
41 |
+
|
42 |
+
logging.set_verbosity_debug()
|
43 |
+
logger = logging.get_logger("transformers")
|
44 |
+
|
45 |
+
|
46 |
+
class DiCoWGenerationMixin(WhisperForConditionalGeneration):
|
47 |
+
def _prepare_encoder_decoder_kwargs_for_generation(
|
48 |
+
self, inputs_tensor: torch.Tensor, model_kwargs, model_input_name, generation_config,
|
49 |
+
) -> Dict[str, Any]:
|
50 |
+
# self.encoder_output_lens = self._get_feat_extract_output_lengths(
|
51 |
+
# model_kwargs['attention_mask_enc'].sum(dim=1)
|
52 |
+
# ).int()
|
53 |
+
generation_config.output_hidden_states = True
|
54 |
+
|
55 |
+
# pylint: disable=no-memberva
|
56 |
+
model_kwargs = super()._prepare_encoder_decoder_kwargs_for_generation(
|
57 |
+
inputs_tensor, model_kwargs, model_input_name, generation_config
|
58 |
+
)
|
59 |
+
self.encoder_logits = model_kwargs["encoder_outputs"].logits
|
60 |
+
|
61 |
+
return model_kwargs
|
62 |
+
|
63 |
+
@staticmethod
|
64 |
+
def _expand_inputs_for_generation(
|
65 |
+
expand_size: int = 1,
|
66 |
+
is_encoder_decoder: bool = False,
|
67 |
+
input_ids: Optional[torch.LongTensor] = None,
|
68 |
+
**model_kwargs,
|
69 |
+
) -> Tuple[torch.LongTensor, Dict[str, Any]]:
|
70 |
+
"""Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]"""
|
71 |
+
|
72 |
+
def _expand_dict_for_generation(dict_to_expand):
|
73 |
+
for key in dict_to_expand:
|
74 |
+
if dict_to_expand[key] is not None and isinstance(dict_to_expand[key], torch.Tensor) and key != "loss":
|
75 |
+
dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
|
76 |
+
return dict_to_expand
|
77 |
+
|
78 |
+
if input_ids is not None:
|
79 |
+
input_ids = input_ids.repeat_interleave(expand_size, dim=0)
|
80 |
+
|
81 |
+
model_kwargs = _expand_dict_for_generation(model_kwargs)
|
82 |
+
|
83 |
+
if is_encoder_decoder:
|
84 |
+
if model_kwargs.get("encoder_outputs") is None:
|
85 |
+
raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
|
86 |
+
model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
|
87 |
+
if "hidden_states" in model_kwargs["encoder_outputs"]:
|
88 |
+
model_kwargs["encoder_outputs"]["hidden_states"] = tuple(
|
89 |
+
hidden_state.repeat_interleave(expand_size, dim=0) for hidden_state in
|
90 |
+
model_kwargs["encoder_outputs"]["hidden_states"]
|
91 |
+
)
|
92 |
+
|
93 |
+
return input_ids, model_kwargs
|
94 |
+
|
95 |
+
def generate(
|
96 |
+
self,
|
97 |
+
input_features: Optional[torch.Tensor] = None,
|
98 |
+
generation_config: Optional[GenerationConfig] = None,
|
99 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
100 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
101 |
+
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
102 |
+
synced_gpus: bool = False,
|
103 |
+
return_timestamps: Optional[bool] = None,
|
104 |
+
task: Optional[str] = None,
|
105 |
+
language: Optional[str] = None,
|
106 |
+
is_multilingual: Optional[bool] = None,
|
107 |
+
prompt_ids: Optional[torch.Tensor] = None,
|
108 |
+
prompt_condition_type: Optional[str] = None, # first-segment, all-segments
|
109 |
+
condition_on_prev_tokens: Optional[bool] = None,
|
110 |
+
temperature: Optional[Union[float, Tuple[float, ...]]] = None,
|
111 |
+
compression_ratio_threshold: Optional[float] = None,
|
112 |
+
logprob_threshold: Optional[float] = None,
|
113 |
+
no_speech_threshold: Optional[float] = None,
|
114 |
+
num_segment_frames: Optional[int] = None,
|
115 |
+
attention_mask: Optional[torch.Tensor] = None,
|
116 |
+
time_precision: float = 0.02,
|
117 |
+
return_token_timestamps: Optional[bool] = None,
|
118 |
+
return_segments: bool = False,
|
119 |
+
return_dict_in_generate: Optional[bool] = None,
|
120 |
+
assistant_model: Optional["PreTrainedModel"] = None,
|
121 |
+
**kwargs,
|
122 |
+
):
|
123 |
+
if condition_on_prev_tokens:
|
124 |
+
raise NotImplementedError("Current version does not support conditioning")
|
125 |
+
|
126 |
+
gen_c, _ = self._prepare_generation_config(generation_config, **kwargs)
|
127 |
+
gen_mode = gen_c.get_generation_mode(assistant_model)
|
128 |
+
|
129 |
+
if gen_mode not in [GenerationMode.GREEDY_SEARCH, GenerationMode.BEAM_SEARCH]:
|
130 |
+
raise ValueError(
|
131 |
+
f"Provided generation mode {gen_mode} is not supported"
|
132 |
+
f" for WhisperForConditionalGeneration with joint CTC decoding")
|
133 |
+
|
134 |
+
if "stno_mask" in kwargs:
|
135 |
+
self.stno_mask = kwargs["stno_mask"]
|
136 |
+
if "encoder_outputs" in kwargs:
|
137 |
+
self.encoder_logits = kwargs["encoder_outputs"].logits
|
138 |
+
# pylint: disable=no-member
|
139 |
+
# 0. deprecate old inputs
|
140 |
+
if "inputs" in kwargs:
|
141 |
+
input_features = kwargs.pop("inputs")
|
142 |
+
warnings.warn(
|
143 |
+
"The input name `inputs` is deprecated. Please make sure to use `input_features` instead.",
|
144 |
+
FutureWarning,
|
145 |
+
)
|
146 |
+
|
147 |
+
# 1. prepare generation config
|
148 |
+
generation_config, kwargs = self._prepare_generation_config(generation_config, **kwargs)
|
149 |
+
|
150 |
+
# 2. set global generate variables
|
151 |
+
input_stride = self.model.encoder.conv1.stride[0] * self.model.encoder.conv2.stride[0]
|
152 |
+
num_segment_frames = input_stride * self.config.max_source_positions
|
153 |
+
batch_size, total_input_frames = self._retrieve_total_input_frames(
|
154 |
+
input_features=input_features, input_stride=input_stride, kwargs=kwargs
|
155 |
+
)
|
156 |
+
is_shortform = total_input_frames <= num_segment_frames
|
157 |
+
|
158 |
+
if is_shortform:
|
159 |
+
# warn user of ignored inputs
|
160 |
+
self._maybe_warn_unused_inputs(
|
161 |
+
condition_on_prev_tokens=condition_on_prev_tokens,
|
162 |
+
temperature=temperature,
|
163 |
+
compression_ratio_threshold=compression_ratio_threshold,
|
164 |
+
logprob_threshold=logprob_threshold,
|
165 |
+
no_speech_threshold=no_speech_threshold,
|
166 |
+
total_input_frames=total_input_frames,
|
167 |
+
)
|
168 |
+
|
169 |
+
# 3. Make sure generation config is correctly set
|
170 |
+
# Make sure the generation config is correctly set depending on whether timestamps are to be returned or not
|
171 |
+
self._set_return_outputs(
|
172 |
+
return_dict_in_generate=return_dict_in_generate,
|
173 |
+
return_token_timestamps=return_token_timestamps,
|
174 |
+
is_shortform=is_shortform,
|
175 |
+
logprob_threshold=logprob_threshold,
|
176 |
+
generation_config=generation_config,
|
177 |
+
)
|
178 |
+
self._set_return_timestamps(
|
179 |
+
return_timestamps=return_timestamps, is_shortform=is_shortform, generation_config=generation_config
|
180 |
+
)
|
181 |
+
self._set_language_and_task(
|
182 |
+
language=language, task=task, is_multilingual=is_multilingual, generation_config=generation_config
|
183 |
+
)
|
184 |
+
self._set_num_frames(
|
185 |
+
return_token_timestamps=return_token_timestamps, generation_config=generation_config, kwargs=kwargs
|
186 |
+
)
|
187 |
+
self._set_thresholds_and_condition(
|
188 |
+
generation_config=generation_config,
|
189 |
+
logprob_threshold=logprob_threshold,
|
190 |
+
compression_ratio_threshold=compression_ratio_threshold,
|
191 |
+
no_speech_threshold=no_speech_threshold,
|
192 |
+
condition_on_prev_tokens=condition_on_prev_tokens,
|
193 |
+
)
|
194 |
+
self._set_prompt_condition_type(
|
195 |
+
generation_config=generation_config,
|
196 |
+
prompt_condition_type=prompt_condition_type,
|
197 |
+
)
|
198 |
+
|
199 |
+
# pass self.config for backward compatibility
|
200 |
+
init_tokens = self._retrieve_init_tokens(
|
201 |
+
input_features,
|
202 |
+
batch_size=batch_size,
|
203 |
+
generation_config=generation_config,
|
204 |
+
config=self.config,
|
205 |
+
num_segment_frames=num_segment_frames,
|
206 |
+
kwargs=kwargs,
|
207 |
+
)
|
208 |
+
# passing `decoder_input_ids` is deprecated - the only exception is for assisted generation
|
209 |
+
# where the input ids are handled explicitly by the generate method
|
210 |
+
self._check_decoder_input_ids(kwargs=kwargs)
|
211 |
+
|
212 |
+
# 3. Retrieve logits processors
|
213 |
+
device = kwargs["encoder_outputs"][0].device if "encoder_outputs" in kwargs else input_features.device
|
214 |
+
begin_index = init_tokens.shape[1]
|
215 |
+
logits_processor = self._retrieve_logit_processors(
|
216 |
+
generation_config=generation_config,
|
217 |
+
logits_processor=logits_processor,
|
218 |
+
begin_index=begin_index, # begin index is index of first generated decoder token
|
219 |
+
is_shortform=is_shortform,
|
220 |
+
num_beams=kwargs.get("num_beams", 1),
|
221 |
+
device=device,
|
222 |
+
)
|
223 |
+
|
224 |
+
# 5. If we're in shortform mode, simple generate the whole input at once and return the output
|
225 |
+
if is_shortform:
|
226 |
+
if temperature is not None:
|
227 |
+
generation_config.temperature = temperature
|
228 |
+
|
229 |
+
decoder_input_ids = kwargs.pop("decoder_input_ids", None)
|
230 |
+
if decoder_input_ids is None:
|
231 |
+
decoder_input_ids = init_tokens
|
232 |
+
|
233 |
+
if prompt_ids is not None:
|
234 |
+
decoder_input_ids = torch.cat(
|
235 |
+
[prompt_ids[None].repeat(decoder_input_ids.shape[0], 1), decoder_input_ids], dim=-1
|
236 |
+
)
|
237 |
+
|
238 |
+
max_new_tokens = generation_config.max_new_tokens if generation_config.max_new_tokens is not None else 0
|
239 |
+
if max_new_tokens + decoder_input_ids.shape[-1] > self.config.max_target_positions:
|
240 |
+
raise ValueError(
|
241 |
+
f"The length of `decoder_input_ids` equal `prompt_ids` plus special start tokens is {decoder_input_ids.shape[-1]}, and the `max_new_tokens` "
|
242 |
+
f"is {max_new_tokens}. Thus, the combined length of "
|
243 |
+
f"`decoder_input_ids` and `max_new_tokens` is: {max_new_tokens + decoder_input_ids.shape[-1]}. This exceeds the "
|
244 |
+
f"`max_target_positions` of the Whisper model: {self.config.max_target_positions}. "
|
245 |
+
"You should either reduce the length of your prompt, or reduce the value of `max_new_tokens`, "
|
246 |
+
f"so that their combined length is less than {self.config.max_target_positions}."
|
247 |
+
)
|
248 |
+
|
249 |
+
outputs = super().generate(
|
250 |
+
input_features,
|
251 |
+
generation_config=generation_config,
|
252 |
+
logits_processor=logits_processor,
|
253 |
+
stopping_criteria=stopping_criteria,
|
254 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
255 |
+
synced_gpus=synced_gpus,
|
256 |
+
decoder_input_ids=decoder_input_ids,
|
257 |
+
**kwargs,
|
258 |
+
)
|
259 |
+
|
260 |
+
if generation_config.return_token_timestamps and hasattr(generation_config, "alignment_heads"):
|
261 |
+
outputs["token_timestamps"] = self._extract_token_timestamps(
|
262 |
+
outputs, generation_config.alignment_heads, num_frames=generation_config.num_frames
|
263 |
+
)
|
264 |
+
|
265 |
+
# print("\n".join(self.tokenizer.batch_decode(outputs,skip_special_tokens=True, decode_with_timestamps=True)))
|
266 |
+
return outputs
|
267 |
+
|
268 |
+
# 6. Else we're in longform mode which is more complex.
|
269 |
+
# We need to chunk the audio input depending on when the model generates timestamp tokens
|
270 |
+
|
271 |
+
# 6.1 Set and retrieve global longform generation variables
|
272 |
+
self._set_condition_on_prev_tokens(
|
273 |
+
condition_on_prev_tokens=condition_on_prev_tokens, generation_config=generation_config
|
274 |
+
)
|
275 |
+
|
276 |
+
timestamp_begin = generation_config.no_timestamps_token_id + 1
|
277 |
+
temperatures = [temperature] if not isinstance(temperature, (list, tuple)) else temperature
|
278 |
+
temperature = temperatures[0]
|
279 |
+
batch_size = input_features.shape[0]
|
280 |
+
|
281 |
+
max_frames, seek = self._retrieve_max_frames_and_seek(
|
282 |
+
batch_size=batch_size, attention_mask=attention_mask, total_input_frames=total_input_frames
|
283 |
+
)
|
284 |
+
|
285 |
+
# 6.2 Preppare running variables, list for generation
|
286 |
+
cur_bsz = batch_size
|
287 |
+
current_segments = self._prepare_segments(
|
288 |
+
prompt_ids=prompt_ids,
|
289 |
+
batch_size=batch_size,
|
290 |
+
generation_config=generation_config,
|
291 |
+
)
|
292 |
+
|
293 |
+
batch_idx_map = list(range(batch_size))
|
294 |
+
do_condition_on_prev_tokens = [condition_on_prev_tokens for _ in range(batch_size)]
|
295 |
+
|
296 |
+
# 6.2 Transcribe audio until we reach the end of all input audios
|
297 |
+
while (seek < max_frames).any():
|
298 |
+
# 6.3 NOTE: When in longform transcription mode and batch size > 1 we need to dynamically reduce the batch size during the loop
|
299 |
+
# in case one audio finished earlier than another one. Thus, we need to keep a table of "previous-index-2-current-index" in order
|
300 |
+
# to know which original audio is being decoded
|
301 |
+
# Set updated index map, duration of previously decoded chunks and number of max frames of current decoding chunk
|
302 |
+
input_features, cur_bsz, batch_idx_map = self._maybe_reduce_batch(
|
303 |
+
input_features=input_features,
|
304 |
+
seek=seek,
|
305 |
+
max_frames=max_frames,
|
306 |
+
cur_bsz=cur_bsz,
|
307 |
+
batch_idx_map=batch_idx_map,
|
308 |
+
)
|
309 |
+
time_offset = seek * time_precision / input_stride
|
310 |
+
seek_num_frames = (max_frames - seek).clamp(max=num_segment_frames)
|
311 |
+
|
312 |
+
# 6.4 cut out next 30s segment from input features
|
313 |
+
segment_input = self._get_input_segment(
|
314 |
+
input_features=input_features,
|
315 |
+
seek=seek,
|
316 |
+
seek_num_frames=seek_num_frames,
|
317 |
+
num_segment_frames=num_segment_frames,
|
318 |
+
cur_bsz=cur_bsz,
|
319 |
+
batch_idx_map=batch_idx_map,
|
320 |
+
)
|
321 |
+
|
322 |
+
# 6.5 prepare decoder input ids
|
323 |
+
suppress_tokens = _get_attr_from_logit_processors(
|
324 |
+
logits_processor, SuppressTokensLogitsProcessor, "suppress_tokens"
|
325 |
+
)
|
326 |
+
decoder_input_ids, kwargs = self._prepare_decoder_input_ids(
|
327 |
+
cur_bsz=cur_bsz,
|
328 |
+
init_tokens=init_tokens,
|
329 |
+
current_segments=current_segments,
|
330 |
+
batch_idx_map=batch_idx_map,
|
331 |
+
do_condition_on_prev_tokens=do_condition_on_prev_tokens,
|
332 |
+
prompt_ids=prompt_ids,
|
333 |
+
generation_config=generation_config,
|
334 |
+
config=self.config,
|
335 |
+
device=segment_input.device,
|
336 |
+
suppress_tokens=suppress_tokens,
|
337 |
+
kwargs=kwargs,
|
338 |
+
)
|
339 |
+
|
340 |
+
# 6.6 set max new tokens or max length
|
341 |
+
self._set_max_new_tokens_and_length(
|
342 |
+
config=self.config,
|
343 |
+
decoder_input_ids=decoder_input_ids,
|
344 |
+
generation_config=generation_config,
|
345 |
+
)
|
346 |
+
|
347 |
+
# 6.7 Set current `begin_index` for all logit processors
|
348 |
+
for proc in logits_processor:
|
349 |
+
if hasattr(proc, "set_begin_index"):
|
350 |
+
proc.set_begin_index(decoder_input_ids.shape[-1])
|
351 |
+
|
352 |
+
# 6.8 Run generate with fallback
|
353 |
+
seek_sequences, seek_outputs, should_skip, do_condition_on_prev_tokens = self.generate_with_fallback(
|
354 |
+
segment_input=segment_input,
|
355 |
+
decoder_input_ids=decoder_input_ids,
|
356 |
+
cur_bsz=cur_bsz,
|
357 |
+
batch_idx_map=batch_idx_map,
|
358 |
+
seek=seek,
|
359 |
+
num_segment_frames=num_segment_frames,
|
360 |
+
max_frames=max_frames,
|
361 |
+
temperatures=temperatures,
|
362 |
+
generation_config=generation_config,
|
363 |
+
logits_processor=logits_processor,
|
364 |
+
stopping_criteria=stopping_criteria,
|
365 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
366 |
+
synced_gpus=synced_gpus,
|
367 |
+
return_token_timestamps=return_token_timestamps,
|
368 |
+
do_condition_on_prev_tokens=do_condition_on_prev_tokens,
|
369 |
+
kwargs=kwargs,
|
370 |
+
)
|
371 |
+
|
372 |
+
# 6.9 In every generated sequence, split by timestamp tokens and extract segments
|
373 |
+
if self.config.mt_num_speakers ==1:
|
374 |
+
for i, seek_sequence in enumerate(seek_sequences):
|
375 |
+
prev_i = batch_idx_map[i]
|
376 |
+
|
377 |
+
if should_skip[i]:
|
378 |
+
seek[prev_i] += seek_num_frames[prev_i]
|
379 |
+
continue
|
380 |
+
|
381 |
+
segments, segment_offset = self._retrieve_segment(
|
382 |
+
seek_sequence=seek_sequence,
|
383 |
+
seek_outputs=seek_outputs,
|
384 |
+
time_offset=time_offset,
|
385 |
+
timestamp_begin=timestamp_begin,
|
386 |
+
seek_num_frames=seek_num_frames,
|
387 |
+
time_precision=time_precision,
|
388 |
+
input_stride=input_stride,
|
389 |
+
prev_idx=prev_i,
|
390 |
+
idx=i,
|
391 |
+
return_token_timestamps=return_token_timestamps,
|
392 |
+
)
|
393 |
+
|
394 |
+
current_segments[prev_i] += segments
|
395 |
+
seek[prev_i] += segment_offset
|
396 |
+
else:
|
397 |
+
# We have to make sure all speakers are synchronized thus we have to find minumum of seeks that each instance like
|
398 |
+
for j, seek_seqs in enumerate([seek_sequences[i*self.config.mt_num_speakers:(i+1)*self.config.mt_num_speakers] for i in range(len(seek_sequences)//self.config.mt_num_speakers)]):
|
399 |
+
indexes = [j*self.config.mt_num_speakers + i for i in range(self.config.mt_num_speakers)]
|
400 |
+
prev_ids = [batch_idx_map[i] for i in indexes]
|
401 |
+
|
402 |
+
if all([should_skip[i] for i in indexes]):
|
403 |
+
for i, prev_i in zip(indexes, prev_ids):
|
404 |
+
seek[prev_i] += seek_num_frames[prev_i]
|
405 |
+
continue
|
406 |
+
|
407 |
+
segments, segment_offset = self._retrieve_segment_mt(
|
408 |
+
seek_sequences=seek_seqs,
|
409 |
+
seek_outputs=seek_outputs,
|
410 |
+
time_offset=time_offset,
|
411 |
+
timestamp_begin=timestamp_begin,
|
412 |
+
seek_num_frames=seek_num_frames,
|
413 |
+
time_precision=time_precision,
|
414 |
+
input_stride=input_stride,
|
415 |
+
prev_ids=prev_ids,
|
416 |
+
ids=indexes,
|
417 |
+
return_token_timestamps=return_token_timestamps,
|
418 |
+
)
|
419 |
+
|
420 |
+
for prev_i, i in zip(prev_ids, range(self.config.mt_num_speakers)):
|
421 |
+
current_segments[prev_i] += segments[i]
|
422 |
+
seek[prev_i] += segment_offset[i]
|
423 |
+
|
424 |
+
# 7. Once all segments are added to the list of all segments, called `current_segments`, we extract the predicted
|
425 |
+
# output tokens from the list of dicts. If we use batch size > 1, we make sure to pad the output
|
426 |
+
final_segments = (
|
427 |
+
[x[1:] for x in current_segments]
|
428 |
+
if (prompt_ids is not None and generation_config.prompt_condition_type == "first-segment")
|
429 |
+
else current_segments
|
430 |
+
)
|
431 |
+
sequences = _pad_to_max_length(
|
432 |
+
final_segments, generation_config.pad_token_id, device=self.device, padding="right"
|
433 |
+
)
|
434 |
+
|
435 |
+
# 8. If we return all segments, the predicted output sequences are put under `"sequences"`.
|
436 |
+
output = {"sequences": sequences, "segments": final_segments}
|
437 |
+
|
438 |
+
self.encoder_logits = None
|
439 |
+
|
440 |
+
if isinstance(output, dict):
|
441 |
+
output = self._fix_timestamps_from_segmentation(output)
|
442 |
+
|
443 |
+
return output
|
444 |
+
|
445 |
+
@staticmethod
|
446 |
+
def _find_common_seek(sequences, seeks):
|
447 |
+
"""
|
448 |
+
Finds the minimum seek that does not overlap with other sequences,
|
449 |
+
and falls back to (segment.start - 0.2) if needed. Assumes:
|
450 |
+
- 'seeks' is a list of (seek_time_int, sequence_index),
|
451 |
+
- seek_time_int is in timestamp * 100 format (e.g., 125.5s -> 12550).
|
452 |
+
"""
|
453 |
+
|
454 |
+
def is_valid_seek(seek_time, exclude_seq_idx):
|
455 |
+
for idx, seq in enumerate(sequences):
|
456 |
+
if idx == exclude_seq_idx:
|
457 |
+
continue
|
458 |
+
for segment in seq:
|
459 |
+
start = getattr(segment, 'start', segment['start'])
|
460 |
+
end = getattr(segment, 'end', segment['end'])
|
461 |
+
if seek_time < start:
|
462 |
+
break # Segments are sorted by end
|
463 |
+
if start < seek_time < end:
|
464 |
+
return False
|
465 |
+
return True
|
466 |
+
|
467 |
+
# Step 1: Find minimum seek
|
468 |
+
# if all seek values are the same, return it immediately
|
469 |
+
seeks = [s if isinstance(s, int) else s.item() for s in seeks]
|
470 |
+
if len(set(seeks)) == 1:
|
471 |
+
return seeks[0]
|
472 |
+
|
473 |
+
min_seek_val = min(seeks)
|
474 |
+
min_seek_idx = seeks.index(min_seek_val)
|
475 |
+
min_seek_real = min_seek_val / 100
|
476 |
+
|
477 |
+
if is_valid_seek(min_seek_real, min_seek_idx):
|
478 |
+
return min_seek_val
|
479 |
+
|
480 |
+
# Step 2: Try fallback seeks from all sequences (segment.start - 0.1s)
|
481 |
+
fallback_seeks = set()
|
482 |
+
for idx, seq in enumerate(sequences):
|
483 |
+
for segment in seq:
|
484 |
+
start = getattr(segment, 'start', segment['start'])
|
485 |
+
if isinstance(start, torch.Tensor):
|
486 |
+
start = start.item()
|
487 |
+
candidate = round(start, 2)
|
488 |
+
fallback_seeks.add((candidate, idx, True))
|
489 |
+
end = getattr(segment, 'end', segment['end'])
|
490 |
+
if isinstance(end, torch.Tensor):
|
491 |
+
end = end.item()
|
492 |
+
if end < min_seek_real:
|
493 |
+
candidate = round(end, 2)
|
494 |
+
fallback_seeks.add((candidate, idx, True))
|
495 |
+
|
496 |
+
valid_fallbacks = [
|
497 |
+
(int(s * 100), idx, is_start) for s, idx, is_start in fallback_seeks
|
498 |
+
if is_valid_seek(s, min_seek_idx)
|
499 |
+
]
|
500 |
+
|
501 |
+
if valid_fallbacks:
|
502 |
+
return max(valid_fallbacks)
|
503 |
+
|
504 |
+
# Step 3: Nothing valid
|
505 |
+
return 0
|
506 |
+
|
507 |
+
@staticmethod
|
508 |
+
def remove_segments_after_seek(sequences, seek, eps=100):
|
509 |
+
"""
|
510 |
+
Keep only segments that finish before given timestamp.
|
511 |
+
|
512 |
+
Args:
|
513 |
+
sequences: List of lists, each containing segments (dict or object with 'start' and 'end').
|
514 |
+
seek: Integer seek timestamp (e.g., timestamp * 100).
|
515 |
+
|
516 |
+
Returns:
|
517 |
+
None. Modifies the sequences in-place.
|
518 |
+
"""
|
519 |
+
return [[seg for seg in seq if (getattr(seg, 'end', seg['end']) * 100 <= seek +eps)] for seq in sequences]
|
520 |
+
|
521 |
+
|
522 |
+
|
523 |
+
@staticmethod
|
524 |
+
def _retrieve_segment_wo_seek(
|
525 |
+
seek_sequence,
|
526 |
+
seek_outputs,
|
527 |
+
time_offset,
|
528 |
+
timestamp_begin,
|
529 |
+
seek_num_frames,
|
530 |
+
time_precision,
|
531 |
+
input_stride,
|
532 |
+
prev_idx,
|
533 |
+
idx,
|
534 |
+
return_token_timestamps,
|
535 |
+
):
|
536 |
+
# find the predicted "end of segment" predictions of Whisper
|
537 |
+
# "end of segment" predictions occur whenever Whisper predicts a timestamp token
|
538 |
+
timestamp_tokens: torch.Tensor = seek_sequence.ge(timestamp_begin)
|
539 |
+
single_timestamp_ending = timestamp_tokens[-2:].tolist() == [False, True]
|
540 |
+
timestamp_segment_indices = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0]
|
541 |
+
timestamp_segment_indices.add_(1)
|
542 |
+
token_timestamps = seek_outputs[idx]["token_timestamps"] if return_token_timestamps else []
|
543 |
+
|
544 |
+
# If whisper predicted a "end of segment" via a timestep token, let's go ever each
|
545 |
+
# "end of segment" prediction and slice the decoding into segments accordingly
|
546 |
+
if len(timestamp_segment_indices) > 0:
|
547 |
+
# if the output contains two consecutive timestamp tokens
|
548 |
+
slices = timestamp_segment_indices.tolist()
|
549 |
+
segments = []
|
550 |
+
if single_timestamp_ending:
|
551 |
+
slices.append(len(seek_sequence))
|
552 |
+
|
553 |
+
last_slice = 0
|
554 |
+
# Add each segment to list of all segments
|
555 |
+
for current_slice in slices:
|
556 |
+
sliced_tokens = seek_sequence[last_slice:current_slice]
|
557 |
+
start_timestamp_pos = sliced_tokens[0].item() - timestamp_begin
|
558 |
+
end_timestamp_pos = sliced_tokens[-1].item() - timestamp_begin
|
559 |
+
segments.append(
|
560 |
+
{
|
561 |
+
"start": time_offset[prev_idx] + start_timestamp_pos * time_precision,
|
562 |
+
"end": time_offset[prev_idx] + end_timestamp_pos * time_precision,
|
563 |
+
"tokens": sliced_tokens,
|
564 |
+
"result": seek_outputs[idx],
|
565 |
+
}
|
566 |
+
)
|
567 |
+
if return_token_timestamps:
|
568 |
+
segments[-1]["token_timestamps"] = (
|
569 |
+
token_timestamps[last_slice:current_slice] + time_offset[prev_idx]
|
570 |
+
)
|
571 |
+
last_slice = current_slice
|
572 |
+
|
573 |
+
if not single_timestamp_ending:
|
574 |
+
# generate all predictions after the last predicted "end of segment" and seek by 30s
|
575 |
+
sliced_tokens = seek_sequence[last_slice:]
|
576 |
+
start_timestamp_pos = sliced_tokens[0].item() - timestamp_begin
|
577 |
+
end_timestamp_pos = seek_num_frames[prev_idx] // 2
|
578 |
+
segments.append(
|
579 |
+
{
|
580 |
+
"start": time_offset[prev_idx] + start_timestamp_pos * time_precision,
|
581 |
+
"end": time_offset[prev_idx] + end_timestamp_pos * time_precision,
|
582 |
+
"tokens": sliced_tokens,
|
583 |
+
"result": seek_outputs[idx],
|
584 |
+
}
|
585 |
+
)
|
586 |
+
segment_offset = seek_num_frames[prev_idx]
|
587 |
+
else:
|
588 |
+
# If whisper does not predict any "end of segment" token, then
|
589 |
+
# the whole decoding is considered a segment and we add it to the list of segments
|
590 |
+
timestamps = seek_sequence[timestamp_tokens.nonzero().flatten()]
|
591 |
+
start_timestamp_pos = 0.0
|
592 |
+
last_timestamp_pos = seek_num_frames[prev_idx] // 2
|
593 |
+
|
594 |
+
if timestamps.numel() > 1:
|
595 |
+
start_timestamp_pos = timestamps[-2].item() - timestamp_begin
|
596 |
+
last_timestamp_pos = timestamps[-1].item() - timestamp_begin
|
597 |
+
elif timestamps.numel() == 1:
|
598 |
+
# no consecutive timestamps but it has a timestamp; use the last one.
|
599 |
+
start_timestamp_pos = timestamps[-1].item() - timestamp_begin
|
600 |
+
segments = [
|
601 |
+
{
|
602 |
+
"start": time_offset[prev_idx] + start_timestamp_pos * time_precision,
|
603 |
+
"end": time_offset[prev_idx] + last_timestamp_pos * time_precision,
|
604 |
+
"tokens": seek_sequence,
|
605 |
+
"result": seek_outputs[idx],
|
606 |
+
}
|
607 |
+
]
|
608 |
+
|
609 |
+
segment_offset = seek_num_frames[prev_idx]
|
610 |
+
|
611 |
+
return segments, segment_offset
|
612 |
+
|
613 |
+
def _retrieve_segment_mt(
|
614 |
+
self,
|
615 |
+
seek_sequences,
|
616 |
+
seek_outputs,
|
617 |
+
time_offset,
|
618 |
+
timestamp_begin,
|
619 |
+
seek_num_frames,
|
620 |
+
time_precision,
|
621 |
+
input_stride,
|
622 |
+
prev_ids,
|
623 |
+
ids,
|
624 |
+
return_token_timestamps,
|
625 |
+
):
|
626 |
+
sequences, seeks = [], []
|
627 |
+
for sequence, prev_id, idx in zip(seek_sequences, prev_ids, ids):
|
628 |
+
seq, seek = self._retrieve_segment(
|
629 |
+
seek_sequence=sequence,
|
630 |
+
seek_outputs=seek_outputs,
|
631 |
+
time_offset=time_offset,
|
632 |
+
timestamp_begin=timestamp_begin,
|
633 |
+
seek_num_frames=seek_num_frames,
|
634 |
+
time_precision=time_precision,
|
635 |
+
input_stride=input_stride,
|
636 |
+
prev_idx=prev_id,
|
637 |
+
idx=idx,
|
638 |
+
return_token_timestamps=return_token_timestamps,
|
639 |
+
)
|
640 |
+
sequences.append(seq)
|
641 |
+
seeks.append(seek +int(time_offset[prev_id] * 100))
|
642 |
+
# best_seek = self._find_common_seek(sequences, seeks)
|
643 |
+
best_seek = seeks[0]
|
644 |
+
# print(f"Best seek {best_seek}")
|
645 |
+
if best_seek - (min(time_offset[prev_ids]) *100) < 100:
|
646 |
+
# we cannot rollback, we have to decode segments as they are
|
647 |
+
sequences, seeks = [], []
|
648 |
+
for sequence, prev_id, idx in zip(seek_sequences, prev_ids, ids):
|
649 |
+
seq, seek = self._retrieve_segment_wo_seek(
|
650 |
+
seek_sequence=sequence,
|
651 |
+
seek_outputs=seek_outputs,
|
652 |
+
time_offset=time_offset,
|
653 |
+
timestamp_begin=timestamp_begin,
|
654 |
+
seek_num_frames=seek_num_frames,
|
655 |
+
time_precision=time_precision,
|
656 |
+
input_stride=input_stride,
|
657 |
+
prev_idx=prev_id,
|
658 |
+
idx=idx,
|
659 |
+
return_token_timestamps=return_token_timestamps,
|
660 |
+
)
|
661 |
+
sequences.append(seq)
|
662 |
+
seeks.append(seek)
|
663 |
+
return sequences, seeks
|
664 |
+
|
665 |
+
seqs_new = self.remove_segments_after_seek(sequences, best_seek)
|
666 |
+
seeks = [best_seek - int(min(time_offset[prev_ids]) * 100) for _ in seeks]
|
667 |
+
return seqs_new, seeks
|
668 |
+
|
669 |
+
def _beam_search(
|
670 |
+
self,
|
671 |
+
input_ids: torch.LongTensor,
|
672 |
+
beam_scorer: BeamScorer,
|
673 |
+
logits_processor: LogitsProcessorList,
|
674 |
+
stopping_criteria: StoppingCriteriaList,
|
675 |
+
generation_config: GenerationConfig,
|
676 |
+
synced_gpus: bool,
|
677 |
+
logits_warper: Optional[LogitsProcessorList] = None,
|
678 |
+
**model_kwargs,
|
679 |
+
) -> Union[GenerateBeamOutput, torch.LongTensor]:
|
680 |
+
r"""
|
681 |
+
Generates sequences of token ids for models with a language modeling head using **beam search decoding** and
|
682 |
+
can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
|
683 |
+
|
684 |
+
Parameters:
|
685 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
686 |
+
The sequence used as a prompt for the generation.
|
687 |
+
beam_scorer (`BeamScorer`):
|
688 |
+
An derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
|
689 |
+
sorted during generation. For more information, the documentation of [`BeamScorer`] should be read.
|
690 |
+
logits_processor (`LogitsProcessorList`):
|
691 |
+
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
|
692 |
+
used to modify the prediction scores of the language modeling head applied at each generation step.
|
693 |
+
stopping_criteria (`StoppingCriteriaList`:
|
694 |
+
An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
|
695 |
+
used to tell if the generation loop should stop.
|
696 |
+
generation_config ([`~generation.GenerationConfig`]):
|
697 |
+
The generation configuration to be used as parametrization of the decoding method.
|
698 |
+
synced_gpus (`bool`):
|
699 |
+
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
|
700 |
+
logits_warper (`LogitsProcessorList`, *optional*):
|
701 |
+
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
|
702 |
+
to warp the prediction score distribution of the language modeling head applied before multinomial
|
703 |
+
sampling at each generation step. Only required with sampling strategies (i.e. `do_sample` is set in
|
704 |
+
`generation_config`)
|
705 |
+
model_kwargs:
|
706 |
+
Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
|
707 |
+
an encoder-decoder model the kwargs should include `encoder_outputs`.
|
708 |
+
|
709 |
+
Return:
|
710 |
+
[`generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or
|
711 |
+
`torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
|
712 |
+
[`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
|
713 |
+
`return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if
|
714 |
+
`model.config.is_encoder_decoder=True`.
|
715 |
+
"""
|
716 |
+
# init values
|
717 |
+
pad_token_id = generation_config.pad_token_id
|
718 |
+
eos_token_id = generation_config.eos_token_id
|
719 |
+
output_attentions = generation_config.output_attentions
|
720 |
+
output_hidden_states = generation_config.output_hidden_states
|
721 |
+
output_scores = generation_config.output_scores
|
722 |
+
output_logits = generation_config.output_logits
|
723 |
+
return_dict_in_generate = generation_config.return_dict_in_generate
|
724 |
+
sequential = generation_config.low_memory
|
725 |
+
do_sample = generation_config.do_sample
|
726 |
+
if do_sample is True and not isinstance(logits_warper, LogitsProcessorList):
|
727 |
+
raise ValueError(
|
728 |
+
"`do_sample` is set to `True`, `logits_warper` must be a `LogitsProcessorList` instance (it is "
|
729 |
+
f"{logits_warper})."
|
730 |
+
)
|
731 |
+
|
732 |
+
batch_size = len(beam_scorer._beam_hyps)
|
733 |
+
num_beams = beam_scorer.num_beams
|
734 |
+
|
735 |
+
batch_beam_size, cur_len = input_ids.shape
|
736 |
+
model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
|
737 |
+
|
738 |
+
if num_beams * batch_size != batch_beam_size:
|
739 |
+
raise ValueError(
|
740 |
+
f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
|
741 |
+
)
|
742 |
+
|
743 |
+
# init attention / hidden states / scores tuples
|
744 |
+
scores = () if (return_dict_in_generate and output_scores) else None
|
745 |
+
raw_logits = () if (return_dict_in_generate and output_logits) else None
|
746 |
+
beam_indices = (
|
747 |
+
tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
|
748 |
+
)
|
749 |
+
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
|
750 |
+
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
|
751 |
+
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
|
752 |
+
|
753 |
+
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
|
754 |
+
if return_dict_in_generate and self.config.is_encoder_decoder:
|
755 |
+
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
|
756 |
+
encoder_hidden_states = (
|
757 |
+
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
|
758 |
+
)
|
759 |
+
|
760 |
+
# initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
|
761 |
+
# of the first beam are considered to avoid sampling the exact same tokens across all beams.
|
762 |
+
beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
|
763 |
+
beam_scores[:, 1:] = -1e9
|
764 |
+
beam_scores = beam_scores.view((batch_size * num_beams,))
|
765 |
+
|
766 |
+
this_peer_finished = False
|
767 |
+
|
768 |
+
decoder_prompt_len = input_ids.shape[-1] # record the prompt length of decoder
|
769 |
+
|
770 |
+
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
|
771 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
772 |
+
|
773 |
+
# if sequential is True, split the input to batches of batch_size and run sequentially
|
774 |
+
if sequential:
|
775 |
+
if any(
|
776 |
+
model_name in self.__class__.__name__.lower()
|
777 |
+
for model_name in [
|
778 |
+
"fsmt",
|
779 |
+
"reformer",
|
780 |
+
"bloom",
|
781 |
+
"ctrl",
|
782 |
+
"gpt_bigcode",
|
783 |
+
"transo_xl",
|
784 |
+
"xlnet",
|
785 |
+
"cpm",
|
786 |
+
"jamba",
|
787 |
+
]
|
788 |
+
):
|
789 |
+
raise RuntimeError(
|
790 |
+
f"Currently generation for {self.__class__.__name__} is not supported "
|
791 |
+
f"for `low_memory beam_search`. Please open an issue on GitHub if you need this feature."
|
792 |
+
)
|
793 |
+
|
794 |
+
inputs_per_sub_batches = _split_model_inputs(
|
795 |
+
model_inputs, split_size=batch_size, full_batch_size=batch_beam_size
|
796 |
+
)
|
797 |
+
outputs_per_sub_batch = [
|
798 |
+
self(
|
799 |
+
**inputs_per_sub_batch,
|
800 |
+
return_dict=True,
|
801 |
+
output_attentions=output_attentions,
|
802 |
+
output_hidden_states=output_hidden_states,
|
803 |
+
)
|
804 |
+
for inputs_per_sub_batch in inputs_per_sub_batches
|
805 |
+
]
|
806 |
+
|
807 |
+
outputs = stack_model_outputs(outputs_per_sub_batch)
|
808 |
+
|
809 |
+
else: # Unchanged original behavior
|
810 |
+
outputs = self(
|
811 |
+
**model_inputs,
|
812 |
+
return_dict=True,
|
813 |
+
output_attentions=output_attentions,
|
814 |
+
output_hidden_states=output_hidden_states,
|
815 |
+
)
|
816 |
+
|
817 |
+
if synced_gpus and this_peer_finished:
|
818 |
+
cur_len = cur_len + 1
|
819 |
+
continue # don't waste resources running the code we don't need
|
820 |
+
|
821 |
+
next_token_logits = outputs.logits[:, -1, :]
|
822 |
+
next_token_scores = nn.functional.log_softmax(
|
823 |
+
next_token_logits, dim=-1
|
824 |
+
) # (batch_size * num_beams, vocab_size)
|
825 |
+
|
826 |
+
next_token_scores_processed = logits_processor(input_ids, next_token_scores)
|
827 |
+
if do_sample:
|
828 |
+
next_token_scores_processed = logits_warper(input_ids, next_token_scores_processed)
|
829 |
+
next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
|
830 |
+
next_token_scores_processed
|
831 |
+
)
|
832 |
+
|
833 |
+
# Store scores, attentions and hidden_states when required
|
834 |
+
if return_dict_in_generate:
|
835 |
+
if output_scores:
|
836 |
+
scores += (next_token_scores_processed,)
|
837 |
+
if output_logits:
|
838 |
+
raw_logits += (next_token_logits,)
|
839 |
+
if output_attentions:
|
840 |
+
decoder_attentions += (
|
841 |
+
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
|
842 |
+
)
|
843 |
+
if self.config.is_encoder_decoder:
|
844 |
+
cross_attentions += (outputs.cross_attentions,)
|
845 |
+
if output_hidden_states:
|
846 |
+
decoder_hidden_states += (
|
847 |
+
(outputs.decoder_hidden_states,)
|
848 |
+
if self.config.is_encoder_decoder
|
849 |
+
else (outputs.hidden_states,)
|
850 |
+
)
|
851 |
+
|
852 |
+
# reshape for beam search
|
853 |
+
vocab_size = next_token_scores.shape[-1]
|
854 |
+
next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)
|
855 |
+
|
856 |
+
# Beam token selection: pick 1 + eos_token_id.shape[0] next tokens for each beam so we have at least 1
|
857 |
+
# non eos token per beam.
|
858 |
+
n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0
|
859 |
+
n_tokens_to_keep = max(2, 1 + n_eos_tokens) * num_beams
|
860 |
+
if do_sample:
|
861 |
+
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
862 |
+
next_tokens = torch.multinomial(probs, num_samples=n_tokens_to_keep)
|
863 |
+
next_token_scores = torch.gather(next_token_scores, -1, next_tokens)
|
864 |
+
next_token_scores, _indices = torch.sort(next_token_scores, descending=True, dim=1)
|
865 |
+
next_tokens = torch.gather(next_tokens, -1, _indices)
|
866 |
+
else:
|
867 |
+
next_token_scores, next_tokens = torch.topk(
|
868 |
+
next_token_scores, n_tokens_to_keep, dim=1, largest=True, sorted=True
|
869 |
+
)
|
870 |
+
|
871 |
+
next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
|
872 |
+
next_tokens = next_tokens % vocab_size
|
873 |
+
|
874 |
+
# stateless
|
875 |
+
beam_outputs = beam_scorer.process(
|
876 |
+
input_ids,
|
877 |
+
next_token_scores,
|
878 |
+
next_tokens,
|
879 |
+
next_indices,
|
880 |
+
pad_token_id=pad_token_id,
|
881 |
+
eos_token_id=eos_token_id,
|
882 |
+
beam_indices=beam_indices,
|
883 |
+
decoder_prompt_len=decoder_prompt_len,
|
884 |
+
)
|
885 |
+
|
886 |
+
beam_scores = beam_outputs["next_beam_scores"]
|
887 |
+
beam_next_tokens = beam_outputs["next_beam_tokens"]
|
888 |
+
beam_idx = beam_outputs["next_beam_indices"]
|
889 |
+
|
890 |
+
# Based on the beam idx and next tokens reshuffle the ctc prev states and scores
|
891 |
+
if hasattr(self, "ctc_rescorer"):
|
892 |
+
self.ctc_rescorer.update_state(beam_next_tokens, beam_idx)
|
893 |
+
input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
|
894 |
+
|
895 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
896 |
+
outputs,
|
897 |
+
model_kwargs,
|
898 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
899 |
+
)
|
900 |
+
if model_kwargs.get("past_key_values", None) is not None:
|
901 |
+
model_kwargs["past_key_values"] = self._temporary_reorder_cache(
|
902 |
+
model_kwargs["past_key_values"], beam_idx
|
903 |
+
)
|
904 |
+
|
905 |
+
if return_dict_in_generate and output_scores:
|
906 |
+
beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))
|
907 |
+
|
908 |
+
# increase cur_len
|
909 |
+
cur_len = cur_len + 1
|
910 |
+
|
911 |
+
if beam_scorer.is_done or all(stopping_criteria(input_ids, scores)):
|
912 |
+
this_peer_finished = True
|
913 |
+
|
914 |
+
sequence_outputs = beam_scorer.finalize(
|
915 |
+
input_ids,
|
916 |
+
beam_scores,
|
917 |
+
next_tokens,
|
918 |
+
next_indices,
|
919 |
+
pad_token_id=pad_token_id,
|
920 |
+
eos_token_id=eos_token_id,
|
921 |
+
max_length=stopping_criteria.max_length,
|
922 |
+
beam_indices=beam_indices,
|
923 |
+
decoder_prompt_len=decoder_prompt_len,
|
924 |
+
)
|
925 |
+
|
926 |
+
if return_dict_in_generate:
|
927 |
+
if not output_scores:
|
928 |
+
sequence_outputs["sequence_scores"] = None
|
929 |
+
|
930 |
+
if self.config.is_encoder_decoder:
|
931 |
+
return GenerateBeamEncoderDecoderOutput(
|
932 |
+
sequences=sequence_outputs["sequences"],
|
933 |
+
sequences_scores=sequence_outputs["sequence_scores"],
|
934 |
+
scores=scores,
|
935 |
+
logits=raw_logits,
|
936 |
+
beam_indices=sequence_outputs["beam_indices"],
|
937 |
+
encoder_attentions=encoder_attentions,
|
938 |
+
encoder_hidden_states=encoder_hidden_states,
|
939 |
+
decoder_attentions=decoder_attentions,
|
940 |
+
cross_attentions=cross_attentions,
|
941 |
+
decoder_hidden_states=decoder_hidden_states,
|
942 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
943 |
+
)
|
944 |
+
else:
|
945 |
+
return GenerateBeamDecoderOnlyOutput(
|
946 |
+
sequences=sequence_outputs["sequences"],
|
947 |
+
sequences_scores=sequence_outputs["sequence_scores"],
|
948 |
+
scores=scores,
|
949 |
+
logits=raw_logits,
|
950 |
+
beam_indices=sequence_outputs["beam_indices"],
|
951 |
+
attentions=decoder_attentions,
|
952 |
+
hidden_states=decoder_hidden_states,
|
953 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
954 |
+
)
|
955 |
+
else:
|
956 |
+
return sequence_outputs["sequences"]
|
957 |
+
|
958 |
+
def _sample(
|
959 |
+
self,
|
960 |
+
input_ids: torch.LongTensor,
|
961 |
+
logits_processor: LogitsProcessorList,
|
962 |
+
stopping_criteria: StoppingCriteriaList,
|
963 |
+
generation_config: GenerationConfig,
|
964 |
+
synced_gpus: bool,
|
965 |
+
streamer: Optional["BaseStreamer"],
|
966 |
+
logits_warper: Optional[LogitsProcessorList] = None,
|
967 |
+
**model_kwargs,
|
968 |
+
) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
|
969 |
+
r"""
|
970 |
+
Generates sequences of token ids for models with a language modeling head using **multinomial sampling** and
|
971 |
+
can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
|
972 |
+
|
973 |
+
Parameters:
|
974 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
975 |
+
The sequence used as a prompt for the generation.
|
976 |
+
logits_processor (`LogitsProcessorList`):
|
977 |
+
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
|
978 |
+
used to modify the prediction scores of the language modeling head applied at each generation step.
|
979 |
+
stopping_criteria (`StoppingCriteriaList`):
|
980 |
+
An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
|
981 |
+
used to tell if the generation loop should stop.
|
982 |
+
generation_config ([`~generation.GenerationConfig`]):
|
983 |
+
The generation configuration to be used as parametrization of the decoding method.
|
984 |
+
synced_gpus (`bool`):
|
985 |
+
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
|
986 |
+
streamer (`BaseStreamer`, *optional*):
|
987 |
+
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
|
988 |
+
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
|
989 |
+
logits_warper (`LogitsProcessorList`, *optional*):
|
990 |
+
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsWarper`] used
|
991 |
+
to warp the prediction score distribution of the language modeling head applied before multinomial
|
992 |
+
sampling at each generation step. Only required with sampling strategies (i.e. `do_sample` is set in
|
993 |
+
`generation_config`)
|
994 |
+
model_kwargs:
|
995 |
+
Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
|
996 |
+
an encoder-decoder model the kwargs should include `encoder_outputs`.
|
997 |
+
|
998 |
+
Return:
|
999 |
+
[`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or `torch.LongTensor`:
|
1000 |
+
A `torch.LongTensor` containing the generated tokens (default behaviour) or a
|
1001 |
+
[`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
|
1002 |
+
`return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
|
1003 |
+
`model.config.is_encoder_decoder=True`.
|
1004 |
+
"""
|
1005 |
+
# init values
|
1006 |
+
pad_token_id = generation_config.pad_token_id
|
1007 |
+
output_attentions = generation_config.output_attentions
|
1008 |
+
output_hidden_states = generation_config.output_hidden_states
|
1009 |
+
output_scores = generation_config.output_scores
|
1010 |
+
output_logits = generation_config.output_logits
|
1011 |
+
return_dict_in_generate = generation_config.return_dict_in_generate
|
1012 |
+
has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria)
|
1013 |
+
do_sample = generation_config.do_sample
|
1014 |
+
if do_sample is True and not isinstance(logits_warper, LogitsProcessorList):
|
1015 |
+
raise ValueError(
|
1016 |
+
"`do_sample` is set to `True`, `logits_warper` must be a `LogitsProcessorList` instance (it is "
|
1017 |
+
f"{logits_warper})."
|
1018 |
+
)
|
1019 |
+
|
1020 |
+
# init attention / hidden states / scores tuples
|
1021 |
+
scores = () if (return_dict_in_generate and output_scores) else None
|
1022 |
+
raw_logits = () if (return_dict_in_generate and output_logits) else None
|
1023 |
+
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
|
1024 |
+
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
|
1025 |
+
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
|
1026 |
+
|
1027 |
+
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
|
1028 |
+
if return_dict_in_generate and self.config.is_encoder_decoder:
|
1029 |
+
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
|
1030 |
+
encoder_hidden_states = (
|
1031 |
+
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
|
1032 |
+
)
|
1033 |
+
|
1034 |
+
# keep track of which sequences are already finished
|
1035 |
+
batch_size = input_ids.shape[0]
|
1036 |
+
this_peer_finished = False
|
1037 |
+
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
|
1038 |
+
model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
|
1039 |
+
|
1040 |
+
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
|
1041 |
+
# prepare model inputs
|
1042 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
1043 |
+
|
1044 |
+
# forward pass to get next token
|
1045 |
+
outputs = self(
|
1046 |
+
**model_inputs,
|
1047 |
+
return_dict=True,
|
1048 |
+
output_attentions=output_attentions,
|
1049 |
+
output_hidden_states=output_hidden_states,
|
1050 |
+
)
|
1051 |
+
|
1052 |
+
if synced_gpus and this_peer_finished:
|
1053 |
+
continue # don't waste resources running the code we don't need
|
1054 |
+
|
1055 |
+
next_token_logits = outputs.logits[:, -1, :]
|
1056 |
+
|
1057 |
+
# pre-process distribution
|
1058 |
+
next_token_scores = logits_processor(input_ids, next_token_logits)
|
1059 |
+
if do_sample:
|
1060 |
+
next_token_scores = logits_warper(input_ids, next_token_scores)
|
1061 |
+
|
1062 |
+
# Store scores, attentions and hidden_states when required
|
1063 |
+
if return_dict_in_generate:
|
1064 |
+
if output_scores:
|
1065 |
+
scores += (next_token_scores,)
|
1066 |
+
if output_logits:
|
1067 |
+
raw_logits += (next_token_logits,)
|
1068 |
+
if output_attentions:
|
1069 |
+
decoder_attentions += (
|
1070 |
+
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
|
1071 |
+
)
|
1072 |
+
if self.config.is_encoder_decoder:
|
1073 |
+
cross_attentions += (outputs.cross_attentions,)
|
1074 |
+
|
1075 |
+
if output_hidden_states:
|
1076 |
+
decoder_hidden_states += (
|
1077 |
+
(outputs.decoder_hidden_states,)
|
1078 |
+
if self.config.is_encoder_decoder
|
1079 |
+
else (outputs.hidden_states,)
|
1080 |
+
)
|
1081 |
+
|
1082 |
+
# token selection
|
1083 |
+
if do_sample:
|
1084 |
+
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
1085 |
+
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
1086 |
+
else:
|
1087 |
+
next_tokens = torch.argmax(next_token_scores, dim=-1)
|
1088 |
+
|
1089 |
+
# finished sentences should have their next token be a padding token
|
1090 |
+
if has_eos_stopping_criteria:
|
1091 |
+
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
|
1092 |
+
|
1093 |
+
# Based on the next tokens select the ctc prev states and scores
|
1094 |
+
if hasattr(self, "ctc_rescorer"):
|
1095 |
+
self.ctc_rescorer.update_state(next_tokens, torch.arange(next_tokens.shape[0]))
|
1096 |
+
|
1097 |
+
# update generated ids, model inputs, and length for next step
|
1098 |
+
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
1099 |
+
if streamer is not None:
|
1100 |
+
streamer.put(next_tokens.cpu())
|
1101 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
1102 |
+
outputs,
|
1103 |
+
model_kwargs,
|
1104 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
1105 |
+
)
|
1106 |
+
|
1107 |
+
unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
|
1108 |
+
this_peer_finished = unfinished_sequences.max() == 0
|
1109 |
+
|
1110 |
+
if streamer is not None:
|
1111 |
+
streamer.end()
|
1112 |
+
|
1113 |
+
if return_dict_in_generate:
|
1114 |
+
if self.config.is_encoder_decoder:
|
1115 |
+
return GenerateEncoderDecoderOutput(
|
1116 |
+
sequences=input_ids,
|
1117 |
+
scores=scores,
|
1118 |
+
logits=raw_logits,
|
1119 |
+
encoder_attentions=encoder_attentions,
|
1120 |
+
encoder_hidden_states=encoder_hidden_states,
|
1121 |
+
decoder_attentions=decoder_attentions,
|
1122 |
+
cross_attentions=cross_attentions,
|
1123 |
+
decoder_hidden_states=decoder_hidden_states,
|
1124 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
1125 |
+
)
|
1126 |
+
else:
|
1127 |
+
return GenerateDecoderOnlyOutput(
|
1128 |
+
sequences=input_ids,
|
1129 |
+
scores=scores,
|
1130 |
+
logits=raw_logits,
|
1131 |
+
attentions=decoder_attentions,
|
1132 |
+
hidden_states=decoder_hidden_states,
|
1133 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
1134 |
+
)
|
1135 |
+
else:
|
1136 |
+
return input_ids
|
1137 |
+
|
1138 |
+
def prepare_kwargs_for_generate(self,
|
1139 |
+
segment_input,
|
1140 |
+
cur_bsz,
|
1141 |
+
batch_idx_map,
|
1142 |
+
seek,
|
1143 |
+
num_segment_frames,
|
1144 |
+
max_frames,
|
1145 |
+
kwargs):
|
1146 |
+
kwargs["attention_mask_enc"] = torch.ones(cur_bsz, segment_input.size(-1), device=segment_input.device)
|
1147 |
+
seek_vad = seek // 2
|
1148 |
+
num_frames_vad = num_segment_frames // 2
|
1149 |
+
max_frames_vad = max_frames // 2
|
1150 |
+
seek_num_frames = (max_frames_vad - seek_vad).clamp(max=num_frames_vad)
|
1151 |
+
|
1152 |
+
stno_masks = []
|
1153 |
+
for i in range(cur_bsz):
|
1154 |
+
prev_i = batch_idx_map[i]
|
1155 |
+
segment_input_slice = kwargs["stno_mask"][prev_i: prev_i + 1, :,
|
1156 |
+
seek_vad[prev_i]: seek_vad[prev_i] + seek_num_frames[prev_i]]
|
1157 |
+
|
1158 |
+
if segment_input_slice.shape[-1] < num_frames_vad:
|
1159 |
+
orig_len = segment_input_slice.shape[-1]
|
1160 |
+
# pad to 3000 if necessary
|
1161 |
+
segment_input_slice = torch.nn.functional.pad(
|
1162 |
+
segment_input_slice, pad=(0, num_frames_vad - orig_len)
|
1163 |
+
)
|
1164 |
+
# set corresponding padding tokens to 1 in vad mask representing silence
|
1165 |
+
segment_input_slice[0, 0, orig_len:] = 1.0
|
1166 |
+
|
1167 |
+
stno_masks.append(segment_input_slice)
|
1168 |
+
kwargs["stno_mask"] = torch.cat(stno_masks, dim=0)
|
1169 |
+
self.stno_mask_seek = kwargs["stno_mask"]
|
1170 |
+
|
1171 |
+
if "per_group_sizes" in kwargs:
|
1172 |
+
group_sizes = kwargs["per_group_sizes"].clone()
|
1173 |
+
group_sizes[:] = 0
|
1174 |
+
cummulative_group_sizes = (
|
1175 |
+
kwargs["per_group_sizes"].max().repeat(kwargs["per_group_sizes"].shape[0])).cumsum(dim=0)
|
1176 |
+
for i in batch_idx_map:
|
1177 |
+
group_idx = (cummulative_group_sizes > i).nonzero().min()
|
1178 |
+
group_sizes[group_idx] += 1
|
1179 |
+
kwargs["per_group_sizes"] = group_sizes
|
1180 |
+
|
1181 |
+
if self.vad_seek_callback is not None:
|
1182 |
+
self.vad_seek_callback(kwargs["stno_mask"])
|
1183 |
+
return kwargs
|
1184 |
+
|
1185 |
+
def generate_with_fallback(
|
1186 |
+
self,
|
1187 |
+
segment_input,
|
1188 |
+
decoder_input_ids,
|
1189 |
+
cur_bsz,
|
1190 |
+
batch_idx_map,
|
1191 |
+
seek,
|
1192 |
+
num_segment_frames,
|
1193 |
+
max_frames,
|
1194 |
+
temperatures,
|
1195 |
+
generation_config,
|
1196 |
+
logits_processor,
|
1197 |
+
stopping_criteria,
|
1198 |
+
prefix_allowed_tokens_fn,
|
1199 |
+
synced_gpus,
|
1200 |
+
return_token_timestamps,
|
1201 |
+
do_condition_on_prev_tokens,
|
1202 |
+
kwargs,
|
1203 |
+
):
|
1204 |
+
kwargs = copy.copy(kwargs)
|
1205 |
+
kwargs = self.prepare_kwargs_for_generate(segment_input, cur_bsz, batch_idx_map, seek, num_segment_frames,
|
1206 |
+
max_frames, kwargs)
|
1207 |
+
seek_sequences, seek_outputs, should_skip, do_condition_on_prev_tokens = super().generate_with_fallback(
|
1208 |
+
segment_input,
|
1209 |
+
decoder_input_ids,
|
1210 |
+
cur_bsz,
|
1211 |
+
batch_idx_map,
|
1212 |
+
seek,
|
1213 |
+
num_segment_frames,
|
1214 |
+
max_frames,
|
1215 |
+
temperatures,
|
1216 |
+
generation_config,
|
1217 |
+
logits_processor,
|
1218 |
+
stopping_criteria,
|
1219 |
+
prefix_allowed_tokens_fn,
|
1220 |
+
synced_gpus,
|
1221 |
+
return_token_timestamps,
|
1222 |
+
do_condition_on_prev_tokens,
|
1223 |
+
kwargs,
|
1224 |
+
)
|
1225 |
+
self.stno_mask_seek =None
|
1226 |
+
|
1227 |
+
# for i, seq in enumerate(seek_outputs):
|
1228 |
+
# print(f"Sequence {i}: {self.tokenizer.decode(seq, decode_with_timestamps=True)}")
|
1229 |
+
# print("-"*50)
|
1230 |
+
|
1231 |
+
return seek_sequences, seek_outputs, should_skip, do_condition_on_prev_tokens
|
1232 |
+
|
1233 |
+
def _retrieve_init_tokens(self, input_features, batch_size, generation_config, config, num_segment_frames, kwargs):
|
1234 |
+
def replace_or_add(lst: List[int], num: int, itr: Iterator[int]):
|
1235 |
+
"""short function to replace num with a itr in lst"""
|
1236 |
+
found = any(i in lst for i in itr)
|
1237 |
+
if found:
|
1238 |
+
lst = [num if i in itr else i for i in lst]
|
1239 |
+
else:
|
1240 |
+
lst.append(num)
|
1241 |
+
return lst
|
1242 |
+
|
1243 |
+
def language_to_id(language: str) -> int:
|
1244 |
+
language = language.lower()
|
1245 |
+
if language in generation_config.lang_to_id.keys():
|
1246 |
+
language_token = language
|
1247 |
+
elif language in TO_LANGUAGE_CODE.keys():
|
1248 |
+
language_token = f"<|{TO_LANGUAGE_CODE[language]}|>"
|
1249 |
+
elif language in TO_LANGUAGE_CODE.values():
|
1250 |
+
language_token = f"<|{language}|>"
|
1251 |
+
else:
|
1252 |
+
is_language_code = len(language) == 2
|
1253 |
+
raise ValueError(
|
1254 |
+
f"Unsupported language: {language}. Language should be one of:"
|
1255 |
+
f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}."
|
1256 |
+
)
|
1257 |
+
if language_token not in generation_config.lang_to_id:
|
1258 |
+
raise ValueError(
|
1259 |
+
f"{language_token} is not supported by this specific model as it is not in the `generation_config.lang_to_id`."
|
1260 |
+
"(You should just add it to the generation config)"
|
1261 |
+
)
|
1262 |
+
|
1263 |
+
return generation_config.lang_to_id[language_token]
|
1264 |
+
|
1265 |
+
task = getattr(generation_config, "task", None)
|
1266 |
+
language = getattr(generation_config, "language", None)
|
1267 |
+
|
1268 |
+
forced_decoder_ids = generation_config.forced_decoder_ids
|
1269 |
+
if forced_decoder_ids is not None:
|
1270 |
+
if language is None and task is None and forced_decoder_ids[0][1] is None:
|
1271 |
+
logger.warning_once(
|
1272 |
+
"Due to a bug fix in https://github.com/huggingface/transformers/pull/28687 transcription using a multilingual Whisper will default to language detection followed by transcription instead of translation to English."
|
1273 |
+
"This might be a breaking change for your use case. If you want to instead always translate your audio to English, make sure to pass `language='en'`."
|
1274 |
+
)
|
1275 |
+
elif hasattr(config, "forced_decoder_ids") and config.forced_decoder_ids is not None:
|
1276 |
+
forced_decoder_ids = config.forced_decoder_ids
|
1277 |
+
|
1278 |
+
elif forced_decoder_ids is not None and language is not None:
|
1279 |
+
logger.info(
|
1280 |
+
f"You have passed language={language}, but also have set `forced_decoder_ids` to {forced_decoder_ids} which creates a conflict. `forced_decoder_ids` will be ignored in favor of language={language}."
|
1281 |
+
)
|
1282 |
+
forced_decoder_ids = None
|
1283 |
+
|
1284 |
+
init_tokens = [generation_config.decoder_start_token_id]
|
1285 |
+
|
1286 |
+
# Update init_tokens with languages
|
1287 |
+
lang_ids = None
|
1288 |
+
|
1289 |
+
if forced_decoder_ids is not None:
|
1290 |
+
return forced_decoder_ids
|
1291 |
+
|
1292 |
+
# from v4.39 the forced decoder ids are always None in favour of decoder input ids
|
1293 |
+
generation_config.forced_decoder_ids = None
|
1294 |
+
|
1295 |
+
is_lang_id_undefined = len(init_tokens) <= 1 or (len(init_tokens) > 1 and init_tokens[1] is None)
|
1296 |
+
|
1297 |
+
# Make sure language is a list of strings of the correct length
|
1298 |
+
if isinstance(language, (list, tuple)):
|
1299 |
+
if any(l is None for l in language):
|
1300 |
+
raise TypeError(
|
1301 |
+
"Expected `language` to be `None`, a single string (e.g. `'en'`), or a list of strings with length equal to the batch size (e.g. `('en', 'fr')` for a batch size of 2). Got a list containing `None`."
|
1302 |
+
)
|
1303 |
+
if len(language) != batch_size:
|
1304 |
+
raise ValueError(
|
1305 |
+
"When passing a list of languages, the length of the list must match the batch size. "
|
1306 |
+
f"Expected length of {batch_size}, but got {len(language)} languages."
|
1307 |
+
)
|
1308 |
+
languages = language
|
1309 |
+
elif language is None:
|
1310 |
+
# Language will be detected for each item in batch
|
1311 |
+
languages = [None] * batch_size
|
1312 |
+
else:
|
1313 |
+
languages = [language] # Use a length-1 list now, broadcast later
|
1314 |
+
|
1315 |
+
# Separate init_tokens for each language
|
1316 |
+
init_tokens = [copy.copy(init_tokens) for _ in languages]
|
1317 |
+
|
1318 |
+
if language is not None and lang_ids is not None:
|
1319 |
+
lang_ids = [language_to_id(l) for l in languages]
|
1320 |
+
elif hasattr(generation_config, "lang_to_id") and is_lang_id_undefined:
|
1321 |
+
# language is not defined or intentially set to `None` to trigger language detection
|
1322 |
+
lang_ids = self.detect_language(
|
1323 |
+
input_features=input_features,
|
1324 |
+
encoder_outputs=kwargs.get("encoder_outputs", None),
|
1325 |
+
generation_config=generation_config,
|
1326 |
+
num_segment_frames=num_segment_frames,
|
1327 |
+
).tolist()
|
1328 |
+
if lang_ids is not None:
|
1329 |
+
# append or replace lang_ids to init_tokens
|
1330 |
+
for i in range(len(init_tokens)):
|
1331 |
+
if len(init_tokens[i]) > 1:
|
1332 |
+
init_tokens[i][1] = lang_ids[i]
|
1333 |
+
else:
|
1334 |
+
init_tokens[i].append(lang_ids[i])
|
1335 |
+
del languages
|
1336 |
+
|
1337 |
+
# Update init_tokens with task
|
1338 |
+
for i in range(len(init_tokens)):
|
1339 |
+
if task is not None:
|
1340 |
+
if task in TASK_IDS:
|
1341 |
+
init_tokens[i].append(generation_config.task_to_id[generation_config.task])
|
1342 |
+
task_id = generation_config.task_to_id[generation_config.task]
|
1343 |
+
|
1344 |
+
# if task is defined it'll overwrite task ids that might have already been defined via the generation_config
|
1345 |
+
replace_or_add(init_tokens[i], task_id, generation_config.task_to_id.values())
|
1346 |
+
else:
|
1347 |
+
raise ValueError(f"The `{task}`task is not supported. The task should be one of `{TASK_IDS}`")
|
1348 |
+
elif language is not None and hasattr(generation_config, "task_to_id"):
|
1349 |
+
# if language is defined, but no task id is in `init_tokens`, default to transcribe
|
1350 |
+
if not any(ti in init_tokens[i] for ti in generation_config.task_to_id.values()):
|
1351 |
+
init_tokens[i].append(generation_config.task_to_id["transcribe"])
|
1352 |
+
|
1353 |
+
# let's make sure we don't pass `None` tokens as prompt tokens
|
1354 |
+
init_tokens[i] = [t for t in init_tokens[i] if t is not None]
|
1355 |
+
|
1356 |
+
return torch.as_tensor(init_tokens, dtype=torch.long, device=self.device).expand(batch_size, -1)
|
1357 |
+
|
1358 |
+
def detect_language(
|
1359 |
+
self,
|
1360 |
+
input_features: Optional[torch.FloatTensor] = None,
|
1361 |
+
encoder_outputs: Optional[Union[torch.FloatTensor, BaseModelOutput]] = None,
|
1362 |
+
generation_config: Optional[GenerationConfig] = None,
|
1363 |
+
num_segment_frames: int = 3000,
|
1364 |
+
) -> torch.Tensor:
|
1365 |
+
"""
|
1366 |
+
Detects language from log-mel input features or encoder_outputs
|
1367 |
+
|
1368 |
+
Parameters:
|
1369 |
+
input_features (`torch.Tensor` of shape `(batch_size, feature_size, sequence_length)`, *optional*):
|
1370 |
+
Float values of log-mel features extracted from the raw speech waveform. The raw speech waveform can be obtained by
|
1371 |
+
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via
|
1372 |
+
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the
|
1373 |
+
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a
|
1374 |
+
tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] for details.
|
1375 |
+
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
1376 |
+
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
|
1377 |
+
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
|
1378 |
+
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
1379 |
+
generation_config (`~generation.GenerationConfig`, *optional*):
|
1380 |
+
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
|
1381 |
+
passed to generate matching the attributes of `generation_config` will override them. If
|
1382 |
+
`generation_config` is not provided, the default will be used, which had the following loading
|
1383 |
+
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
|
1384 |
+
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
|
1385 |
+
default values, whose documentation should be checked to parameterize generation.
|
1386 |
+
num_segment_frames (`int`, defaults to 3000):
|
1387 |
+
The number of log-mel frames the model expects
|
1388 |
+
|
1389 |
+
Return:
|
1390 |
+
A `torch.LongTensor` representing the detected language ids.
|
1391 |
+
"""
|
1392 |
+
if input_features is None and encoder_outputs is None:
|
1393 |
+
raise ValueError("You have to specify either `input_features` or `encoder_outputs`")
|
1394 |
+
elif input_features is not None and encoder_outputs is not None:
|
1395 |
+
raise ValueError("Make sure to specificy only one of `input_features` or `encoder_outputs` - not both!")
|
1396 |
+
elif input_features is not None:
|
1397 |
+
inputs = {"input_features": input_features[:, :, :num_segment_frames]}
|
1398 |
+
batch_size = input_features.shape[0]
|
1399 |
+
elif encoder_outputs is not None:
|
1400 |
+
inputs = {"encoder_outputs": encoder_outputs}
|
1401 |
+
batch_size = (
|
1402 |
+
encoder_outputs[0].shape[0] if isinstance(encoder_outputs, BaseModelOutput) else encoder_outputs[0]
|
1403 |
+
)
|
1404 |
+
|
1405 |
+
generation_config = generation_config or self.generation_config
|
1406 |
+
decoder_input_ids = (
|
1407 |
+
torch.ones((batch_size, 1), device=self.device, dtype=torch.long)
|
1408 |
+
* generation_config.decoder_start_token_id
|
1409 |
+
)
|
1410 |
+
|
1411 |
+
with torch.no_grad():
|
1412 |
+
logits = self(**inputs, decoder_input_ids=decoder_input_ids,
|
1413 |
+
stno_mask=self.stno_mask_seek if self.stno_mask_seek is not None else self.stno_mask[:, :,
|
1414 |
+
:num_segment_frames // 2]).logits[
|
1415 |
+
:, -1]
|
1416 |
+
|
1417 |
+
non_lang_mask = torch.ones_like(logits[0], dtype=torch.bool)
|
1418 |
+
non_lang_mask[list(generation_config.lang_to_id.values())] = False
|
1419 |
+
|
1420 |
+
logits[:, non_lang_mask] = -np.inf
|
1421 |
+
|
1422 |
+
lang_ids = logits.argmax(-1)
|
1423 |
+
|
1424 |
+
return lang_ids
|
1425 |
+
|
1426 |
+
def _get_logits_processor(
|
1427 |
+
self,
|
1428 |
+
generation_config: GenerationConfig,
|
1429 |
+
input_ids_seq_length: int,
|
1430 |
+
encoder_input_ids: torch.LongTensor,
|
1431 |
+
prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]],
|
1432 |
+
logits_processor: Optional[LogitsProcessorList],
|
1433 |
+
device: str = None,
|
1434 |
+
model_kwargs: Optional[Dict[str, Any]] = None,
|
1435 |
+
negative_prompt_ids: Optional[torch.Tensor] = None,
|
1436 |
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
1437 |
+
) -> LogitsProcessorList:
|
1438 |
+
# pylint: disable=no-member
|
1439 |
+
gen_config_copy = copy.deepcopy(generation_config)
|
1440 |
+
gen_config_copy.forced_decoder_ids = None
|
1441 |
+
processors = super()._get_logits_processor(
|
1442 |
+
gen_config_copy,
|
1443 |
+
input_ids_seq_length,
|
1444 |
+
encoder_input_ids,
|
1445 |
+
prefix_allowed_tokens_fn,
|
1446 |
+
logits_processor,
|
1447 |
+
device,
|
1448 |
+
model_kwargs,
|
1449 |
+
negative_prompt_ids,
|
1450 |
+
negative_prompt_attention_mask,
|
1451 |
+
)
|
1452 |
+
if hasattr(generation_config, "ctc_weight") and generation_config.ctc_weight > 0:
|
1453 |
+
enc_logits = self.encoder_logits
|
1454 |
+
if generation_config.num_beams <= 1:
|
1455 |
+
processors.append(LogSoftmaxProcessor())
|
1456 |
+
else:
|
1457 |
+
enc_logits = enc_logits.repeat_interleave(generation_config.num_beams, dim=0)
|
1458 |
+
self.ctc_rescorer = CTCRescorerLogitsProcessor(
|
1459 |
+
enc_logits,
|
1460 |
+
torch.full((enc_logits.shape[0],), fill_value=enc_logits.shape[1],
|
1461 |
+
device=enc_logits.device),
|
1462 |
+
enc_logits.shape[-1] - 1,
|
1463 |
+
generation_config.pad_token_id.item(),
|
1464 |
+
generation_config.eos_token_id.item(),
|
1465 |
+
generation_config.decoder_start_token_id.item(),
|
1466 |
+
self.tokenizer,
|
1467 |
+
generation_config.ctc_margin,
|
1468 |
+
generation_config.ctc_weight,
|
1469 |
+
generation_config.num_beams,
|
1470 |
+
False,
|
1471 |
+
)
|
1472 |
+
processors.append(self.ctc_rescorer)
|
1473 |
+
return processors
|
1474 |
+
|
1475 |
+
def _retrieve_logit_processors(self, generation_config, logits_processor, begin_index, is_shortform, num_beams, device):
|
1476 |
+
if generation_config.return_timestamps is True:
|
1477 |
+
timestamp_processor = WhisperTimeStampLogitsProcessorCustom(generation_config, begin_index=begin_index)
|
1478 |
+
logits_processor = (
|
1479 |
+
[timestamp_processor] if logits_processor is None else [timestamp_processor] + logits_processor
|
1480 |
+
)
|
1481 |
+
|
1482 |
+
if generation_config.suppress_tokens is not None:
|
1483 |
+
suppress_tokens_processor = SuppressTokensLogitsProcessor(generation_config.suppress_tokens, device=device)
|
1484 |
+
logits_processor = (
|
1485 |
+
[suppress_tokens_processor]
|
1486 |
+
if logits_processor is None
|
1487 |
+
else [suppress_tokens_processor] + logits_processor
|
1488 |
+
)
|
1489 |
+
generation_config.suppress_tokens = None
|
1490 |
+
|
1491 |
+
if generation_config.begin_suppress_tokens is not None:
|
1492 |
+
begin_suppress_processor = SuppressTokensAtBeginLogitsProcessor(
|
1493 |
+
generation_config.begin_suppress_tokens, begin_index=begin_index, device=device
|
1494 |
+
)
|
1495 |
+
logits_processor = (
|
1496 |
+
[begin_suppress_processor]
|
1497 |
+
if logits_processor is None
|
1498 |
+
else [begin_suppress_processor] + logits_processor
|
1499 |
+
)
|
1500 |
+
generation_config.begin_suppress_tokens = None
|
1501 |
+
|
1502 |
+
if generation_config.no_speech_threshold is not None and not is_shortform:
|
1503 |
+
no_speech_detector = WhisperNoSpeechDetection(
|
1504 |
+
no_speech_token=generation_config.no_timestamps_token_id - 1,
|
1505 |
+
begin_index=begin_index,
|
1506 |
+
scores_is_logprobs=num_beams > 1,
|
1507 |
+
)
|
1508 |
+
logits_processor = (
|
1509 |
+
[no_speech_detector] if logits_processor is None else [no_speech_detector] + logits_processor
|
1510 |
+
)
|
1511 |
+
no_speech_detector.set_model(self)
|
1512 |
+
|
1513 |
+
return logits_processor
|
1514 |
+
|
1515 |
+
@staticmethod
|
1516 |
+
def round_to_nearest_0_02(x):
|
1517 |
+
d = Decimal(str(x)) # Use str(x) to preserve input precision
|
1518 |
+
step = Decimal('0.02')
|
1519 |
+
# Divide, round, multiply back
|
1520 |
+
rounded = (d / step).to_integral_value(rounding=ROUND_HALF_UP) * step
|
1521 |
+
return rounded
|
1522 |
+
|
1523 |
+
def _fix_timestamps_from_segmentation(self, sequences):
|
1524 |
+
"""
|
1525 |
+
Adjusts token sequences with global timestamps to fit within Whisper's 0–30s timestamp token range.
|
1526 |
+
|
1527 |
+
This function modifies the input sequences by inserting appropriate timestamp tokens and
|
1528 |
+
offset corrections to ensure the decoded token order is correct, without splitting any segment.
|
1529 |
+
It aligns all timestamps to 0.02-second precision, inserts placeholder segments to bridge
|
1530 |
+
time gaps between 30-second windows, and maintains segment continuity during encoding.
|
1531 |
+
|
1532 |
+
Args:
|
1533 |
+
sequences (dict): A dictionary containing:
|
1534 |
+
- 'segments': A list of segment lists, each segment being a dict with 'start', 'end', and 'tokens'.
|
1535 |
+
- 'sequences': A tensor used to determine device for padding.
|
1536 |
+
|
1537 |
+
Returns:
|
1538 |
+
torch.Tensor: A batch of padded token sequences with corrected timestamp alignment.
|
1539 |
+
"""
|
1540 |
+
# Get the token ID for the "<|0.00|>" timestamp used to detect dummy segments
|
1541 |
+
first_timestamp_token = self.tokenizer.get_vocab()["<|0.00|>"]
|
1542 |
+
results = []
|
1543 |
+
|
1544 |
+
# Filter out segments that are either empty or consist only of the "<|0.00|>" token
|
1545 |
+
for idx, sequence_segs in enumerate(sequences['segments']):
|
1546 |
+
sequences['segments'][idx] = [
|
1547 |
+
seg for seg in sequence_segs
|
1548 |
+
if len(seg['tokens']) > 0 and (len(seg['tokens']) != 1 or seg['tokens'][0] != first_timestamp_token)
|
1549 |
+
]
|
1550 |
+
|
1551 |
+
# Iterate over each group of segments (e.g., one per utterance)
|
1552 |
+
for idx, sequence_segs in enumerate(sequences['segments']):
|
1553 |
+
result = []
|
1554 |
+
prev_segment_end_time = None
|
1555 |
+
correction = Decimal(0.0)
|
1556 |
+
|
1557 |
+
for i, seg in enumerate(sequence_segs):
|
1558 |
+
# Round start and end times to nearest 0.02 seconds
|
1559 |
+
start_time = self.round_to_nearest_0_02(seg['start'].item())
|
1560 |
+
end_time = self.round_to_nearest_0_02(seg['end'].item())
|
1561 |
+
tokens = seg['tokens']
|
1562 |
+
|
1563 |
+
# Determine which 30s window this segment falls into
|
1564 |
+
current_block = (start_time + correction) // 30
|
1565 |
+
|
1566 |
+
if prev_segment_end_time is not None:
|
1567 |
+
# If not the first segment, calculate difference in 30s windows
|
1568 |
+
prev_block = prev_segment_end_time // 30
|
1569 |
+
num_dummies = current_block - prev_block - 1
|
1570 |
+
|
1571 |
+
# Insert (30, [], 30) marker if we're moving to a new block
|
1572 |
+
if current_block > prev_block:
|
1573 |
+
result.append((30, [], 30))
|
1574 |
+
|
1575 |
+
# Insert dummy segments to bridge skipped 30s blocks
|
1576 |
+
for _ in range(int(num_dummies)):
|
1577 |
+
result.append((0, [], 30))
|
1578 |
+
else:
|
1579 |
+
# For the first segment, add dummy blocks if it starts after 30s
|
1580 |
+
for _ in range(int(start_time // 30)):
|
1581 |
+
result.append((0, [], 30))
|
1582 |
+
|
1583 |
+
# Determine whether segment fits in one block or wraps to the next
|
1584 |
+
if (start_time + correction) // 30 == (end_time + correction) // 30:
|
1585 |
+
# Segment fits within a single 30s window
|
1586 |
+
result.append(((start_time + correction) % 30, tokens, (end_time + correction) % 30))
|
1587 |
+
else:
|
1588 |
+
# Segment would wrap across a 30s boundary
|
1589 |
+
new_seg_start = (correction + start_time) % 30
|
1590 |
+
new_seg_end = end_time - start_time
|
1591 |
+
|
1592 |
+
if new_seg_end >= new_seg_start:
|
1593 |
+
# Seek back to the beginning of the segment window
|
1594 |
+
result.append((new_seg_start, [], new_seg_start))
|
1595 |
+
result.append((0, tokens, new_seg_end))
|
1596 |
+
# Apply correction to align future timestamps to new 30s block
|
1597 |
+
correction = self.round_to_nearest_0_02(-(start_time % 30))
|
1598 |
+
else:
|
1599 |
+
# Otherwise, just insert with adjusted times
|
1600 |
+
result.append((new_seg_start, tokens, new_seg_end))
|
1601 |
+
correction = self.round_to_nearest_0_02(30 - (start_time % 30))
|
1602 |
+
# print(f'Processed segment {i}, result: {self.tokenizer.decode(self.tokenizer("".join([f"<|{seg[0]:.2f}|>{self.tokenizer.decode(seg[1])}<|{seg[2]:.2f}|>" for seg in result]))["input_ids"], decode_with_timestamps=True)[-250:]}')
|
1603 |
+
# Update the previous segment's end time for next iteration
|
1604 |
+
prev_segment_end_time = end_time + correction
|
1605 |
+
|
1606 |
+
# Convert result segments into a token sequence with proper timestamp formatting
|
1607 |
+
encoded = self.tokenizer(
|
1608 |
+
"".join([f"<|{seg[0]:.2f}|>{self.tokenizer.decode(seg[1])}<|{seg[2]:.2f}|>" for seg in result])
|
1609 |
+
)['input_ids']
|
1610 |
+
results.append(encoded)
|
1611 |
+
|
1612 |
+
# Pad all sequences to the same length for batching
|
1613 |
+
sequences = pad_sequence(
|
1614 |
+
[torch.tensor(res, device=sequences['sequences'].device) for res in results],
|
1615 |
+
batch_first=True,
|
1616 |
+
padding_value=self.tokenizer.pad_token_id
|
1617 |
+
)
|
1618 |
+
return sequences
|
1619 |
+
|
1620 |
+
@staticmethod
|
1621 |
+
def _retrieve_segment(
|
1622 |
+
seek_sequence,
|
1623 |
+
seek_outputs,
|
1624 |
+
time_offset,
|
1625 |
+
timestamp_begin,
|
1626 |
+
seek_num_frames,
|
1627 |
+
time_precision,
|
1628 |
+
input_stride,
|
1629 |
+
prev_idx,
|
1630 |
+
idx,
|
1631 |
+
return_token_timestamps,
|
1632 |
+
):
|
1633 |
+
# find the predicted "end of segment" predictions of Whisper
|
1634 |
+
# "end of segment" predictions occur whenever Whisper predicts a timestamp token
|
1635 |
+
timestamp_tokens: torch.Tensor = seek_sequence.ge(timestamp_begin)
|
1636 |
+
single_timestamp_ending = timestamp_tokens[-2:].tolist() == [False, True]
|
1637 |
+
timestamp_segment_indices = torch.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0]
|
1638 |
+
timestamp_segment_indices.add_(1)
|
1639 |
+
token_timestamps = seek_outputs[idx]["token_timestamps"] if return_token_timestamps else []
|
1640 |
+
|
1641 |
+
# If whisper predicted a "end of segment" via a timestep token, let's go ever each
|
1642 |
+
# "end of segment" prediction and slice the decoding into segments accordingly
|
1643 |
+
if len(timestamp_segment_indices) > 0:
|
1644 |
+
# if the output contains two consecutive timestamp tokens
|
1645 |
+
slices = timestamp_segment_indices.tolist()
|
1646 |
+
segments = []
|
1647 |
+
if single_timestamp_ending:
|
1648 |
+
slices.append(len(seek_sequence))
|
1649 |
+
|
1650 |
+
last_slice = 0
|
1651 |
+
# Add each segment to list of all segments
|
1652 |
+
for current_slice in slices:
|
1653 |
+
sliced_tokens = seek_sequence[last_slice:current_slice]
|
1654 |
+
start_timestamp_pos = sliced_tokens[0].item() - timestamp_begin
|
1655 |
+
end_timestamp_pos = sliced_tokens[-1].item() - timestamp_begin
|
1656 |
+
segments.append(
|
1657 |
+
{
|
1658 |
+
"start": time_offset[prev_idx] + start_timestamp_pos * time_precision,
|
1659 |
+
"end": time_offset[prev_idx] + end_timestamp_pos * time_precision,
|
1660 |
+
"tokens": sliced_tokens,
|
1661 |
+
"result": seek_outputs[idx],
|
1662 |
+
}
|
1663 |
+
)
|
1664 |
+
if return_token_timestamps:
|
1665 |
+
segments[-1]["token_timestamps"] = (
|
1666 |
+
token_timestamps[last_slice:current_slice] + time_offset[prev_idx]
|
1667 |
+
)
|
1668 |
+
last_slice = current_slice
|
1669 |
+
|
1670 |
+
if single_timestamp_ending:
|
1671 |
+
# single timestamp at the end means no speech after the last timestamp.
|
1672 |
+
segment_offset = seek_num_frames[prev_idx]
|
1673 |
+
else:
|
1674 |
+
# otherwise, ignore the unfinished segment and seek to the last timestamp
|
1675 |
+
# here we throw away all predictions after the last predicted "end of segment"
|
1676 |
+
# since we are cutting right in the middle of an audio
|
1677 |
+
last_timestamp_pos = seek_sequence[last_slice - 1].item() - timestamp_begin
|
1678 |
+
segment_offset = last_timestamp_pos * input_stride
|
1679 |
+
else:
|
1680 |
+
# If whisper does not predict any "end of segment" token, then
|
1681 |
+
# the whole decoding is considered a segment and we add it to the list of segments
|
1682 |
+
timestamps = seek_sequence[timestamp_tokens.nonzero().flatten()]
|
1683 |
+
start_timestamp_pos = 0.0
|
1684 |
+
last_timestamp_pos = seek_num_frames[prev_idx] // 2
|
1685 |
+
skip = False
|
1686 |
+
segment_offset = seek_num_frames[prev_idx]
|
1687 |
+
|
1688 |
+
if timestamps.numel() > 1:
|
1689 |
+
start_timestamp_pos = timestamps[-2].item() - timestamp_begin
|
1690 |
+
last_timestamp_pos = timestamps[-1].item() - timestamp_begin
|
1691 |
+
elif timestamps.numel() == 1:
|
1692 |
+
# no consecutive timestamps but it has a timestamp; use the last one.
|
1693 |
+
start_timestamp_pos = timestamps[-1].item() - timestamp_begin
|
1694 |
+
if start_timestamp_pos > 200:
|
1695 |
+
# segment does not fit into decoding window, so we need to rollback
|
1696 |
+
segment_offset = start_timestamp_pos * input_stride - 100 # timestamp might be inaccurate
|
1697 |
+
skip = True
|
1698 |
+
else:
|
1699 |
+
# empty sequence, or sequence w/o timestamps
|
1700 |
+
skip = True
|
1701 |
+
|
1702 |
+
if skip:
|
1703 |
+
segments = []
|
1704 |
+
else:
|
1705 |
+
segments = [
|
1706 |
+
{
|
1707 |
+
"start": time_offset[prev_idx] + start_timestamp_pos * time_precision,
|
1708 |
+
"end": time_offset[prev_idx] + last_timestamp_pos * time_precision,
|
1709 |
+
"tokens": seek_sequence,
|
1710 |
+
"result": seek_outputs[idx],
|
1711 |
+
}
|
1712 |
+
]
|
1713 |
+
if return_token_timestamps:
|
1714 |
+
segments[-1]["token_timestamps"] = token_timestamps + time_offset[prev_idx]
|
1715 |
+
segment_offset = seek_num_frames[prev_idx]
|
1716 |
+
|
1717 |
+
if segment_offset <= 0:
|
1718 |
+
msg = f"Timestamps: {timestamps}, Segments: {segments}"
|
1719 |
+
raise ValueError(f"Segment offset: {segment_offset} <= 0. This should not happen!\n{msg}")
|
1720 |
+
|
1721 |
+
return segments, segment_offset
|
1722 |
+
|
1723 |
+
def _postprocess_outputs(self, seek_outputs, decoder_input_ids, return_token_timestamps, generation_config):
|
1724 |
+
# remove all previously passed decoder input ids
|
1725 |
+
if isinstance(seek_outputs, torch.Tensor):
|
1726 |
+
seek_outputs = seek_outputs[:, decoder_input_ids.shape[-1]:]
|
1727 |
+
seek_outputs = torch.hstack((
|
1728 |
+
seek_outputs,
|
1729 |
+
torch.full((seek_outputs.shape[0], 1),
|
1730 |
+
fill_value=generation_config.pad_token_id,
|
1731 |
+
dtype=seek_outputs.dtype,
|
1732 |
+
device=seek_outputs.device
|
1733 |
+
)
|
1734 |
+
))
|
1735 |
+
# first_eos = (seek_outputs == generation_config.eos_token_id).int().argmax(dim=1)
|
1736 |
+
# biggest_timestamp = generation_config.no_timestamps_token_id + 1 + 30 * 50
|
1737 |
+
|
1738 |
+
# empty_transcriptions = first_eos == 0
|
1739 |
+
# seek_outputs[empty_transcriptions, 0] = generation_config.no_timestamps_token_id + 1 # 0.00 timestamp
|
1740 |
+
# seek_outputs[empty_transcriptions, 1] = biggest_timestamp # 30.00 timestamp
|
1741 |
+
# seek_outputs[empty_transcriptions, 2] = generation_config.eos_token_id # 30.00 timestamp
|
1742 |
+
|
1743 |
+
return seek_outputs, seek_outputs
|
1744 |
+
|
1745 |
+
if return_token_timestamps and hasattr(generation_config, "alignment_heads"):
|
1746 |
+
num_frames = getattr(generation_config, "num_frames", None)
|
1747 |
+
seek_outputs["token_timestamps"] = self._extract_token_timestamps(
|
1748 |
+
seek_outputs, generation_config.alignment_heads, num_frames=num_frames
|
1749 |
+
)
|
1750 |
+
seek_outputs["token_timestamps"] = seek_outputs["token_timestamps"][:, decoder_input_ids.shape[-1]:]
|
1751 |
+
|
1752 |
+
seek_outputs["sequences"] = seek_outputs["sequences"][:, decoder_input_ids.shape[-1]:]
|
1753 |
+
|
1754 |
+
def split_by_batch_index(values, key, batch_idx):
|
1755 |
+
if key == "scores":
|
1756 |
+
return [v[batch_idx].cpu() for v in values]
|
1757 |
+
elif key == "past_key_values":
|
1758 |
+
# we don't save `past_key_values` as this is too costly
|
1759 |
+
return None
|
1760 |
+
elif isinstance(values[batch_idx], tuple) and torch.is_tensor(values[batch_idx][0]):
|
1761 |
+
return tuple(tuple(w[batch_idx][None].cpu() for w in v) for v in values)
|
1762 |
+
return values[batch_idx].cpu()
|
1763 |
+
|
1764 |
+
sequence_tokens = seek_outputs["sequences"]
|
1765 |
+
seek_outputs = [
|
1766 |
+
{k: split_by_batch_index(v, k, i) for k, v in seek_outputs.items()}
|
1767 |
+
for i in range(sequence_tokens.shape[0])
|
1768 |
+
]
|
1769 |
+
|
1770 |
+
return sequence_tokens, seek_outputs
|
generation_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"begin_suppress_tokens": [
|
4 |
+
220,
|
5 |
+
50256
|
6 |
+
],
|
7 |
+
"bos_token_id": 50257,
|
8 |
+
"decoder_start_token_id": 50258,
|
9 |
+
"eos_token_id": 50257,
|
10 |
+
"pad_token_id": 50257,
|
11 |
+
"transformers_version": "4.42.0"
|
12 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc3ff21a41ebdb9dbe637815740c4edcf77bfbfe962c601ca33071340fd77bd9
|
3 |
+
size 3833628952
|
modeling_dicow.py
ADDED
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn import CrossEntropyLoss
|
6 |
+
import torch.utils.checkpoint
|
7 |
+
import torch.utils.checkpoint
|
8 |
+
from transformers.modeling_outputs import Seq2SeqLMOutput
|
9 |
+
from transformers.models.speech_encoder_decoder.modeling_speech_encoder_decoder import (
|
10 |
+
shift_tokens_right,
|
11 |
+
)
|
12 |
+
from transformers.models.whisper.modeling_whisper import (
|
13 |
+
WhisperEncoder,
|
14 |
+
)
|
15 |
+
from transformers.models.whisper.modeling_whisper import (
|
16 |
+
WhisperForConditionalGeneration,
|
17 |
+
shift_tokens_right,
|
18 |
+
WhisperModel,
|
19 |
+
)
|
20 |
+
from transformers.models.whisper.modeling_whisper import sinusoids
|
21 |
+
from transformers.utils import logging
|
22 |
+
|
23 |
+
from .config import Seq2SeqLMOutputLosses, Seq2SeqModelOutputLogit, DiCoWConfig
|
24 |
+
from .encoder import CustomLinear, CustomDiagonalLinear, FDDT, DiCoWEncoder
|
25 |
+
from .generation import DiCoWGenerationMixin
|
26 |
+
|
27 |
+
logging.set_verbosity_debug()
|
28 |
+
logger = logging.get_logger("transformers")
|
29 |
+
|
30 |
+
|
31 |
+
class DiCoW(WhisperModel):
|
32 |
+
def __init__(self, config: DiCoWConfig):
|
33 |
+
super().__init__(config)
|
34 |
+
self.encoder = DiCoWEncoder(config)
|
35 |
+
|
36 |
+
def forward(
|
37 |
+
self,
|
38 |
+
input_features: Optional[torch.FloatTensor] = None,
|
39 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
40 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
41 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
42 |
+
head_mask: Optional[torch.Tensor] = None,
|
43 |
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
44 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
45 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
46 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
47 |
+
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
|
48 |
+
decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None,
|
49 |
+
use_cache: Optional[bool] = None,
|
50 |
+
output_attentions: Optional[bool] = None,
|
51 |
+
output_hidden_states: Optional[bool] = None,
|
52 |
+
return_dict: Optional[bool] = None,
|
53 |
+
stno_mask: Optional[torch.FloatTensor] = None,
|
54 |
+
per_group_sizes: Optional[torch.LongTensor] = None,
|
55 |
+
) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutputLosses]:
|
56 |
+
r"""
|
57 |
+
Returns:
|
58 |
+
|
59 |
+
Example:
|
60 |
+
```python
|
61 |
+
>>> import torch
|
62 |
+
>>> from transformers import AutoFeatureExtractor, WhisperModel
|
63 |
+
>>> from datasets import load_dataset
|
64 |
+
|
65 |
+
>>> model = WhisperModel.from_pretrained("openai/whisper-base")
|
66 |
+
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base")
|
67 |
+
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
68 |
+
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt")
|
69 |
+
>>> input_features = inputs.input_features
|
70 |
+
>>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
|
71 |
+
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
|
72 |
+
>>> list(last_hidden_state.shape)
|
73 |
+
[1, 2, 512]
|
74 |
+
```"""
|
75 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
76 |
+
output_hidden_states = (
|
77 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
78 |
+
)
|
79 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
80 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
81 |
+
|
82 |
+
if encoder_outputs is None:
|
83 |
+
input_features = self._mask_input_features(input_features, attention_mask=attention_mask)
|
84 |
+
|
85 |
+
encoder_outputs = self.encoder(
|
86 |
+
input_features,
|
87 |
+
output_attentions=output_attentions,
|
88 |
+
output_hidden_states=True,
|
89 |
+
head_mask=head_mask,
|
90 |
+
return_dict=return_dict,
|
91 |
+
stno_mask=stno_mask,
|
92 |
+
per_group_sizes=per_group_sizes
|
93 |
+
)
|
94 |
+
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
|
95 |
+
# elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
96 |
+
# raise ValueError("encoder_outputs should be of type BaseModelOutput when return_dict=True.")
|
97 |
+
|
98 |
+
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
|
99 |
+
decoder_outputs = self.decoder(
|
100 |
+
input_ids=decoder_input_ids,
|
101 |
+
attention_mask=decoder_attention_mask,
|
102 |
+
encoder_hidden_states=encoder_outputs.hidden_states[-1],
|
103 |
+
head_mask=decoder_head_mask,
|
104 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
105 |
+
past_key_values=past_key_values,
|
106 |
+
inputs_embeds=decoder_inputs_embeds,
|
107 |
+
position_ids=decoder_position_ids,
|
108 |
+
use_cache=use_cache,
|
109 |
+
output_attentions=output_attentions,
|
110 |
+
output_hidden_states=output_hidden_states,
|
111 |
+
return_dict=return_dict,
|
112 |
+
)
|
113 |
+
|
114 |
+
if not return_dict:
|
115 |
+
return decoder_outputs + encoder_outputs
|
116 |
+
|
117 |
+
return Seq2SeqModelOutputLogit(
|
118 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
119 |
+
past_key_values=decoder_outputs.past_key_values,
|
120 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
121 |
+
decoder_attentions=decoder_outputs.attentions,
|
122 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
123 |
+
encoder_last_hidden_state=encoder_outputs.hidden_states[-1],
|
124 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
125 |
+
encoder_attentions=encoder_outputs.attentions,
|
126 |
+
encoder_logits=encoder_outputs.logits,
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
class DiCoWForConditionalGeneration(DiCoWGenerationMixin, WhisperForConditionalGeneration):
|
131 |
+
config_class = DiCoWConfig
|
132 |
+
|
133 |
+
def __init__(self, config: DiCoWConfig):
|
134 |
+
super().__init__(config)
|
135 |
+
self.model = DiCoW(config)
|
136 |
+
self.encoder_logits = None
|
137 |
+
self.tokenizer = None
|
138 |
+
self.vad_seek_callback = None
|
139 |
+
self.stno_mask = None
|
140 |
+
self.stno_mask_seek = None
|
141 |
+
|
142 |
+
# We need this setter as we can't pass a function/method as a config argument.
|
143 |
+
# JSON serialization fails at that point.
|
144 |
+
def set_vad_seek_callback(self, vad_seek_callback):
|
145 |
+
self.vad_seek_callback = vad_seek_callback
|
146 |
+
|
147 |
+
def set_tokenizer(self, tokenizer):
|
148 |
+
self.tokenizer = tokenizer
|
149 |
+
|
150 |
+
def _init_weights(self, module):
|
151 |
+
std = self.config.init_std
|
152 |
+
fddt_init = self.config.fddt_init
|
153 |
+
if isinstance(module, CustomLinear):
|
154 |
+
with torch.no_grad():
|
155 |
+
if fddt_init == 'random':
|
156 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
157 |
+
if module.bias is not None:
|
158 |
+
module.bias.data.normal_(mean=0.0, std=std)
|
159 |
+
elif fddt_init == 'non-disturbing':
|
160 |
+
module.weight.data = torch.eye(*module.weight.shape).data
|
161 |
+
if module.bias is not None:
|
162 |
+
module.bias.data.zero_()
|
163 |
+
elif fddt_init == 'disparagement':
|
164 |
+
eye = torch.eye(*module.weight.shape)
|
165 |
+
eye *= module.init_eye_val
|
166 |
+
module.weight.data = eye.data
|
167 |
+
if module.bias is not None:
|
168 |
+
module.bias.data.zero_()
|
169 |
+
elif isinstance(module, CustomDiagonalLinear):
|
170 |
+
with torch.no_grad():
|
171 |
+
if fddt_init == 'random':
|
172 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
173 |
+
if module.bias is not None:
|
174 |
+
module.bias.data.normal_(mean=0.0, std=std)
|
175 |
+
elif fddt_init == 'non-disturbing':
|
176 |
+
module.weight.data = torch.ones_like(module.weight.data).data
|
177 |
+
if module.bias is not None:
|
178 |
+
module.bias.data.zero_()
|
179 |
+
elif fddt_init == 'disparagement':
|
180 |
+
module.weight.data = module.init_eye_val * torch.ones_like(module.weight.data).data
|
181 |
+
if module.bias is not None:
|
182 |
+
module.bias.data.zero_()
|
183 |
+
elif isinstance(module, FDDT):
|
184 |
+
if module.bias_only:
|
185 |
+
if fddt_init == 'random':
|
186 |
+
module.target_linear.data.normal_(mean=0.0, std=std)
|
187 |
+
module.non_target_linear.data.normal_(mean=0.0, std=std)
|
188 |
+
module.overlap_linear.data.normal_(mean=0.0, std=std)
|
189 |
+
module.silence_linear.data.normal_(mean=0.0, std=std)
|
190 |
+
else:
|
191 |
+
module.target_linear.data.zero_()
|
192 |
+
module.non_target_linear.data.zero_()
|
193 |
+
module.overlap_linear.data.zero_()
|
194 |
+
module.silence_linear.data.zero_()
|
195 |
+
elif isinstance(module, (nn.Linear, nn.Conv1d)):
|
196 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
197 |
+
if module.bias is not None:
|
198 |
+
module.bias.data.zero_()
|
199 |
+
elif isinstance(module, nn.Embedding):
|
200 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
201 |
+
if module.padding_idx is not None:
|
202 |
+
module.weight.data[module.padding_idx].zero_()
|
203 |
+
elif isinstance(module, WhisperEncoder):
|
204 |
+
with torch.no_grad():
|
205 |
+
embed_positions = module.embed_positions.weight
|
206 |
+
embed_positions.copy_(sinusoids(*embed_positions.shape))
|
207 |
+
elif isinstance(module, nn.LayerNorm):
|
208 |
+
module.reset_parameters()
|
209 |
+
elif isinstance(module, nn.MultiheadAttention):
|
210 |
+
module._reset_parameters()
|
211 |
+
elif isinstance(module, nn.ConvTranspose1d):
|
212 |
+
module.reset_parameters()
|
213 |
+
|
214 |
+
def forward(
|
215 |
+
self,
|
216 |
+
input_features: Optional[torch.FloatTensor] = None,
|
217 |
+
stno_mask: Optional[torch.FloatTensor] = None,
|
218 |
+
per_group_sizes: Optional[torch.LongTensor] = None,
|
219 |
+
attention_mask_enc: Optional[torch.LongTensor] = None,
|
220 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
221 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
222 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
223 |
+
head_mask: Optional[torch.Tensor] = None,
|
224 |
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
225 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
226 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
227 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
228 |
+
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None,
|
229 |
+
decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None,
|
230 |
+
labels: Optional[torch.LongTensor] = None,
|
231 |
+
upp_labels: Optional[torch.LongTensor] = None,
|
232 |
+
use_cache: Optional[bool] = None,
|
233 |
+
output_attentions: Optional[bool] = None,
|
234 |
+
output_hidden_states: Optional[bool] = None,
|
235 |
+
return_dict: Optional[bool] = None,
|
236 |
+
is_valid: Optional[bool] = None,
|
237 |
+
) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]:
|
238 |
+
r"""
|
239 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
240 |
+
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]`
|
241 |
+
or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is
|
242 |
+
only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
243 |
+
|
244 |
+
Returns:
|
245 |
+
|
246 |
+
Example:
|
247 |
+
|
248 |
+
```python
|
249 |
+
>>> import torch
|
250 |
+
>>> from transformers import AutoProcessor, WhisperForConditionalGeneration
|
251 |
+
>>> from datasets import load_dataset
|
252 |
+
|
253 |
+
>>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
|
254 |
+
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
|
255 |
+
|
256 |
+
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
257 |
+
|
258 |
+
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt")
|
259 |
+
>>> input_features = inputs.input_features
|
260 |
+
|
261 |
+
>>> generated_ids = model.generate(inputs=input_features)
|
262 |
+
|
263 |
+
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
264 |
+
>>> transcription
|
265 |
+
' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'
|
266 |
+
```"""
|
267 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
268 |
+
|
269 |
+
if labels is not None:
|
270 |
+
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
271 |
+
decoder_input_ids = shift_tokens_right(
|
272 |
+
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
273 |
+
)
|
274 |
+
|
275 |
+
outputs = self.model(
|
276 |
+
input_features,
|
277 |
+
attention_mask=attention_mask,
|
278 |
+
decoder_input_ids=decoder_input_ids,
|
279 |
+
encoder_outputs=encoder_outputs,
|
280 |
+
decoder_attention_mask=decoder_attention_mask,
|
281 |
+
head_mask=head_mask,
|
282 |
+
decoder_head_mask=decoder_head_mask,
|
283 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
284 |
+
past_key_values=past_key_values,
|
285 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
286 |
+
decoder_position_ids=decoder_position_ids,
|
287 |
+
use_cache=use_cache,
|
288 |
+
output_attentions=output_attentions,
|
289 |
+
output_hidden_states=output_hidden_states,
|
290 |
+
return_dict=return_dict,
|
291 |
+
stno_mask=stno_mask,
|
292 |
+
per_group_sizes=per_group_sizes
|
293 |
+
)
|
294 |
+
|
295 |
+
dec_lm_logits = self.proj_out(outputs.last_hidden_state)
|
296 |
+
enc_lm_logits = outputs.encoder_logits
|
297 |
+
|
298 |
+
loss = None
|
299 |
+
ctc_loss = 0
|
300 |
+
|
301 |
+
# remove fake inputs from labels and logits given per group sizes
|
302 |
+
if is_valid is not None:
|
303 |
+
if self.config.ctc_weight > 0.0:
|
304 |
+
enc_lm_logits = enc_lm_logits[is_valid]
|
305 |
+
dec_lm_logits = dec_lm_logits[is_valid]
|
306 |
+
labels = labels[is_valid]
|
307 |
+
upp_labels = upp_labels[is_valid]
|
308 |
+
|
309 |
+
if labels is not None and self.config.ctc_weight > 0.0:
|
310 |
+
enc_labels = labels.clone()
|
311 |
+
for token in self.tokenizer.prefix_tokens:
|
312 |
+
if (enc_labels[:, 0] == token).all():
|
313 |
+
enc_labels = enc_labels[:, 1:]
|
314 |
+
enc_labels[enc_labels == self.config.eos_token_id] = -100
|
315 |
+
|
316 |
+
ctc_loss = self.get_encoder().get_loss(enc_lm_logits, enc_labels)
|
317 |
+
|
318 |
+
if labels is not None:
|
319 |
+
loss_fct = CrossEntropyLoss(reduction='none')
|
320 |
+
# move labels to correct device to enable PP
|
321 |
+
labels = labels.to(dec_lm_logits.device)
|
322 |
+
dec_loss1 = loss_fct(dec_lm_logits.view(-1, self.config.vocab_size), labels.reshape(-1))
|
323 |
+
dec_loss2 = loss_fct(dec_lm_logits.view(-1, self.config.vocab_size), upp_labels.reshape(-1))
|
324 |
+
dec_loss = torch.hstack((dec_loss1[..., None], dec_loss2[..., None])).min(dim=-1).values.mean()
|
325 |
+
loss = (1 - self.config.ctc_weight) * dec_loss + self.config.ctc_weight * ctc_loss
|
326 |
+
|
327 |
+
if not return_dict:
|
328 |
+
output = (dec_lm_logits,) + outputs[1:]
|
329 |
+
return ((loss,) + output) if loss is not None else output
|
330 |
+
|
331 |
+
return Seq2SeqLMOutputLosses(
|
332 |
+
loss=loss,
|
333 |
+
logits=dec_lm_logits,
|
334 |
+
past_key_values=outputs.past_key_values,
|
335 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
336 |
+
decoder_attentions=outputs.decoder_attentions,
|
337 |
+
cross_attentions=outputs.cross_attentions,
|
338 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
339 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
340 |
+
encoder_attentions=outputs.encoder_attentions,
|
341 |
+
encoder_logits=enc_lm_logits,
|
342 |
+
)
|
343 |
+
|
344 |
+
def _get_feat_extract_output_lengths(self, attention_mask: torch.Tensor) -> torch.Tensor:
|
345 |
+
return (self.model.encoder._get_feat_extract_output_lengths(attention_mask) / 4).ceil()
|
346 |
+
|
347 |
+
def freeze_except(self, prefixes_to_preheat):
|
348 |
+
for name, param in self.named_parameters():
|
349 |
+
param.requires_grad = False
|
350 |
+
for prefix in prefixes_to_preheat:
|
351 |
+
if name.startswith(prefix):
|
352 |
+
param.requires_grad = True
|
353 |
+
|
354 |
+
def suppress_interactions(self):
|
355 |
+
"""This method suppress final projection in CoAttention blocks to let the original information flow through"""
|
356 |
+
for name, param in self.named_parameters():
|
357 |
+
if "interaction" in name and "cat_proj" in name:
|
358 |
+
with torch.no_grad():
|
359 |
+
if "bias" in name:
|
360 |
+
param[:] = 0.
|
361 |
+
else:
|
362 |
+
param[:] *= 0.001
|
utils.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers import WhisperTimeStampLogitsProcessor
|
5 |
+
|
6 |
+
|
7 |
+
def remove_fake_elements(inputs, per_group_sizes):
|
8 |
+
max_spks = per_group_sizes.max()
|
9 |
+
number_of_groups = per_group_sizes.shape[0]
|
10 |
+
outputs = []
|
11 |
+
inputs = inputs.view(number_of_groups, max_spks, *inputs.shape[1:])
|
12 |
+
for i, group_size in enumerate(per_group_sizes):
|
13 |
+
outputs.append(inputs[i, :group_size])
|
14 |
+
outputs = torch.cat(outputs, dim=0)
|
15 |
+
return outputs
|
16 |
+
|
17 |
+
|
18 |
+
class WhisperTimeStampLogitsProcessorCustom(WhisperTimeStampLogitsProcessor):
|
19 |
+
def __init__(
|
20 |
+
self, generate_config, begin_index: Optional[int] = None,
|
21 |
+
_detect_timestamp_from_logprob: Optional[bool] = None
|
22 |
+
): # support for the kwargs
|
23 |
+
self.no_timestamps_token_id = generate_config.no_timestamps_token_id
|
24 |
+
self.timestamp_begin = generate_config.no_timestamps_token_id + 1
|
25 |
+
self.eos_token_id = generate_config.eos_token_id or generate_config.bos_token_id
|
26 |
+
|
27 |
+
# this variable is mostly just used for testing
|
28 |
+
self._detect_timestamp_from_logprob = (
|
29 |
+
_detect_timestamp_from_logprob
|
30 |
+
if _detect_timestamp_from_logprob is not None
|
31 |
+
else getattr(generate_config, "_detect_timestamp_from_logprob", True)
|
32 |
+
)
|
33 |
+
|
34 |
+
num_forced_ids = (
|
35 |
+
len(generate_config.forced_decoder_ids) if generate_config.forced_decoder_ids is not None else 0
|
36 |
+
)
|
37 |
+
self.begin_index = begin_index or (num_forced_ids + 1)
|
38 |
+
|
39 |
+
self.max_initial_timestamp_index = getattr(generate_config, "max_initial_timestamp_index", None)
|
40 |
+
self.min_initial_timestamp_index = getattr(generate_config, "min_initial_timestamp_index", None)
|
41 |
+
# TODO(Patrick): Make sure that official models have max_initial_timestamp_index set to 50
|
42 |
+
# self.max_initial_timestamp_index = 50
|
43 |
+
|
44 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
45 |
+
# suppress <|notimestamps|> which is handled by without_timestamps
|
46 |
+
scores_processed = scores.clone()
|
47 |
+
scores_processed[:, self.no_timestamps_token_id] = -float("inf")
|
48 |
+
|
49 |
+
# timestamps have to appear in pairs, except directly before eos_token; mask logits accordingly
|
50 |
+
for k in range(input_ids.shape[0]):
|
51 |
+
sampled_tokens = input_ids[k, self.begin_index:]
|
52 |
+
seq = list(sampled_tokens.tolist())
|
53 |
+
|
54 |
+
last_was_timestamp = len(seq) >= 1 and seq[-1] >= self.timestamp_begin
|
55 |
+
penultimate_was_timestamp = len(seq) < 2 or seq[-2] >= self.timestamp_begin
|
56 |
+
|
57 |
+
if last_was_timestamp:
|
58 |
+
if penultimate_was_timestamp: # has to be non-timestamp
|
59 |
+
scores_processed[k, self.timestamp_begin:] = -float("inf")
|
60 |
+
else: # cannot be normal text tokens
|
61 |
+
scores_processed[k, : self.eos_token_id] = -float("inf")
|
62 |
+
|
63 |
+
timestamps = sampled_tokens[sampled_tokens.ge(self.timestamp_begin)]
|
64 |
+
if timestamps.numel() > 0:
|
65 |
+
# `timestamps` shouldn't decrease; forbid timestamp tokens smaller than the last
|
66 |
+
# The following lines of code are copied from: https://github.com/openai/whisper/pull/914/files#r1137085090
|
67 |
+
if last_was_timestamp and not penultimate_was_timestamp:
|
68 |
+
timestamp_last = timestamps[-1]
|
69 |
+
else:
|
70 |
+
# Avoid to emit <|0.00|> again
|
71 |
+
timestamp_last = timestamps[-1] + 1
|
72 |
+
|
73 |
+
scores_processed[k, self.timestamp_begin: timestamp_last] = -float("inf")
|
74 |
+
|
75 |
+
# apply the `max_initial_timestamp` option
|
76 |
+
if input_ids.shape[1] == self.begin_index:
|
77 |
+
eos_scores = scores_processed[:, self.eos_token_id].clone()
|
78 |
+
scores_processed[:, : self.timestamp_begin] = -float("inf")
|
79 |
+
scores_processed[:, self.eos_token_id] = eos_scores
|
80 |
+
|
81 |
+
if self.max_initial_timestamp_index is not None:
|
82 |
+
last_allowed = self.timestamp_begin + self.max_initial_timestamp_index
|
83 |
+
scores_processed[:, last_allowed + 1:] = -float("inf")
|
84 |
+
if self.min_initial_timestamp_index is not None:
|
85 |
+
first_allowed = self.timestamp_begin + self.min_initial_timestamp_index
|
86 |
+
scores_processed[:, self.timestamp_begin:first_allowed] = -float("inf")
|
87 |
+
|
88 |
+
# if sum of probability over timestamps is above any other token, sample timestamp
|
89 |
+
logprobs = torch.nn.functional.log_softmax(scores_processed.float(), dim=-1)
|
90 |
+
for k in range(input_ids.shape[0]):
|
91 |
+
timestamp_logprob = logprobs[k, self.timestamp_begin:].logsumexp(dim=-1)
|
92 |
+
max_text_token_logprob = logprobs[k, : self.timestamp_begin].max()
|
93 |
+
if timestamp_logprob > max_text_token_logprob and self._detect_timestamp_from_logprob:
|
94 |
+
scores_processed[k, : self.timestamp_begin] = -float("inf")
|
95 |
+
|
96 |
+
return scores_processed
|