DiCoW_v3_MLC / config.py
Lakoc's picture
Upload DiCoWForConditionalGeneration
324bced verified
from dataclasses import dataclass
from typing import Optional
import torch
from transformers import WhisperConfig
from transformers.modeling_outputs import Seq2SeqLMOutput, BaseModelOutput, Seq2SeqModelOutput
@dataclass
class Seq2SeqLMOutputLosses(Seq2SeqLMOutput):
enc_loss: Optional[torch.FloatTensor] = None
dec_loss: Optional[torch.FloatTensor] = None
encoder_logits: Optional[torch.FloatTensor] = None
@dataclass
class BaseModelOutputLogit(BaseModelOutput):
logits: Optional[torch.FloatTensor] = None
@dataclass
class Seq2SeqModelOutputLogit(Seq2SeqModelOutput):
encoder_logits: Optional[torch.FloatTensor] = None
class DiCoWConfig(WhisperConfig):
"""This is a modified version of the `WhisperEncoder` model from the `transformers` library.
The model has been modified to support CTC loss computation in the forward pass."""
model_type = "DiCoW"
def __init__(
self,
ctc_loss_reduction: str = "mean",
final_dropout: float = 0.0,
ctc_zero_infinity: bool = False,
ctc_weight: float = 0.0,
blank_token_id: Optional[int] = None,
additional_layer: bool = False,
additional_self_attention_layer: bool = False,
sub_sample: bool = False,
use_fddt: bool = True,
fddt_is_diagonal: bool = True,
fddt_bias_only: bool = False,
fddt_use_silence: bool = True,
fddt_use_target: bool = True,
fddt_use_overlap: bool = True,
fddt_use_non_target: bool = True,
remove_timestamps_from_ctc: bool = False,
apply_fddt_to_n_layers: int = -1,
fddt_init: str = 'non-disturbing', # random, non-disturbing, dispargement
n_soft_prompts: int = 16,
mt_num_speakers: int = 1,
non_target_fddt_value: float = 0.0,
use_initial_fddt: bool = False,
scb_method: str = None,
scb_layers: int = -1,
**kwargs,
):
super().__init__(**kwargs)
self.ctc_loss_reduction = ctc_loss_reduction
self.final_dropout = final_dropout
self.ctc_zero_infinity = ctc_zero_infinity
self.ctc_weight = ctc_weight
self.blank_token_id = blank_token_id
self.additional_layer = additional_layer
self.additional_self_attention_layer = additional_self_attention_layer
self.sub_sample = sub_sample
self.use_fddt = use_fddt
self.fddt_is_diagonal = fddt_is_diagonal
self.fddt_bias_only = fddt_bias_only
self.fddt_use_silence = fddt_use_silence
self.fddt_use_target = fddt_use_target
self.fddt_use_overlap = fddt_use_overlap
self.fddt_use_non_target = fddt_use_non_target
self.remove_timestamps_from_ctc = remove_timestamps_from_ctc
self.apply_fddt_to_n_layers = apply_fddt_to_n_layers
self.fddt_init = fddt_init
self.n_soft_prompts = n_soft_prompts
self.mt_num_speakers = mt_num_speakers
self.non_target_fddt_value = non_target_fddt_value
self.use_initial_fddt = use_initial_fddt
self.scb_method = scb_method
self.scb_layers = scb_layers
_HIDDEN_STATES_START_POSITION = 2