BTX24 commited on
Commit
351bcd0
·
verified ·
1 Parent(s): 456be6b

Model save

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224-in21k
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ - precision
10
+ - recall
11
+ model-index:
12
+ - name: vit-base-patch16-224-in21k-finetuned-hongrui_mammogram_v_1
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # vit-base-patch16-224-in21k-finetuned-hongrui_mammogram_v_1
20
+
21
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.7419
24
+ - Accuracy: 0.6991
25
+ - F1: 0.6767
26
+ - Precision: 0.6830
27
+ - Recall: 0.6991
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 64
48
+ - eval_batch_size: 64
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 256
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 10
56
+ - mixed_precision_training: Native AMP
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
61
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
62
+ | 0.8576 | 1.0 | 171 | 0.8431 | 0.6678 | 0.6067 | 0.7751 | 0.6678 |
63
+ | 0.8297 | 2.0 | 342 | 0.7965 | 0.6791 | 0.6182 | 0.6758 | 0.6791 |
64
+ | 0.8303 | 3.0 | 513 | 0.7872 | 0.6842 | 0.6360 | 0.6704 | 0.6842 |
65
+ | 0.7814 | 4.0 | 684 | 0.7717 | 0.6843 | 0.6597 | 0.6601 | 0.6843 |
66
+ | 0.7768 | 5.0 | 855 | 0.7694 | 0.6906 | 0.6544 | 0.6775 | 0.6906 |
67
+ | 0.7415 | 6.0 | 1026 | 0.7572 | 0.6962 | 0.6718 | 0.6764 | 0.6962 |
68
+ | 0.7351 | 7.0 | 1197 | 0.7549 | 0.6922 | 0.6569 | 0.6648 | 0.6922 |
69
+ | 0.7197 | 8.0 | 1368 | 0.7479 | 0.6986 | 0.6855 | 0.6926 | 0.6986 |
70
+ | 0.7087 | 9.0 | 1539 | 0.7445 | 0.6979 | 0.6697 | 0.6792 | 0.6979 |
71
+ | 0.6977 | 10.0 | 1710 | 0.7419 | 0.6991 | 0.6767 | 0.6830 | 0.6991 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.42.4
77
+ - Pytorch 2.4.0+cu121
78
+ - Datasets 2.21.0
79
+ - Tokenizers 0.19.1