Update README.md
Browse files
README.md
CHANGED
@@ -18,11 +18,38 @@ It has been trained using [TRL](https://github.com/huggingface/trl).
|
|
18 |
|
19 |
```python
|
20 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
23 |
-
generator = pipeline("text-generation", model="BTX24/medgemma-4b-it-sft-lora-stroke", device="cuda")
|
24 |
-
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
25 |
-
print(output["generated_text"])
|
26 |
```
|
27 |
|
28 |
## Training procedure
|
|
|
18 |
|
19 |
```python
|
20 |
from transformers import pipeline
|
21 |
+
from PIL import Image
|
22 |
+
import requests
|
23 |
+
import torch
|
24 |
+
|
25 |
+
pipe = pipeline(
|
26 |
+
"image-text-to-text",
|
27 |
+
model="BTX24/medgemma-4b-it-sft-lora-stroke",
|
28 |
+
torch_dtype=torch.bfloat16,
|
29 |
+
device="cuda",
|
30 |
+
)
|
31 |
+
|
32 |
+
# Image attribution: Stillwaterising, CC0, via Wikimedia Commons
|
33 |
+
image_url = "https://storage.googleapis.com/kagglesdsdata/datasets/6652053/10729545/%C4%B0NME%20VER%C4%B0%20SET%C4%B0/Kanama/PNG/10033.png?X-Goog-Algorithm=GOOG4-RSA-SHA256&X-Goog-Credential=gcp-kaggle-com%40kaggle-161607.iam.gserviceaccount.com%2F20250605%2Fauto%2Fstorage%2Fgoog4_request&X-Goog-Date=20250605T135753Z&X-Goog-Expires=259200&X-Goog-SignedHeaders=host&X-Goog-Signature=2e6408958b200e1b573c9f62f7b97a9c8cbdc8fc49c84e112a8c148226ec813c74c2da88404689d1563efac8f7759f86b14a579f3a15126b48fb74a6e3776d9fdf2c14471f6bca7b8a6c92f97af3678fb132f968e0eb318a32eef45794e3da8f1227b37aab36c3040cbb9f59c20116b498ce36c1ac19a75c5678dbbbb85bc00c91435f68935be48b50382750d3f5cdd3bd2dca06bce90b7b3f76d54ba454d7cf54ebd94b540e9d67127a7277e856a27d725dbed4ab9482b6b9c5e5ba6422182a5afbedf7b5ed2a3a4670b181b9b08fc538dce2743e3d8bfe39f4cb5bc9d78fb3205697b325ea8c37a70bd5350afcc9b41aee0a859462cf26b476db206e073513"
|
34 |
+
image = Image.open(requests.get(image_url, headers={"User-Agent": "example"}, stream=True).raw)
|
35 |
+
|
36 |
+
messages = [
|
37 |
+
{
|
38 |
+
"role": "system",
|
39 |
+
"content": [{"type": "text", "text": "You are an expert radiologist."}]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"role": "user",
|
43 |
+
"content": [
|
44 |
+
{"type": "text", "text": "Describe this X-ray"}
|
45 |
+
{"type": "image", "image": image},
|
46 |
+
]
|
47 |
+
}
|
48 |
+
]
|
49 |
+
|
50 |
+
output = pipe(text=messages, max_new_tokens=200)
|
51 |
+
print(output[0]["generated_text"][-1]["content"])
|
52 |
|
|
|
|
|
|
|
|
|
53 |
```
|
54 |
|
55 |
## Training procedure
|