--- library_name: transformers license: apache-2.0 base_model: timm/levit_128.fb_dist_in1k tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: levit_128.fb_dist_in1k-finetuned-stroke-binary results: [] --- # levit_128.fb_dist_in1k-finetuned-stroke-binary This model is a fine-tuned version of [timm/levit_128.fb_dist_in1k](https://huggingface.co/timm/levit_128.fb_dist_in1k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Accuracy: 0.6974 - F1: 0.7014 - Precision: 0.7298 - Recall: 0.6974 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 36 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.695 | 0.6202 | 100 | nan | 0.5364 | 0.5421 | 0.5541 | 0.5364 | | 0.6804 | 1.2357 | 200 | nan | 0.5798 | 0.5833 | 0.6278 | 0.5798 | | 0.6821 | 1.8558 | 300 | nan | 0.6232 | 0.6280 | 0.6413 | 0.6232 | | 0.6726 | 2.4713 | 400 | nan | 0.6671 | 0.6711 | 0.6829 | 0.6671 | | 0.6546 | 3.0868 | 500 | nan | 0.7024 | 0.7021 | 0.7018 | 0.7024 | | 0.647 | 3.7070 | 600 | nan | 0.7065 | 0.7093 | 0.7159 | 0.7065 | | 0.6263 | 4.3225 | 700 | nan | 0.6956 | 0.6991 | 0.7096 | 0.6956 | | 0.6112 | 4.9426 | 800 | nan | 0.6766 | 0.6807 | 0.7123 | 0.6766 | | 0.5704 | 5.5581 | 900 | nan | 0.6974 | 0.7014 | 0.7298 | 0.6974 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.4.0 - Tokenizers 0.21.0