Model save
Browse files
README.md
CHANGED
@@ -22,10 +22,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
22 |
This model is a fine-tuned version of [timm/levit_128.fb_dist_in1k](https://huggingface.co/timm/levit_128.fb_dist_in1k) on an unknown dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
- Loss: nan
|
25 |
-
- Accuracy: 0.
|
26 |
-
- F1: 0.
|
27 |
-
- Precision: 0.
|
28 |
-
- Recall: 0.
|
29 |
|
30 |
## Model description
|
31 |
|
@@ -60,15 +60,19 @@ The following hyperparameters were used during training:
|
|
60 |
|
61 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
62 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
|
|
|
|
|
|
|
|
72 |
|
73 |
|
74 |
### Framework versions
|
|
|
22 |
This model is a fine-tuned version of [timm/levit_128.fb_dist_in1k](https://huggingface.co/timm/levit_128.fb_dist_in1k) on an unknown dataset.
|
23 |
It achieves the following results on the evaluation set:
|
24 |
- Loss: nan
|
25 |
+
- Accuracy: 0.8598
|
26 |
+
- F1: 0.8577
|
27 |
+
- Precision: 0.8602
|
28 |
+
- Recall: 0.8598
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
60 |
|
61 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
62 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
63 |
+
| 0.7002 | 0.6202 | 100 | nan | 0.5690 | 0.5387 | 0.5349 | 0.5690 |
|
64 |
+
| 0.681 | 1.2357 | 200 | nan | 0.5834 | 0.5331 | 0.5372 | 0.5834 |
|
65 |
+
| 0.6874 | 1.8558 | 300 | nan | 0.6002 | 0.5596 | 0.5665 | 0.6002 |
|
66 |
+
| 0.6774 | 2.4713 | 400 | nan | 0.6124 | 0.5811 | 0.5867 | 0.6124 |
|
67 |
+
| 0.6533 | 3.0868 | 500 | nan | 0.6852 | 0.6694 | 0.6767 | 0.6852 |
|
68 |
+
| 0.6368 | 3.7070 | 600 | nan | 0.7205 | 0.7153 | 0.7153 | 0.7205 |
|
69 |
+
| 0.6196 | 4.3225 | 700 | nan | 0.7603 | 0.7471 | 0.7650 | 0.7603 |
|
70 |
+
| 0.5663 | 4.9426 | 800 | nan | 0.7883 | 0.7843 | 0.7864 | 0.7883 |
|
71 |
+
| 0.5196 | 5.5581 | 900 | nan | 0.8078 | 0.7972 | 0.8206 | 0.8078 |
|
72 |
+
| 0.4704 | 6.1736 | 1000 | nan | 0.8363 | 0.8317 | 0.8396 | 0.8363 |
|
73 |
+
| 0.4715 | 6.7938 | 1100 | nan | 0.8349 | 0.8292 | 0.8409 | 0.8349 |
|
74 |
+
| 0.452 | 7.4093 | 1200 | nan | 0.8503 | 0.8479 | 0.8505 | 0.8503 |
|
75 |
+
| 0.4538 | 8.0248 | 1300 | nan | 0.8598 | 0.8577 | 0.8602 | 0.8598 |
|
76 |
|
77 |
|
78 |
### Framework versions
|