BTX24 commited on
Commit
a9171b1
·
verified ·
1 Parent(s): 8c19488

Model save

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: facebook/dino-vitb8
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ - precision
11
+ - recall
12
+ model-index:
13
+ - name: dino-vitb8-finetuned-stroke-binary
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # dino-vitb8-finetuned-stroke-binary
21
+
22
+ This model is a fine-tuned version of [facebook/dino-vitb8](https://huggingface.co/facebook/dino-vitb8) on an unknown dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1127
25
+ - Accuracy: 0.9597
26
+ - F1: 0.9595
27
+ - Precision: 0.9602
28
+ - Recall: 0.9597
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 8
49
+ - eval_batch_size: 8
50
+ - seed: 42
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 32
53
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
54
+ - lr_scheduler_type: cosine
55
+ - lr_scheduler_warmup_ratio: 0.1
56
+ - num_epochs: 36
57
+ - mixed_precision_training: Native AMP
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
62
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
63
+ | 0.7965 | 0.6202 | 100 | 0.8312 | 0.5382 | 0.5058 | 0.4968 | 0.5382 |
64
+ | 0.6839 | 1.2357 | 200 | 0.6796 | 0.6246 | 0.5750 | 0.5991 | 0.6246 |
65
+ | 0.5662 | 1.8558 | 300 | 0.5344 | 0.7318 | 0.7119 | 0.7377 | 0.7318 |
66
+ | 0.4408 | 2.4713 | 400 | 0.4082 | 0.8123 | 0.8082 | 0.8120 | 0.8123 |
67
+ | 0.3611 | 3.0868 | 500 | 0.3335 | 0.8602 | 0.8597 | 0.8596 | 0.8602 |
68
+ | 0.3121 | 3.7070 | 600 | 0.2746 | 0.8860 | 0.8832 | 0.8914 | 0.8860 |
69
+ | 0.2614 | 4.3225 | 700 | 0.2299 | 0.9050 | 0.9040 | 0.9058 | 0.9050 |
70
+ | 0.242 | 4.9426 | 800 | 0.2103 | 0.9177 | 0.9178 | 0.9179 | 0.9177 |
71
+ | 0.2239 | 5.5581 | 900 | 0.2298 | 0.9082 | 0.9090 | 0.9136 | 0.9082 |
72
+ | 0.1979 | 6.1736 | 1000 | 0.2059 | 0.9209 | 0.9197 | 0.9230 | 0.9209 |
73
+ | 0.2082 | 6.7938 | 1100 | 0.1779 | 0.9263 | 0.9261 | 0.9261 | 0.9263 |
74
+ | 0.1723 | 7.4093 | 1200 | 0.1693 | 0.9308 | 0.9302 | 0.9315 | 0.9308 |
75
+ | 0.1877 | 8.0248 | 1300 | 0.1681 | 0.9380 | 0.9382 | 0.9385 | 0.9380 |
76
+ | 0.2 | 8.6450 | 1400 | 0.1482 | 0.9403 | 0.9402 | 0.9402 | 0.9403 |
77
+ | 0.1642 | 9.2605 | 1500 | 0.1637 | 0.9331 | 0.9322 | 0.9352 | 0.9331 |
78
+ | 0.1525 | 9.8806 | 1600 | 0.1494 | 0.9421 | 0.9417 | 0.9425 | 0.9421 |
79
+ | 0.158 | 10.4961 | 1700 | 0.1403 | 0.9484 | 0.9480 | 0.9495 | 0.9484 |
80
+ | 0.1327 | 11.1116 | 1800 | 0.1329 | 0.9498 | 0.9498 | 0.9498 | 0.9498 |
81
+ | 0.1465 | 11.7318 | 1900 | 0.1233 | 0.9525 | 0.9524 | 0.9525 | 0.9525 |
82
+ | 0.1311 | 12.3473 | 2000 | 0.1280 | 0.9521 | 0.9520 | 0.9520 | 0.9521 |
83
+ | 0.129 | 12.9674 | 2100 | 0.1173 | 0.9557 | 0.9556 | 0.9556 | 0.9557 |
84
+ | 0.1425 | 13.5829 | 2200 | 0.1190 | 0.9552 | 0.9552 | 0.9552 | 0.9552 |
85
+ | 0.1256 | 14.1984 | 2300 | 0.1225 | 0.9566 | 0.9563 | 0.9570 | 0.9566 |
86
+ | 0.1461 | 14.8186 | 2400 | 0.1171 | 0.9588 | 0.9588 | 0.9588 | 0.9588 |
87
+ | 0.133 | 15.4341 | 2500 | 0.1165 | 0.9548 | 0.9546 | 0.9549 | 0.9548 |
88
+ | 0.1258 | 16.0496 | 2600 | 0.1302 | 0.9480 | 0.9474 | 0.9500 | 0.9480 |
89
+ | 0.115 | 16.6698 | 2700 | 0.1320 | 0.9534 | 0.9537 | 0.9552 | 0.9534 |
90
+ | 0.1134 | 17.2853 | 2800 | 0.1171 | 0.9552 | 0.9549 | 0.9562 | 0.9552 |
91
+ | 0.1069 | 17.9054 | 2900 | 0.1127 | 0.9597 | 0.9595 | 0.9602 | 0.9597 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.48.3
97
+ - Pytorch 2.6.0+cu124
98
+ - Datasets 3.4.0
99
+ - Tokenizers 0.21.0