BTX24 commited on
Commit
42c42ff
·
verified ·
1 Parent(s): 3bff0f9

Model save

Browse files
Files changed (1) hide show
  1. README.md +22 -46
README.md CHANGED
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
21
 
22
  This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on an unknown dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.1572
25
- - Accuracy: 0.9412
26
- - F1: 0.9407
27
- - Precision: 0.9419
28
- - Recall: 0.9412
29
 
30
  ## Model description
31
 
@@ -60,47 +60,23 @@ The following hyperparameters were used during training:
60
 
61
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
62
  |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
63
- | 0.7318 | 0.6202 | 100 | 0.7300 | 0.4509 | 0.3933 | 0.5863 | 0.4509 |
64
- | 0.6751 | 1.2357 | 200 | 0.6745 | 0.5699 | 0.5670 | 0.5647 | 0.5699 |
65
- | 0.6521 | 1.8558 | 300 | 0.6379 | 0.6431 | 0.5742 | 0.6402 | 0.6431 |
66
- | 0.5941 | 2.4713 | 400 | 0.5868 | 0.7010 | 0.6588 | 0.7256 | 0.7010 |
67
- | 0.5435 | 3.0868 | 500 | 0.5232 | 0.7445 | 0.7133 | 0.7816 | 0.7445 |
68
- | 0.4554 | 3.7070 | 600 | 0.4618 | 0.7820 | 0.7602 | 0.8189 | 0.7820 |
69
- | 0.3992 | 4.3225 | 700 | 0.3778 | 0.8399 | 0.8327 | 0.8519 | 0.8399 |
70
- | 0.3563 | 4.9426 | 800 | 0.3372 | 0.8494 | 0.8434 | 0.8596 | 0.8494 |
71
- | 0.3286 | 5.5581 | 900 | 0.2941 | 0.8810 | 0.8785 | 0.8846 | 0.8810 |
72
- | 0.2749 | 6.1736 | 1000 | 0.2696 | 0.8874 | 0.8854 | 0.8895 | 0.8874 |
73
- | 0.2687 | 6.7938 | 1100 | 0.2890 | 0.8788 | 0.8744 | 0.8901 | 0.8788 |
74
- | 0.26 | 7.4093 | 1200 | 0.2636 | 0.8901 | 0.8868 | 0.8988 | 0.8901 |
75
- | 0.2624 | 8.0248 | 1300 | 0.2342 | 0.9082 | 0.9071 | 0.9092 | 0.9082 |
76
- | 0.2853 | 8.6450 | 1400 | 0.2192 | 0.9132 | 0.9122 | 0.9143 | 0.9132 |
77
- | 0.2153 | 9.2605 | 1500 | 0.2269 | 0.9104 | 0.9090 | 0.9130 | 0.9104 |
78
- | 0.2288 | 9.8806 | 1600 | 0.2319 | 0.9082 | 0.9064 | 0.9124 | 0.9082 |
79
- | 0.2233 | 10.4961 | 1700 | 0.2089 | 0.9177 | 0.9165 | 0.9201 | 0.9177 |
80
- | 0.2006 | 11.1116 | 1800 | 0.2029 | 0.9209 | 0.9205 | 0.9207 | 0.9209 |
81
- | 0.2059 | 11.7318 | 1900 | 0.1981 | 0.9199 | 0.9196 | 0.9198 | 0.9199 |
82
- | 0.1993 | 12.3473 | 2000 | 0.2155 | 0.9168 | 0.9150 | 0.9220 | 0.9168 |
83
- | 0.1925 | 12.9674 | 2100 | 0.1921 | 0.9258 | 0.9249 | 0.9274 | 0.9258 |
84
- | 0.2067 | 13.5829 | 2200 | 0.1957 | 0.9267 | 0.9258 | 0.9286 | 0.9267 |
85
- | 0.1856 | 14.1984 | 2300 | 0.1927 | 0.9272 | 0.9261 | 0.9297 | 0.9272 |
86
- | 0.217 | 14.8186 | 2400 | 0.2155 | 0.9204 | 0.9188 | 0.9253 | 0.9204 |
87
- | 0.1895 | 15.4341 | 2500 | 0.1782 | 0.9349 | 0.9343 | 0.9357 | 0.9349 |
88
- | 0.2031 | 16.0496 | 2600 | 0.2666 | 0.8928 | 0.8888 | 0.9060 | 0.8928 |
89
- | 0.1853 | 16.6698 | 2700 | 0.1845 | 0.9335 | 0.9331 | 0.9339 | 0.9335 |
90
- | 0.1868 | 17.2853 | 2800 | 0.2151 | 0.9204 | 0.9185 | 0.9273 | 0.9204 |
91
- | 0.1725 | 17.9054 | 2900 | 0.1789 | 0.9335 | 0.9330 | 0.9341 | 0.9335 |
92
- | 0.1899 | 18.5209 | 3000 | 0.1704 | 0.9389 | 0.9384 | 0.9399 | 0.9389 |
93
- | 0.1614 | 19.1364 | 3100 | 0.1761 | 0.9353 | 0.9348 | 0.9362 | 0.9353 |
94
- | 0.166 | 19.7566 | 3200 | 0.1767 | 0.9362 | 0.9357 | 0.9372 | 0.9362 |
95
- | 0.1783 | 20.3721 | 3300 | 0.1584 | 0.9403 | 0.9401 | 0.9403 | 0.9403 |
96
- | 0.159 | 20.9922 | 3400 | 0.1572 | 0.9408 | 0.9403 | 0.9413 | 0.9408 |
97
- | 0.1668 | 21.6078 | 3500 | 0.1652 | 0.9426 | 0.9419 | 0.9442 | 0.9426 |
98
- | 0.1423 | 22.2233 | 3600 | 0.1601 | 0.9380 | 0.9376 | 0.9384 | 0.9380 |
99
- | 0.1713 | 22.8434 | 3700 | 0.1572 | 0.9421 | 0.9417 | 0.9428 | 0.9421 |
100
- | 0.1657 | 23.4589 | 3800 | 0.1579 | 0.9408 | 0.9403 | 0.9413 | 0.9408 |
101
- | 0.1424 | 24.0744 | 3900 | 0.1689 | 0.9403 | 0.9397 | 0.9417 | 0.9403 |
102
- | 0.169 | 24.6946 | 4000 | 0.1558 | 0.9444 | 0.9439 | 0.9451 | 0.9444 |
103
- | 0.1439 | 25.3101 | 4100 | 0.1572 | 0.9412 | 0.9407 | 0.9419 | 0.9412 |
104
 
105
 
106
  ### Framework versions
 
21
 
22
  This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on an unknown dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.1527
25
+ - Accuracy: 0.9489
26
+ - F1: 0.9484
27
+ - Precision: 0.9505
28
+ - Recall: 0.9489
29
 
30
  ## Model description
31
 
 
60
 
61
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
62
  |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
63
+ | 0.1646 | 0.6202 | 100 | 0.1588 | 0.9430 | 0.9425 | 0.9442 | 0.9430 |
64
+ | 0.1417 | 1.2357 | 200 | 0.1640 | 0.9439 | 0.9433 | 0.9458 | 0.9439 |
65
+ | 0.1681 | 1.8558 | 300 | 0.1622 | 0.9453 | 0.9447 | 0.9470 | 0.9453 |
66
+ | 0.1512 | 2.4713 | 400 | 0.1510 | 0.9435 | 0.9430 | 0.9441 | 0.9435 |
67
+ | 0.1506 | 3.0868 | 500 | 0.1913 | 0.9340 | 0.9327 | 0.9391 | 0.9340 |
68
+ | 0.1654 | 3.7070 | 600 | 0.1679 | 0.9426 | 0.9419 | 0.9442 | 0.9426 |
69
+ | 0.1482 | 4.3225 | 700 | 0.1551 | 0.9403 | 0.9402 | 0.9402 | 0.9403 |
70
+ | 0.1599 | 4.9426 | 800 | 0.1489 | 0.9462 | 0.9457 | 0.9471 | 0.9462 |
71
+ | 0.1477 | 5.5581 | 900 | 0.1437 | 0.9426 | 0.9424 | 0.9425 | 0.9426 |
72
+ | 0.1308 | 6.1736 | 1000 | 0.1527 | 0.9417 | 0.9414 | 0.9416 | 0.9417 |
73
+ | 0.1362 | 6.7938 | 1100 | 0.1608 | 0.9426 | 0.9421 | 0.9432 | 0.9426 |
74
+ | 0.1494 | 7.4093 | 1200 | 0.1601 | 0.9435 | 0.9429 | 0.9451 | 0.9435 |
75
+ | 0.1592 | 8.0248 | 1300 | 0.1430 | 0.9430 | 0.9429 | 0.9429 | 0.9430 |
76
+ | 0.16 | 8.6450 | 1400 | 0.1504 | 0.9457 | 0.9451 | 0.9475 | 0.9457 |
77
+ | 0.1245 | 9.2605 | 1500 | 0.1506 | 0.9462 | 0.9458 | 0.9470 | 0.9462 |
78
+ | 0.1397 | 9.8806 | 1600 | 0.1971 | 0.9313 | 0.9300 | 0.9359 | 0.9313 |
79
+ | 0.1396 | 10.4961 | 1700 | 0.1527 | 0.9489 | 0.9484 | 0.9505 | 0.9489 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
 
81
 
82
  ### Framework versions