--- library_name: transformers license: apache-2.0 base_model: facebook/convnextv2-base-22k-224 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: convnextv2-base-22k-224-finetuned-tekno24 results: [] --- # convnextv2-base-22k-224-finetuned-tekno24 This model is a fine-tuned version of [facebook/convnextv2-base-22k-224](https://huggingface.co/facebook/convnextv2-base-22k-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9120 - Accuracy: 0.6138 - F1: 0.5996 - Precision: 0.5969 - Recall: 0.6138 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.3179 | 0.9968 | 78 | 1.2415 | 0.4207 | 0.3979 | 0.4642 | 0.4207 | | 1.1998 | 1.9936 | 156 | 1.0769 | 0.5103 | 0.4525 | 0.5309 | 0.5103 | | 1.168 | 2.9904 | 234 | 1.0573 | 0.5494 | 0.5033 | 0.5605 | 0.5494 | | 1.1107 | 4.0 | 313 | 0.9924 | 0.5540 | 0.5163 | 0.5257 | 0.5540 | | 1.1062 | 4.9968 | 391 | 1.0018 | 0.5747 | 0.5507 | 0.5660 | 0.5747 | | 1.0331 | 5.9936 | 469 | 0.9901 | 0.5931 | 0.5768 | 0.6202 | 0.5931 | | 1.0409 | 6.9904 | 547 | 0.9634 | 0.5747 | 0.5723 | 0.5722 | 0.5747 | | 1.0176 | 8.0 | 626 | 0.9504 | 0.5931 | 0.5834 | 0.5814 | 0.5931 | | 0.995 | 8.9968 | 704 | 0.9584 | 0.5908 | 0.5854 | 0.5853 | 0.5908 | | 0.9937 | 9.9936 | 782 | 0.9339 | 0.6023 | 0.5934 | 0.5894 | 0.6023 | | 0.9387 | 10.9904 | 860 | 0.9120 | 0.6138 | 0.5996 | 0.5969 | 0.6138 | | 0.9324 | 11.9617 | 936 | 0.9135 | 0.5954 | 0.5879 | 0.5865 | 0.5954 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/662eb39820de310d1558dd55/w-Uf0Oe9YwVog0rIJxnUw.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/662eb39820de310d1558dd55/_V0cO41hBdBnpBOpcDrWO.png)