Update README.md
Browse files
README.md
CHANGED
@@ -3,7 +3,10 @@ license: mit
|
|
3 |
language:
|
4 |
- zh
|
5 |
pipeline_tag: sentence-similarity
|
|
|
|
|
6 |
---
|
|
|
7 |
<h1 align="center">FlagEmbedding</h1>
|
8 |
|
9 |
|
@@ -13,22 +16,20 @@ pipeline_tag: sentence-similarity
|
|
13 |
<a href=#usage>Usage</a> |
|
14 |
<a href="#evaluation">Evaluation</a> |
|
15 |
<a href="#train">Train</a> |
|
16 |
-
<a href="#contact">Contact</a> |
|
17 |
<a href="#license">License</a>
|
18 |
<p>
|
19 |
</h4>
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
[English](README.md) | [中文](README_zh.md)
|
24 |
|
25 |
FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
|
26 |
-
And it also can be used in vector
|
27 |
|
28 |
************* 🌟**Updates**🌟 *************
|
29 |
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
|
30 |
-
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!**
|
31 |
-
- 08/01/2023: We release the Chinese Massive Text Embedding Benchmark (**C-MTEB**), consisting of 31 test dataset.
|
32 |
|
33 |
|
34 |
## Model List
|
@@ -37,12 +38,12 @@ And it also can be used in vector database for LLMs.
|
|
37 |
|
38 |
| Model | Language | Description | query instruction for retrieval |
|
39 |
|:-------------------------------|:--------:| :--------:| :--------:|
|
40 |
-
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English |
|
41 |
-
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English |
|
42 |
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
|
43 |
-
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese |
|
44 |
-
| [BAAI/bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | Chinese | This model is trained without instruction, and
|
45 |
-
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | a base-scale model but with
|
46 |
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
|
47 |
|
48 |
|
@@ -51,15 +52,16 @@ And it also can be used in vector database for LLMs.
|
|
51 |
|
52 |
* **Using FlagEmbedding**
|
53 |
```
|
54 |
-
pip install
|
55 |
```
|
|
|
|
|
56 |
```python
|
57 |
-
from
|
58 |
sentences = ["样例数据-1", "样例数据-2"]
|
59 |
model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
|
60 |
embeddings = model.encode(sentences)
|
61 |
print(embeddings)
|
62 |
-
|
63 |
# for retrieval task, please use encode_queries() which will automatically add the instruction to each query
|
64 |
# corpus in retrieval task can still use encode() or encode_corpus()
|
65 |
queries = ['query_1', 'query_2']
|
@@ -88,13 +90,12 @@ embeddings = model.encode(sentences, normalize_embeddings=True)
|
|
88 |
print(embeddings)
|
89 |
```
|
90 |
For retrieval task,
|
91 |
-
each query should start with
|
92 |
```python
|
93 |
from sentence_transformers import SentenceTransformer
|
94 |
queries = ["手机开不了机怎么办?"]
|
95 |
passages = ["样例段落-1", "样例段落-2"]
|
96 |
instruction = "为这个句子生成表示以用于检索相关文章:"
|
97 |
-
|
98 |
model = SentenceTransformer('BAAI/bge-large-zh')
|
99 |
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
|
100 |
p_embeddings = model.encode(passages, normalize_embeddings=True)
|
@@ -110,16 +111,13 @@ from transformers import AutoTokenizer, AutoModel
|
|
110 |
import torch
|
111 |
# Sentences we want sentence embeddings for
|
112 |
sentences = ["样例数据-1", "样例数据-2"]
|
113 |
-
|
114 |
# Load model from HuggingFace Hub
|
115 |
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
|
116 |
model = AutoModel.from_pretrained('BAAI/bge-large-zh')
|
117 |
-
|
118 |
# Tokenize sentences
|
119 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
120 |
-
# for retrieval task, add
|
121 |
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
|
122 |
-
|
123 |
# Compute token embeddings
|
124 |
with torch.no_grad():
|
125 |
model_output = model(**encoded_input)
|
@@ -133,7 +131,7 @@ print("Sentence embeddings:", sentence_embeddings)
|
|
133 |
|
134 |
## Evaluation
|
135 |
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
|
136 |
-
More details and evaluation
|
137 |
|
138 |
- **MTEB**:
|
139 |
|
@@ -162,7 +160,7 @@ More details and evaluation scripts see [benchemark](benchmark/README.md).
|
|
162 |
|
163 |
- **C-MTEB**:
|
164 |
We create a benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
|
165 |
-
Please refer to [
|
166 |
|
167 |
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|
168 |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
@@ -179,18 +177,17 @@ Please refer to [benchemark](benchmark/README.md) for a detailed introduction.
|
|
179 |
|
180 |
|
181 |
|
182 |
-
|
183 |
## Train
|
184 |
This section will introduce the way we used to train the general embedding.
|
185 |
-
The training scripts are in [
|
186 |
-
and we provide some examples to do [pre-train](https://github.com/FlagOpen/FlagEmbedding/
|
187 |
|
188 |
|
189 |
**1. RetroMAE Pre-train**
|
190 |
We pre-train the model following the method [retromae](https://github.com/staoxiao/RetroMAE),
|
191 |
which shows promising improvement in retrieval task ([paper](https://aclanthology.org/2022.emnlp-main.35.pdf)).
|
192 |
The pre-training was conducted on 24 A100(40G) GPUs with a batch size of 720.
|
193 |
-
In retromae, the mask ratio of
|
194 |
We used the AdamW optimizer and the learning rate is 2e-5.
|
195 |
|
196 |
**Pre-training data**:
|
@@ -214,26 +211,24 @@ We trained our model on 48 A100(40G) GPUs with a large batch size of 32,768 (so
|
|
214 |
We used the AdamW optimizer and the learning rate is 1e-5.
|
215 |
The temperature for contrastive loss is 0.01.
|
216 |
|
217 |
-
For the version with `*-instrcution`, we add instruction to the query for
|
218 |
-
For
|
219 |
-
For
|
220 |
In the evaluation, the instruction should be added for sentence to passages retrieval task, not be added for other tasks.
|
221 |
|
222 |
|
223 |
-
The finetune script is accessible in this repository: [
|
224 |
You can easily finetune your model with it.
|
225 |
|
226 |
**Training data**:
|
227 |
|
228 |
- For English, we collect 230M text pairs from [wikipedia](https://huggingface.co/datasets/wikipedia), [cc-net](https://github.com/facebookresearch/cc_net), and so on.
|
229 |
|
230 |
-
- For
|
231 |
|
232 |
**The data collection is to be released in the future.**
|
233 |
|
234 |
-
We will continually update the embedding models and training codes,
|
235 |
-
hoping to promote the development of the embedding model community.
|
236 |
|
237 |
|
238 |
## License
|
239 |
-
FlagEmbedding is licensed under [MIT License](). The released models can be used for commercial purposes free of charge.
|
|
|
3 |
language:
|
4 |
- zh
|
5 |
pipeline_tag: sentence-similarity
|
6 |
+
tags:
|
7 |
+
- sentence-transformers
|
8 |
---
|
9 |
+
|
10 |
<h1 align="center">FlagEmbedding</h1>
|
11 |
|
12 |
|
|
|
16 |
<a href=#usage>Usage</a> |
|
17 |
<a href="#evaluation">Evaluation</a> |
|
18 |
<a href="#train">Train</a> |
|
|
|
19 |
<a href="#license">License</a>
|
20 |
<p>
|
21 |
</h4>
|
22 |
+
For more details please refer to our GitHub repo: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
|
23 |
|
24 |
+
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
|
|
|
|
|
25 |
|
26 |
FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
|
27 |
+
And it also can be used in vector databases for LLMs.
|
28 |
|
29 |
************* 🌟**Updates**🌟 *************
|
30 |
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
|
31 |
+
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
|
32 |
+
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
|
33 |
|
34 |
|
35 |
## Model List
|
|
|
38 |
|
39 |
| Model | Language | Description | query instruction for retrieval |
|
40 |
|:-------------------------------|:--------:| :--------:| :--------:|
|
41 |
+
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
|
42 |
+
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | rank **2nd** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
|
43 |
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
|
44 |
+
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
|
45 |
+
| [BAAI/bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | Chinese | This model is trained without instruction, and rank **2nd** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | |
|
46 |
+
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | a base-scale model but has similar ability with `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
|
47 |
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
|
48 |
|
49 |
|
|
|
52 |
|
53 |
* **Using FlagEmbedding**
|
54 |
```
|
55 |
+
pip install FlagEmbedding
|
56 |
```
|
57 |
+
See [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
|
58 |
+
|
59 |
```python
|
60 |
+
from FlagEmbedding import FlagModel
|
61 |
sentences = ["样例数据-1", "样例数据-2"]
|
62 |
model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
|
63 |
embeddings = model.encode(sentences)
|
64 |
print(embeddings)
|
|
|
65 |
# for retrieval task, please use encode_queries() which will automatically add the instruction to each query
|
66 |
# corpus in retrieval task can still use encode() or encode_corpus()
|
67 |
queries = ['query_1', 'query_2']
|
|
|
90 |
print(embeddings)
|
91 |
```
|
92 |
For retrieval task,
|
93 |
+
each query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
|
94 |
```python
|
95 |
from sentence_transformers import SentenceTransformer
|
96 |
queries = ["手机开不了机怎么办?"]
|
97 |
passages = ["样例段落-1", "样例段落-2"]
|
98 |
instruction = "为这个句子生成表示以用于检索相关文章:"
|
|
|
99 |
model = SentenceTransformer('BAAI/bge-large-zh')
|
100 |
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
|
101 |
p_embeddings = model.encode(passages, normalize_embeddings=True)
|
|
|
111 |
import torch
|
112 |
# Sentences we want sentence embeddings for
|
113 |
sentences = ["样例数据-1", "样例数据-2"]
|
|
|
114 |
# Load model from HuggingFace Hub
|
115 |
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
|
116 |
model = AutoModel.from_pretrained('BAAI/bge-large-zh')
|
|
|
117 |
# Tokenize sentences
|
118 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
119 |
+
# for retrieval task, add an instruction to query
|
120 |
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
|
|
|
121 |
# Compute token embeddings
|
122 |
with torch.no_grad():
|
123 |
model_output = model(**encoded_input)
|
|
|
131 |
|
132 |
## Evaluation
|
133 |
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
|
134 |
+
More details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
|
135 |
|
136 |
- **MTEB**:
|
137 |
|
|
|
160 |
|
161 |
- **C-MTEB**:
|
162 |
We create a benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
|
163 |
+
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
|
164 |
|
165 |
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|
166 |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
|
|
177 |
|
178 |
|
179 |
|
|
|
180 |
## Train
|
181 |
This section will introduce the way we used to train the general embedding.
|
182 |
+
The training scripts are in [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md),
|
183 |
+
and we provide some examples to do [pre-train](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/pretrain/README.md) and [fine-tune](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/finetune/README.md).
|
184 |
|
185 |
|
186 |
**1. RetroMAE Pre-train**
|
187 |
We pre-train the model following the method [retromae](https://github.com/staoxiao/RetroMAE),
|
188 |
which shows promising improvement in retrieval task ([paper](https://aclanthology.org/2022.emnlp-main.35.pdf)).
|
189 |
The pre-training was conducted on 24 A100(40G) GPUs with a batch size of 720.
|
190 |
+
In retromae, the mask ratio of encoder and decoder are 0.3, and 0.5 respectively.
|
191 |
We used the AdamW optimizer and the learning rate is 2e-5.
|
192 |
|
193 |
**Pre-training data**:
|
|
|
211 |
We used the AdamW optimizer and the learning rate is 1e-5.
|
212 |
The temperature for contrastive loss is 0.01.
|
213 |
|
214 |
+
For the version with `*-instrcution`, we add instruction to the query for retrieval task in the training.
|
215 |
+
For english, the instruction is `Represent this sentence for searching relevant passages: `;
|
216 |
+
For chinese, the instruction is `为这个句子生成表示以用于检索相关文章:`.
|
217 |
In the evaluation, the instruction should be added for sentence to passages retrieval task, not be added for other tasks.
|
218 |
|
219 |
|
220 |
+
The finetune script is accessible in this repository: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
|
221 |
You can easily finetune your model with it.
|
222 |
|
223 |
**Training data**:
|
224 |
|
225 |
- For English, we collect 230M text pairs from [wikipedia](https://huggingface.co/datasets/wikipedia), [cc-net](https://github.com/facebookresearch/cc_net), and so on.
|
226 |
|
227 |
+
- For chinese, we collect 120M text pairs from [wudao](https://github.com/BAAI-WuDao/Data), [simclue](https://github.com/CLUEbenchmark/SimCLUE) and so on.
|
228 |
|
229 |
**The data collection is to be released in the future.**
|
230 |
|
|
|
|
|
231 |
|
232 |
|
233 |
## License
|
234 |
+
FlagEmbedding is licensed under [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
|