--- license: apache-2.0 library_name: transformers ---

Emu3: Next-Token Prediction is All You Need

[Emu3 Team, BAAI](https://www.baai.ac.cn/english.html) | [Project Page](https://emu.baai.ac.cn) | [Paper](https://huggingface.co/papers/2409.18869) | [🤗HF Models](https://huggingface.co/collections/BAAI/emu3-66f4e64f70850ff358a2e60f) | [github](https://github.com/baaivision/Emu3) | [Demo](https://huggingface.co/spaces/BAAI/Emu3) |
arch.
We introduce **Emu3**, a new suite of state-of-the-art multimodal models trained solely with **next-token prediction**! By tokenizing images, text, and videos into a discrete space, we train a single transformer from scratch on a mixture of multimodal sequences. ### Emu3 excels in both generation and perception **Emu3** outperforms several well-established task-specific models in both generation and perception tasks, surpassing flagship open models such as SDXL, LLaVA-1.6 and OpenSora-1.2, while eliminating the need for diffusion or compositional architectures.
comparison.
### Highlights - **Emu3** is capable of generating high-quality images following the text input, by simply predicting the next vision token. The model naturally supports flexible resolutions and styles. - **Emu3** shows strong vision-language understanding capabilities to see the physical world and provides coherent text responses. Notably, this capability is achieved without depending on a CLIP and a pretrained LLM. - **Emu3** simply generates a video causally by predicting the next token in a video sequence, unlike the video diffusion model as in Sora. With a video in context, Emu3 can also naturally extend the video and predict what will happen next. ### Quickstart for Autoencoding ```python import os import os.path as osp from PIL import Image import torch from transformers import AutoModel, AutoImageProcessor MODEL_HUB = "BAAI/Emu3-VisionTokenizer" model = AutoModel.from_pretrained(MODEL_HUB, trust_remote_code=True).eval().cuda() processor = AutoImageProcessor.from_pretrained(MODEL_HUB, trust_remote_code=True) # TODO: you need to modify the path here VIDEO_FRAMES_PATH = "YOUR_VIDEO_FRAMES_PATH" video = os.listdir(VIDEO_FRAMES_PATH) video.sort() video = [Image.open(osp.join(VIDEO_FRAMES_PATH, v)) for v in video] images = processor(video, return_tensors="pt")["pixel_values"] images = images.unsqueeze(0).cuda() # image autoencode image = images[:, 0] print(image.shape) with torch.no_grad(): # encode codes = model.encode(image) # decode recon = model.decode(codes) recon = recon.view(-1, *recon.shape[2:]) recon_image = processor.postprocess(recon)["pixel_values"][0] recon_image.save("recon_image.png") # video autoencode images = images.view( -1, model.config.temporal_downsample_factor, *images.shape[2:], ) print(images.shape) with torch.no_grad(): # encode codes = model.encode(images) # decode recon = model.decode(codes) recon = recon.view(-1, *recon.shape[2:]) recon_images = processor.postprocess(recon)["pixel_values"] for idx, im in enumerate(recon_images): im.save(f"recon_video_{idx}.png") ```