Upload 6 files
Browse files- config.json +31 -0
- configuration_emu3visionvq.py +106 -0
- image_processing_emu3visionvq.py +442 -0
- model.safetensors +3 -0
- modeling_emu3visionvq.py +822 -0
- preprocessor_config.json +29 -0
config.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Emu3VisionVQModel"
|
| 4 |
+
],
|
| 5 |
+
"attn_resolutions": [
|
| 6 |
+
3
|
| 7 |
+
],
|
| 8 |
+
"auto_map": {
|
| 9 |
+
"AutoConfig": "configuration_emu3visionvq.Emu3VisionVQConfig",
|
| 10 |
+
"AutoModel": "modeling_emu3visionvq.Emu3VisionVQModel"
|
| 11 |
+
},
|
| 12 |
+
"ch": 256,
|
| 13 |
+
"ch_mult": [
|
| 14 |
+
1,
|
| 15 |
+
2,
|
| 16 |
+
2,
|
| 17 |
+
4
|
| 18 |
+
],
|
| 19 |
+
"codebook_size": 32768,
|
| 20 |
+
"double_z": false,
|
| 21 |
+
"dropout": 0.0,
|
| 22 |
+
"embed_dim": 4,
|
| 23 |
+
"in_channels": 3,
|
| 24 |
+
"model_type": "Emu3VisionVQ",
|
| 25 |
+
"num_res_blocks": 2,
|
| 26 |
+
"out_channels": 3,
|
| 27 |
+
"temporal_downsample_factor": 4,
|
| 28 |
+
"torch_dtype": "float32",
|
| 29 |
+
"transformers_version": "4.44.0",
|
| 30 |
+
"z_channels": 4
|
| 31 |
+
}
|
configuration_emu3visionvq.py
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The Emu team, BAAI and The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" Emu3VisionVQ model configuration """
|
| 16 |
+
|
| 17 |
+
from typing import List
|
| 18 |
+
|
| 19 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 20 |
+
from transformers.utils import logging
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
logger = logging.get_logger(__name__)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class Emu3VisionVQConfig(PretrainedConfig):
|
| 27 |
+
r"""
|
| 28 |
+
This is the configuration class to store the configuration of a [`Emu3VisionVQ`]. It is used to instantiate an video movq
|
| 29 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 30 |
+
defaults will yield a configuration to the VQ model presented in Emu3 paper.
|
| 31 |
+
|
| 32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 33 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
codebook_size (`int`, *optional*, defaults to 32768):
|
| 38 |
+
Codebook size of the VQ model.
|
| 39 |
+
embed_dim (`int`, *optional*, defaults to 4):
|
| 40 |
+
Dimension of the quantized vector in codebook.
|
| 41 |
+
z_channels (`int`, *optional*, defaults to 4):
|
| 42 |
+
Dimension of the output channel of encoder and the input channel of decoder
|
| 43 |
+
double_z (`bool`, *optional*, defaults to False):
|
| 44 |
+
Whether double the output dim of the encoder.
|
| 45 |
+
in_channels (`int`, *optional*, defaults to 3):
|
| 46 |
+
Input channel of encoder.
|
| 47 |
+
out_channels (`int`, *optional*, defaults to 3):
|
| 48 |
+
Output channel of decoder.
|
| 49 |
+
temporal_downsample_factor (`int`, *optional*, defaults to 4):
|
| 50 |
+
Temporal downsample factor.
|
| 51 |
+
ch (`int`, *optional*, defaults to 256):
|
| 52 |
+
Basic channel number of the intermediate blocks.
|
| 53 |
+
ch_mult (`List[int]`, *optional*, defaults to `[1, 2, 2, 4]`):
|
| 54 |
+
Channel scaling factor of the intermediate blocks.
|
| 55 |
+
num_res_blocks (`int`, *optional*, defaults to 2):
|
| 56 |
+
Residual block number in each stage.
|
| 57 |
+
attn_resolutions (`List[int]`, *optional*, defaults to 3):
|
| 58 |
+
Stage indices to apply attention.
|
| 59 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
| 60 |
+
Dropout probability.
|
| 61 |
+
|
| 62 |
+
```python
|
| 63 |
+
>>> from transformers import Emu3VisionVQ, Emu3VisionVQConfig
|
| 64 |
+
|
| 65 |
+
>>> # Initializing a video VQ model of Emu3 configuration
|
| 66 |
+
>>> configuration = Emu3VisionVQConfig()
|
| 67 |
+
|
| 68 |
+
>>> # Initializing a model from the Emu3 VQ model style configuration
|
| 69 |
+
>>> model = Emu3VisionVQModel(configuration)
|
| 70 |
+
|
| 71 |
+
>>> # Accessing the model configuration
|
| 72 |
+
>>> configuration = model.config
|
| 73 |
+
```"""
|
| 74 |
+
|
| 75 |
+
model_type = "Emu3VisionVQ"
|
| 76 |
+
|
| 77 |
+
def __init__(
|
| 78 |
+
self,
|
| 79 |
+
codebook_size: int = 32768,
|
| 80 |
+
embed_dim: int = 4,
|
| 81 |
+
z_channels: int = 4,
|
| 82 |
+
double_z: bool = False,
|
| 83 |
+
in_channels: int = 3,
|
| 84 |
+
out_channels: int = 3,
|
| 85 |
+
temporal_downsample_factor: int = 4,
|
| 86 |
+
ch: int = 256,
|
| 87 |
+
ch_mult: List[int] = [1, 2, 2, 4],
|
| 88 |
+
num_res_blocks: int = 2,
|
| 89 |
+
attn_resolutions: List[int] = [3],
|
| 90 |
+
dropout: float = 0.0,
|
| 91 |
+
**kwargs,
|
| 92 |
+
):
|
| 93 |
+
super().__init__(**kwargs)
|
| 94 |
+
|
| 95 |
+
self.codebook_size = codebook_size
|
| 96 |
+
self.embed_dim = embed_dim
|
| 97 |
+
self.z_channels = z_channels
|
| 98 |
+
self.double_z = double_z
|
| 99 |
+
self.in_channels = in_channels
|
| 100 |
+
self.out_channels = out_channels
|
| 101 |
+
self.temporal_downsample_factor = temporal_downsample_factor
|
| 102 |
+
self.ch = ch
|
| 103 |
+
self.ch_mult = ch_mult
|
| 104 |
+
self.num_res_blocks = num_res_blocks
|
| 105 |
+
self.attn_resolutions = attn_resolutions
|
| 106 |
+
self.dropout = dropout
|
image_processing_emu3visionvq.py
ADDED
|
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The Emu team, BAAI and The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""Image processor class for Emu3VisionVQ."""
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
import math
|
| 19 |
+
from typing import Dict, List, Optional, Union
|
| 20 |
+
|
| 21 |
+
import numpy as np
|
| 22 |
+
|
| 23 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
| 24 |
+
from transformers.image_transforms import (
|
| 25 |
+
convert_to_rgb,
|
| 26 |
+
resize,
|
| 27 |
+
to_channel_dimension_format,
|
| 28 |
+
)
|
| 29 |
+
from transformers.image_utils import (
|
| 30 |
+
IMAGENET_STANDARD_MEAN,
|
| 31 |
+
IMAGENET_STANDARD_STD,
|
| 32 |
+
ChannelDimension,
|
| 33 |
+
ImageInput,
|
| 34 |
+
PILImageResampling,
|
| 35 |
+
get_image_size,
|
| 36 |
+
infer_channel_dimension_format,
|
| 37 |
+
is_scaled_image,
|
| 38 |
+
make_list_of_images,
|
| 39 |
+
to_numpy_array,
|
| 40 |
+
valid_images,
|
| 41 |
+
validate_preprocess_arguments,
|
| 42 |
+
)
|
| 43 |
+
from transformers.utils import TensorType, is_vision_available, logging
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
logger = logging.get_logger(__name__)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
if is_vision_available():
|
| 50 |
+
from PIL import Image
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def smart_resize(
|
| 54 |
+
height: int, width: int, factor: int = 8, min_pixels: int = 512 * 512, max_pixels: int = 1024 * 1024
|
| 55 |
+
):
|
| 56 |
+
"""Rescales the image so that the following conditions are met:
|
| 57 |
+
|
| 58 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
| 59 |
+
|
| 60 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
| 61 |
+
|
| 62 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
| 63 |
+
|
| 64 |
+
"""
|
| 65 |
+
if height < factor or width < factor:
|
| 66 |
+
raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}")
|
| 67 |
+
elif max(height, width) / min(height, width) > 5:
|
| 68 |
+
raise ValueError(
|
| 69 |
+
f"absolute aspect ratio must be smaller than 5, got {max(height, width) / min(height, width)}"
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
h_bar = round(height / factor) * factor
|
| 73 |
+
w_bar = round(width / factor) * factor
|
| 74 |
+
if h_bar * w_bar > max_pixels:
|
| 75 |
+
beta = math.sqrt((height * width) / max_pixels)
|
| 76 |
+
h_bar = math.floor(height / beta / factor) * factor
|
| 77 |
+
w_bar = math.floor(width / beta / factor) * factor
|
| 78 |
+
elif h_bar * w_bar < min_pixels:
|
| 79 |
+
beta = math.sqrt(min_pixels / (height * width))
|
| 80 |
+
h_bar = math.ceil(height * beta / factor) * factor
|
| 81 |
+
w_bar = math.ceil(width * beta / factor) * factor
|
| 82 |
+
|
| 83 |
+
return h_bar, w_bar
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class Emu3VisionVQImageProcessor(BaseImageProcessor):
|
| 87 |
+
r"""
|
| 88 |
+
Constructs a Emu3VisionVQ image processor that dynamically resizes images based on the original images.
|
| 89 |
+
|
| 90 |
+
Args:
|
| 91 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
| 92 |
+
Whether to resize the image's (height, width) dimensions.
|
| 93 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
| 94 |
+
Resampling filter to use when resizing the image.
|
| 95 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
| 96 |
+
Whether to rescale the image by the specified scale `rescale_factor`.
|
| 97 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
| 98 |
+
Scale factor to use if rescaling the image.
|
| 99 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
| 100 |
+
Whether to normalize the image.
|
| 101 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
|
| 102 |
+
Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
| 103 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
|
| 104 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
| 105 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
| 106 |
+
Whether to convert the image to RGB.
|
| 107 |
+
min_pixels (`int`, *optional*, defaults to `512 * 512`):
|
| 108 |
+
The min pixels of the image to resize the image.
|
| 109 |
+
max_pixels (`int`, *optional*, defaults to `1024 * 1024`):
|
| 110 |
+
The max pixels of the image to resize the image.
|
| 111 |
+
spatial_factor (`int`, *optional*, defautls to 8):
|
| 112 |
+
The spatial downsample factor the image will be downsampled in feature extracting phase
|
| 113 |
+
"""
|
| 114 |
+
|
| 115 |
+
model_input_names = ["pixel_values"]
|
| 116 |
+
|
| 117 |
+
def __init__(
|
| 118 |
+
self,
|
| 119 |
+
do_resize: bool = True,
|
| 120 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
| 121 |
+
do_rescale: bool = True,
|
| 122 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
| 123 |
+
do_normalize: bool = True,
|
| 124 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 125 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 126 |
+
do_convert_rgb: bool = True,
|
| 127 |
+
min_pixels: int = 512 * 512,
|
| 128 |
+
max_pixels: int = 1024 * 1024,
|
| 129 |
+
spatial_factor: int = 8,
|
| 130 |
+
**kwargs,
|
| 131 |
+
) -> None:
|
| 132 |
+
super().__init__(**kwargs)
|
| 133 |
+
self.do_resize = do_resize
|
| 134 |
+
self.resample = resample
|
| 135 |
+
self.do_rescale = do_rescale
|
| 136 |
+
self.rescale_factor = rescale_factor
|
| 137 |
+
self.do_normalize = do_normalize
|
| 138 |
+
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
| 139 |
+
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
| 140 |
+
self.min_pixels = min_pixels
|
| 141 |
+
self.max_pixels = max_pixels
|
| 142 |
+
self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels}
|
| 143 |
+
self.do_convert_rgb = do_convert_rgb
|
| 144 |
+
self.spatial_factor = spatial_factor
|
| 145 |
+
|
| 146 |
+
def _preprocess(
|
| 147 |
+
self,
|
| 148 |
+
images: ImageInput,
|
| 149 |
+
do_resize: Optional[bool] = None,
|
| 150 |
+
resample: PILImageResampling = None,
|
| 151 |
+
do_rescale: Optional[bool] = None,
|
| 152 |
+
rescale_factor: Optional[float] = None,
|
| 153 |
+
do_normalize: Optional[bool] = None,
|
| 154 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 155 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 156 |
+
do_convert_rgb: Optional[bool] = None,
|
| 157 |
+
spatial_factor: Optional[int] = None,
|
| 158 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 159 |
+
output_data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST,
|
| 160 |
+
):
|
| 161 |
+
"""
|
| 162 |
+
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
|
| 163 |
+
|
| 164 |
+
Args:
|
| 165 |
+
images (`ImageInput`):
|
| 166 |
+
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
|
| 167 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
| 168 |
+
Whether to resize the image.
|
| 169 |
+
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
| 170 |
+
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
|
| 171 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
| 172 |
+
Whether to rescale the image.
|
| 173 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 174 |
+
Scale factor to use if rescaling the image.
|
| 175 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 176 |
+
Whether to normalize the image.
|
| 177 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 178 |
+
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
| 179 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 180 |
+
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
| 181 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
| 182 |
+
Whether to convert the image to RGB.
|
| 183 |
+
spatial_factor (`int`, *optional*, defaults to `self.spatial_factor`):
|
| 184 |
+
The spatial downsample factor the image will be downsampled in feature extracting phase
|
| 185 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 186 |
+
The channel dimension format for the input image. Can be one of:
|
| 187 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 188 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 189 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 190 |
+
output_data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
|
| 191 |
+
The channel dimension format for the output image. Can be one of:
|
| 192 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 193 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 194 |
+
- Unset: Use the channel dimension format of the input image.
|
| 195 |
+
"""
|
| 196 |
+
spatial_factor = spatial_factor if spatial_factor is not None else self.spatial_factor
|
| 197 |
+
|
| 198 |
+
images = make_list_of_images(images)
|
| 199 |
+
if do_convert_rgb:
|
| 200 |
+
images = [convert_to_rgb(image) for image in images]
|
| 201 |
+
|
| 202 |
+
# All transformations expect numpy arrays.
|
| 203 |
+
images = [to_numpy_array(image) for image in images]
|
| 204 |
+
|
| 205 |
+
if is_scaled_image(images[0]) and do_rescale:
|
| 206 |
+
logger.warning_once(
|
| 207 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
| 208 |
+
"pixel_values.append()images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
if input_data_format is None:
|
| 212 |
+
# We assume that all images have the same channel dimension format.
|
| 213 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
| 214 |
+
|
| 215 |
+
height, width = get_image_size(images[0], channel_dim=input_data_format)
|
| 216 |
+
resized_height, resized_width = height, width
|
| 217 |
+
processed_images = []
|
| 218 |
+
for image in images:
|
| 219 |
+
if do_resize:
|
| 220 |
+
resized_height, resized_width = smart_resize(
|
| 221 |
+
height,
|
| 222 |
+
width,
|
| 223 |
+
factor=spatial_factor,
|
| 224 |
+
min_pixels=self.min_pixels,
|
| 225 |
+
max_pixels=self.max_pixels,
|
| 226 |
+
)
|
| 227 |
+
image = resize(
|
| 228 |
+
image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
if do_rescale:
|
| 232 |
+
image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format)
|
| 233 |
+
|
| 234 |
+
if do_normalize:
|
| 235 |
+
image = self.normalize(
|
| 236 |
+
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
image = to_channel_dimension_format(image, output_data_format, input_channel_dim=input_data_format)
|
| 240 |
+
processed_images.append(image)
|
| 241 |
+
|
| 242 |
+
image = np.array(processed_images)
|
| 243 |
+
return image
|
| 244 |
+
|
| 245 |
+
def preprocess(
|
| 246 |
+
self,
|
| 247 |
+
images: ImageInput,
|
| 248 |
+
do_resize: Optional[bool] = None,
|
| 249 |
+
resample: PILImageResampling = None,
|
| 250 |
+
do_rescale: Optional[bool] = None,
|
| 251 |
+
rescale_factor: Optional[float] = None,
|
| 252 |
+
do_normalize: Optional[bool] = None,
|
| 253 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 254 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 255 |
+
do_convert_rgb: Optional[bool] = None,
|
| 256 |
+
spatial_factor: Optional[int] = None,
|
| 257 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 258 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 259 |
+
output_data_format: Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST,
|
| 260 |
+
):
|
| 261 |
+
"""
|
| 262 |
+
Args:
|
| 263 |
+
images (`ImageInput`):
|
| 264 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
| 265 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
| 266 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
| 267 |
+
Whether to resize the image.
|
| 268 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
| 269 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
| 270 |
+
has an effect if `do_resize` is set to `True`.
|
| 271 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
| 272 |
+
Whether to rescale the image.
|
| 273 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 274 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
| 275 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 276 |
+
Whether to normalize the image.
|
| 277 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 278 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
| 279 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 280 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
| 281 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
| 282 |
+
Whether to convert the image to RGB.
|
| 283 |
+
spatial_factor (`int`, *optional*, defaults to `self.spatial_factor`):
|
| 284 |
+
The spatial downsample factor the image will be downsampled in feature extracting phase
|
| 285 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
| 286 |
+
The type of tensors to return. Can be one of:
|
| 287 |
+
- Unset: Return a list of `np.ndarray`.
|
| 288 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
| 289 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
| 290 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 291 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
| 292 |
+
from the input image. Can be one of:
|
| 293 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 294 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 295 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 296 |
+
output_data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
| 297 |
+
The channel dimension format for the output image. Can be one of:
|
| 298 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 299 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 300 |
+
- Unset: Use the channel dimension format of the input image.
|
| 301 |
+
"""
|
| 302 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
| 303 |
+
resample = resample if resample is not None else self.resample
|
| 304 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
| 305 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
| 306 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
| 307 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
| 308 |
+
image_std = image_std if image_std is not None else self.image_std
|
| 309 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
| 310 |
+
spatial_factor = spatial_factor if spatial_factor is not None else self.spatial_factor
|
| 311 |
+
|
| 312 |
+
images = make_list_of_images(images)
|
| 313 |
+
if images is None or not valid_images(images):
|
| 314 |
+
raise ValueError(
|
| 315 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
| 316 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
validate_preprocess_arguments(
|
| 320 |
+
rescale_factor=rescale_factor,
|
| 321 |
+
do_normalize=do_normalize,
|
| 322 |
+
image_mean=image_mean,
|
| 323 |
+
image_std=image_std,
|
| 324 |
+
do_resize=do_resize,
|
| 325 |
+
size=self.size,
|
| 326 |
+
resample=resample,
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
pixel_values = []
|
| 330 |
+
for image in images:
|
| 331 |
+
norm_image = self._preprocess(
|
| 332 |
+
image,
|
| 333 |
+
do_resize=do_resize,
|
| 334 |
+
resample=resample,
|
| 335 |
+
do_rescale=do_rescale,
|
| 336 |
+
rescale_factor=rescale_factor,
|
| 337 |
+
do_normalize=do_normalize,
|
| 338 |
+
image_mean=image_mean,
|
| 339 |
+
image_std=image_std,
|
| 340 |
+
do_convert_rgb=do_convert_rgb,
|
| 341 |
+
spatial_factor=spatial_factor,
|
| 342 |
+
input_data_format=input_data_format,
|
| 343 |
+
output_data_format=output_data_format,
|
| 344 |
+
)
|
| 345 |
+
pixel_values.extend(norm_image)
|
| 346 |
+
pixel_values = np.array(pixel_values)
|
| 347 |
+
data = {"pixel_values": pixel_values}
|
| 348 |
+
|
| 349 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
| 350 |
+
|
| 351 |
+
def postprocess(
|
| 352 |
+
self,
|
| 353 |
+
images: ImageInput,
|
| 354 |
+
do_rescale: Optional[bool] = None,
|
| 355 |
+
rescale_factor: Optional[float] = None,
|
| 356 |
+
do_normalize: Optional[bool] = None,
|
| 357 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
| 358 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
| 359 |
+
return_tensors: str | TensorType = "PIL.Image.Image",
|
| 360 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 361 |
+
):
|
| 362 |
+
"""
|
| 363 |
+
Postprocess an image or batch of images tensor. Postprocess is the reverse process of preprocess.
|
| 364 |
+
The parameters should be same as in preprocess.
|
| 365 |
+
|
| 366 |
+
Args:
|
| 367 |
+
images (`ImageInput`):
|
| 368 |
+
Image to postprocess. Expects a single or batch of images with pixel values ranging from -1 to 1.
|
| 369 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
| 370 |
+
Whether to rescale the image.
|
| 371 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 372 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
| 373 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 374 |
+
Whether to normalize the image.
|
| 375 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 376 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
| 377 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 378 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
| 379 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
| 380 |
+
The type of tensors to return. Can be one of:
|
| 381 |
+
- Unset: Return a list of `np.ndarray`.
|
| 382 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
| 383 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
| 384 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 385 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
| 386 |
+
from the input image. Can be one of:
|
| 387 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 388 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 389 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 390 |
+
"""
|
| 391 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
| 392 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
| 393 |
+
rescale_factor = 1 / rescale_factor
|
| 394 |
+
|
| 395 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
| 396 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
| 397 |
+
image_std = image_std if image_std is not None else self.image_std
|
| 398 |
+
image_mean, image_std = self.inverse_meanstd(image_mean, image_std)
|
| 399 |
+
|
| 400 |
+
images = make_list_of_images(images)
|
| 401 |
+
if isinstance(images[0], Image.Image):
|
| 402 |
+
return images if len(images) > 1 else images[0]
|
| 403 |
+
|
| 404 |
+
if input_data_format is None:
|
| 405 |
+
# We assume that all images have the same channel dimension format.
|
| 406 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
| 407 |
+
|
| 408 |
+
pixel_values = []
|
| 409 |
+
for image in images:
|
| 410 |
+
image = to_numpy_array(image)
|
| 411 |
+
if do_normalize:
|
| 412 |
+
image = self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
| 413 |
+
|
| 414 |
+
if do_rescale:
|
| 415 |
+
image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format)
|
| 416 |
+
image = image.clip(0, 255).astype(np.uint8)
|
| 417 |
+
|
| 418 |
+
if do_normalize and do_rescale and return_tensors == "PIL.Image.Image":
|
| 419 |
+
image = to_channel_dimension_format(image, ChannelDimension.LAST, input_channel_dim=input_data_format)
|
| 420 |
+
pixel_values.append(Image.fromarray(image))
|
| 421 |
+
else:
|
| 422 |
+
pixel_values.extend(image)
|
| 423 |
+
|
| 424 |
+
data = {"pixel_values": pixel_values}
|
| 425 |
+
return_tensors = return_tensors if return_tensors != "PIL.Image.Image" else None
|
| 426 |
+
|
| 427 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
| 428 |
+
|
| 429 |
+
def inverse_meanstd(self, image_mean, image_std):
|
| 430 |
+
image_mean = self.to_tuple(image_mean)
|
| 431 |
+
image_std = self.to_tuple(image_std)
|
| 432 |
+
|
| 433 |
+
rev_image_mean = tuple(-m / s for m, s in zip(image_mean, image_std))
|
| 434 |
+
rev_image_std = tuple(1 / s for s in image_std)
|
| 435 |
+
|
| 436 |
+
return rev_image_mean, rev_image_std
|
| 437 |
+
|
| 438 |
+
def to_tuple(self, value, dim=3):
|
| 439 |
+
if isinstance(value, int | float):
|
| 440 |
+
return (value,) * dim
|
| 441 |
+
|
| 442 |
+
return tuple(value)
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:89536431c69b08b10b449ec309f52dcea22f14b7647317f30f5715273392bbf1
|
| 3 |
+
size 1083015124
|
modeling_emu3visionvq.py
ADDED
|
@@ -0,0 +1,822 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The Emu team, BAAI and The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" Emu3VisionVQ model """
|
| 16 |
+
|
| 17 |
+
import math
|
| 18 |
+
from typing import Optional, Tuple, Union
|
| 19 |
+
|
| 20 |
+
import torch
|
| 21 |
+
from torch import nn
|
| 22 |
+
from torch.nn import functional as F
|
| 23 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 24 |
+
|
| 25 |
+
from .configuration_emu3visionvq import Emu3VisionVQConfig
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class Emu3VisionVQActivation(nn.Module):
|
| 29 |
+
|
| 30 |
+
def __init__(self):
|
| 31 |
+
super().__init__()
|
| 32 |
+
|
| 33 |
+
def __call__(self, x: torch.Tensor):
|
| 34 |
+
return x * torch.sigmoid(x)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class Emu3VisionVQUpsample(nn.Module):
|
| 38 |
+
|
| 39 |
+
def __init__(self, in_channels: int):
|
| 40 |
+
super().__init__()
|
| 41 |
+
self.conv = nn.Conv2d(
|
| 42 |
+
in_channels,
|
| 43 |
+
in_channels,
|
| 44 |
+
kernel_size=3,
|
| 45 |
+
stride=1,
|
| 46 |
+
padding=1,
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
def forward(self, x: torch.Tensor):
|
| 50 |
+
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
|
| 51 |
+
x = self.conv(x)
|
| 52 |
+
return x
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
class Emu3VisionVQDownsample(nn.Module):
|
| 56 |
+
|
| 57 |
+
def __init__(self, in_channels: int):
|
| 58 |
+
super().__init__()
|
| 59 |
+
self.conv = nn.Conv2d(
|
| 60 |
+
in_channels,
|
| 61 |
+
in_channels,
|
| 62 |
+
kernel_size=3,
|
| 63 |
+
stride=2,
|
| 64 |
+
padding=0,
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
def forward(self, x: torch.Tensor):
|
| 68 |
+
pad = (0, 1, 0, 1)
|
| 69 |
+
x = F.pad(x, pad, mode="constant", value=0)
|
| 70 |
+
x = self.conv(x)
|
| 71 |
+
return x
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class Emu3VisionVQCausalConv3d(nn.Module):
|
| 75 |
+
|
| 76 |
+
def __init__(
|
| 77 |
+
self,
|
| 78 |
+
in_channel: int,
|
| 79 |
+
out_channel: int,
|
| 80 |
+
kernel_size: Union[int, Tuple[int, ...]] = (3, 1, 1),
|
| 81 |
+
stride: Union[int, Tuple[int, ...]] = (1, 1, 1),
|
| 82 |
+
):
|
| 83 |
+
super().__init__()
|
| 84 |
+
|
| 85 |
+
if isinstance(kernel_size, int):
|
| 86 |
+
kernel_size = (kernel_size,) * 3
|
| 87 |
+
if isinstance(stride, int):
|
| 88 |
+
stride = (stride,) * 3
|
| 89 |
+
|
| 90 |
+
hw_pad = [k - s for k, s in zip(kernel_size[1:], stride[1:])]
|
| 91 |
+
self.padding = tuple()
|
| 92 |
+
for p in hw_pad[::-1]:
|
| 93 |
+
self.padding += (p // 2 + p % 2, p // 2)
|
| 94 |
+
self.padding += (2, 0)
|
| 95 |
+
|
| 96 |
+
self.conv = nn.Conv3d(
|
| 97 |
+
in_channel,
|
| 98 |
+
out_channel,
|
| 99 |
+
kernel_size,
|
| 100 |
+
stride=stride,
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
def forward(self, x: torch.Tensor):
|
| 104 |
+
x = F.pad(x, self.padding)
|
| 105 |
+
x = self.conv(x)
|
| 106 |
+
return x
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
class Emu3VisionVQResnetTemporalBlock(nn.Module):
|
| 110 |
+
|
| 111 |
+
def __init__(
|
| 112 |
+
self,
|
| 113 |
+
in_channels: int,
|
| 114 |
+
out_channels: Optional[int] = None,
|
| 115 |
+
conv_shortcut: bool = False,
|
| 116 |
+
dropout: float = 0.0,
|
| 117 |
+
):
|
| 118 |
+
super().__init__()
|
| 119 |
+
self.in_channels = in_channels
|
| 120 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 121 |
+
self.out_channels = out_channels
|
| 122 |
+
self.use_conv_shortcut = conv_shortcut
|
| 123 |
+
|
| 124 |
+
stride = (1, 1, 1)
|
| 125 |
+
kernel_size = (3, 3, 3)
|
| 126 |
+
|
| 127 |
+
self.norm1 = nn.BatchNorm3d(in_channels)
|
| 128 |
+
self.conv1 = Emu3VisionVQCausalConv3d(
|
| 129 |
+
in_channels,
|
| 130 |
+
out_channels,
|
| 131 |
+
kernel_size=kernel_size,
|
| 132 |
+
stride=stride,
|
| 133 |
+
)
|
| 134 |
+
self.norm2 = nn.BatchNorm3d(out_channels)
|
| 135 |
+
self.dropout = nn.Dropout(dropout)
|
| 136 |
+
self.conv2 = Emu3VisionVQCausalConv3d(
|
| 137 |
+
out_channels,
|
| 138 |
+
out_channels,
|
| 139 |
+
kernel_size=kernel_size,
|
| 140 |
+
stride=stride,
|
| 141 |
+
)
|
| 142 |
+
self.act = Emu3VisionVQActivation()
|
| 143 |
+
|
| 144 |
+
if self.in_channels != self.out_channels:
|
| 145 |
+
if self.use_conv_shortcut:
|
| 146 |
+
self.conv_shortcut = Emu3VisionVQCausalConv3d(
|
| 147 |
+
in_channels,
|
| 148 |
+
out_channels,
|
| 149 |
+
kernel_size=kernel_size,
|
| 150 |
+
stride=stride,
|
| 151 |
+
)
|
| 152 |
+
else:
|
| 153 |
+
self.nin_shortcut = nn.Conv3d(
|
| 154 |
+
in_channels,
|
| 155 |
+
out_channels,
|
| 156 |
+
kernel_size=1,
|
| 157 |
+
stride=1,
|
| 158 |
+
padding=0,
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
def forward(self, x: torch.Tensor):
|
| 162 |
+
h = self.norm1(x)
|
| 163 |
+
h = self.act(h)
|
| 164 |
+
h = self.conv1(h)
|
| 165 |
+
|
| 166 |
+
h = self.norm2(h)
|
| 167 |
+
h = self.act(h)
|
| 168 |
+
h = self.dropout(h)
|
| 169 |
+
h = self.conv2(h)
|
| 170 |
+
|
| 171 |
+
if self.in_channels != self.out_channels:
|
| 172 |
+
if self.use_conv_shortcut:
|
| 173 |
+
x = self.conv_shortcut(x)
|
| 174 |
+
else:
|
| 175 |
+
x = self.nin_shortcut(x)
|
| 176 |
+
|
| 177 |
+
return x + h
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
class Emu3VisionVQSpatialNorm(nn.Module):
|
| 181 |
+
|
| 182 |
+
def __init__(
|
| 183 |
+
self,
|
| 184 |
+
f_channels: int,
|
| 185 |
+
zq_channels: int,
|
| 186 |
+
norm_layer: nn.Module = nn.GroupNorm,
|
| 187 |
+
add_conv: bool = False,
|
| 188 |
+
num_groups: int = 32,
|
| 189 |
+
eps: float = 1e-6,
|
| 190 |
+
affine: bool = True,
|
| 191 |
+
):
|
| 192 |
+
super().__init__()
|
| 193 |
+
self.norm_layer = norm_layer(
|
| 194 |
+
num_channels=f_channels,
|
| 195 |
+
num_groups=num_groups,
|
| 196 |
+
eps=eps,
|
| 197 |
+
affine=affine,
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
self.add_conv = add_conv
|
| 201 |
+
if self.add_conv:
|
| 202 |
+
self.conv = nn.Conv2d(
|
| 203 |
+
zq_channels,
|
| 204 |
+
zq_channels,
|
| 205 |
+
kernel_size=3,
|
| 206 |
+
stride=1,
|
| 207 |
+
padding=1,
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
self.conv_y = nn.Conv2d(
|
| 211 |
+
zq_channels,
|
| 212 |
+
f_channels,
|
| 213 |
+
kernel_size=1,
|
| 214 |
+
stride=1,
|
| 215 |
+
padding=0,
|
| 216 |
+
)
|
| 217 |
+
self.conv_b = nn.Conv2d(
|
| 218 |
+
zq_channels,
|
| 219 |
+
f_channels,
|
| 220 |
+
kernel_size=1,
|
| 221 |
+
stride=1,
|
| 222 |
+
padding=0,
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
def forward(self, x: torch.Tensor, zq: torch.Tensor):
|
| 226 |
+
zq = F.interpolate(zq, size=x.shape[-2:], mode="nearest")
|
| 227 |
+
|
| 228 |
+
if self.add_conv:
|
| 229 |
+
zq = self.conv(zq)
|
| 230 |
+
|
| 231 |
+
x = self.norm_layer(x)
|
| 232 |
+
x = x * self.conv_y(zq) + self.conv_b(zq)
|
| 233 |
+
return x
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
class Emu3VisionVQResnetBlock(nn.Module):
|
| 237 |
+
|
| 238 |
+
def __init__(
|
| 239 |
+
self,
|
| 240 |
+
in_channels: int,
|
| 241 |
+
out_channels: Optional[int] = None,
|
| 242 |
+
conv_shortcut: bool = False,
|
| 243 |
+
dropout: float = 0.0,
|
| 244 |
+
zq_ch: Optional[int] = None,
|
| 245 |
+
add_conv: bool = False,
|
| 246 |
+
):
|
| 247 |
+
super().__init__()
|
| 248 |
+
self.in_channels = in_channels
|
| 249 |
+
out_channels = in_channels if out_channels is None else out_channels
|
| 250 |
+
self.out_channels = out_channels
|
| 251 |
+
self.use_conv_shortcut = conv_shortcut
|
| 252 |
+
self.zq_ch = zq_ch
|
| 253 |
+
|
| 254 |
+
if zq_ch is None:
|
| 255 |
+
norm_kwargs = dict(num_groups=32, eps=1e-6, affine=True)
|
| 256 |
+
self.norm1 = nn.GroupNorm(num_channels=in_channels, **norm_kwargs)
|
| 257 |
+
self.norm2 = nn.GroupNorm(num_channels=out_channels, **norm_kwargs)
|
| 258 |
+
else:
|
| 259 |
+
self.norm1 = Emu3VisionVQSpatialNorm(in_channels, zq_ch, add_conv=add_conv)
|
| 260 |
+
self.norm2 = Emu3VisionVQSpatialNorm(out_channels, zq_ch, add_conv=add_conv)
|
| 261 |
+
|
| 262 |
+
self.conv1 = nn.Conv2d(
|
| 263 |
+
in_channels,
|
| 264 |
+
out_channels,
|
| 265 |
+
kernel_size=3,
|
| 266 |
+
stride=1,
|
| 267 |
+
padding=1,
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
self.dropout = nn.Dropout(dropout)
|
| 271 |
+
self.conv2 = nn.Conv2d(
|
| 272 |
+
out_channels,
|
| 273 |
+
out_channels,
|
| 274 |
+
kernel_size=3,
|
| 275 |
+
stride=1,
|
| 276 |
+
padding=1,
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
self.act = Emu3VisionVQActivation()
|
| 280 |
+
|
| 281 |
+
if self.in_channels != self.out_channels:
|
| 282 |
+
if self.use_conv_shortcut:
|
| 283 |
+
self.conv_shortcut = nn.Conv2d(
|
| 284 |
+
in_channels,
|
| 285 |
+
out_channels,
|
| 286 |
+
kernel_size=3,
|
| 287 |
+
stride=1,
|
| 288 |
+
padding=1,
|
| 289 |
+
)
|
| 290 |
+
else:
|
| 291 |
+
self.nin_shortcut = nn.Conv2d(
|
| 292 |
+
in_channels,
|
| 293 |
+
out_channels,
|
| 294 |
+
kernel_size=1,
|
| 295 |
+
stride=1,
|
| 296 |
+
padding=0,
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
def forward(self, x: torch.Tensor, zq: Optional[torch.Tensor] = None):
|
| 300 |
+
norm_args = tuple() if self.zq_ch is None else (zq, )
|
| 301 |
+
|
| 302 |
+
h = self.norm1(x, *norm_args)
|
| 303 |
+
h = self.act(h)
|
| 304 |
+
h = self.conv1(h)
|
| 305 |
+
|
| 306 |
+
h = self.norm2(h, *norm_args)
|
| 307 |
+
h = self.act(h)
|
| 308 |
+
h = self.dropout(h)
|
| 309 |
+
h = self.conv2(h)
|
| 310 |
+
|
| 311 |
+
if self.in_channels != self.out_channels:
|
| 312 |
+
if self.use_conv_shortcut:
|
| 313 |
+
x = self.conv_shortcut(x)
|
| 314 |
+
else:
|
| 315 |
+
x = self.nin_shortcut(x)
|
| 316 |
+
|
| 317 |
+
return x + h
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
class Emu3VisionVQAttnBlock(nn.Module):
|
| 321 |
+
|
| 322 |
+
def __init__(
|
| 323 |
+
self,
|
| 324 |
+
in_channels: int,
|
| 325 |
+
zq_ch: Optional[int] = None,
|
| 326 |
+
add_conv: bool = False
|
| 327 |
+
):
|
| 328 |
+
super().__init__()
|
| 329 |
+
self.in_channels = in_channels
|
| 330 |
+
self.zq_ch = zq_ch
|
| 331 |
+
|
| 332 |
+
if zq_ch is None:
|
| 333 |
+
norm_kwargs = dict(num_groups=32, eps=1e-6, affine=True)
|
| 334 |
+
self.norm = nn.GroupNorm(num_channels=in_channels, **norm_kwargs)
|
| 335 |
+
else:
|
| 336 |
+
self.norm = Emu3VisionVQSpatialNorm(in_channels, zq_ch, add_conv=add_conv)
|
| 337 |
+
|
| 338 |
+
self.q = nn.Conv2d(
|
| 339 |
+
in_channels,
|
| 340 |
+
in_channels,
|
| 341 |
+
kernel_size=1,
|
| 342 |
+
stride=1,
|
| 343 |
+
padding=0,
|
| 344 |
+
)
|
| 345 |
+
self.k = nn.Conv2d(
|
| 346 |
+
in_channels,
|
| 347 |
+
in_channels,
|
| 348 |
+
kernel_size=1,
|
| 349 |
+
stride=1,
|
| 350 |
+
padding=0,
|
| 351 |
+
)
|
| 352 |
+
self.v = nn.Conv2d(
|
| 353 |
+
in_channels,
|
| 354 |
+
in_channels,
|
| 355 |
+
kernel_size=1,
|
| 356 |
+
stride=1,
|
| 357 |
+
padding=0,
|
| 358 |
+
)
|
| 359 |
+
self.proj_out = nn.Conv2d(
|
| 360 |
+
in_channels,
|
| 361 |
+
in_channels,
|
| 362 |
+
kernel_size=1,
|
| 363 |
+
stride=1,
|
| 364 |
+
padding=0,
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
def forward(self, x: torch.Tensor, zq: Optional[torch.Tensor] = None):
|
| 368 |
+
norm_args = tuple() if self.zq_ch is None else (zq, )
|
| 369 |
+
|
| 370 |
+
nx = self.norm(x, *norm_args)
|
| 371 |
+
q = self.q(nx)
|
| 372 |
+
k = self.k(nx)
|
| 373 |
+
v = self.v(nx)
|
| 374 |
+
|
| 375 |
+
# compute attention
|
| 376 |
+
b, c, h, w = q.shape
|
| 377 |
+
q = q.reshape(b, c, h * w)
|
| 378 |
+
k = k.reshape(b, c, h * w)
|
| 379 |
+
score = torch.bmm(q.permute(0, 2, 1), k)
|
| 380 |
+
score = score / (c ** 0.5)
|
| 381 |
+
score = F.softmax(score, dim=2)
|
| 382 |
+
|
| 383 |
+
# attend to values
|
| 384 |
+
v = v.reshape(b, c, h * w)
|
| 385 |
+
v = torch.bmm(v, score.permute(0, 2, 1))
|
| 386 |
+
v = v.reshape(b, c, h, w)
|
| 387 |
+
|
| 388 |
+
v = self.proj_out(v)
|
| 389 |
+
|
| 390 |
+
return x + v
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
class Emu3VisionVQTemporalUpsample(nn.Module):
|
| 394 |
+
|
| 395 |
+
def __init__(
|
| 396 |
+
self,
|
| 397 |
+
in_channel: int,
|
| 398 |
+
out_channel: int,
|
| 399 |
+
kernel_size: Tuple[int, ...] = (3, 3, 3),
|
| 400 |
+
stride: Tuple[int, ...] = (1, 1, 1)
|
| 401 |
+
):
|
| 402 |
+
super().__init__()
|
| 403 |
+
self.in_channel = in_channel
|
| 404 |
+
self.out_channel = out_channel
|
| 405 |
+
self.conv = Emu3VisionVQCausalConv3d(
|
| 406 |
+
in_channel,
|
| 407 |
+
out_channel,
|
| 408 |
+
kernel_size,
|
| 409 |
+
stride=stride,
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
def forward(self, x: torch.Tensor):
|
| 413 |
+
b, c, t, h, w = x.shape
|
| 414 |
+
x = x.permute(0, 1, 3, 4, 2).contiguous().view(b, -1, t)
|
| 415 |
+
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
|
| 416 |
+
x = x.view(b, c, h, w, -1).permute(0, 1, 4, 2, 3).contiguous()
|
| 417 |
+
x = self.conv(x)
|
| 418 |
+
return x
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
class Emu3VisionVQTemporalDownsample(nn.Module):
|
| 422 |
+
|
| 423 |
+
def __init__(
|
| 424 |
+
self,
|
| 425 |
+
in_channel: int,
|
| 426 |
+
out_channel: int,
|
| 427 |
+
kernel_size: Tuple[int, ...] = (4, 3, 3),
|
| 428 |
+
stride: Tuple[int, ...] = (2, 1, 1),
|
| 429 |
+
):
|
| 430 |
+
super().__init__()
|
| 431 |
+
self.in_channel = in_channel
|
| 432 |
+
self.out_channel = out_channel
|
| 433 |
+
self.kernel_size = kernel_size
|
| 434 |
+
|
| 435 |
+
self.conv = Emu3VisionVQCausalConv3d(
|
| 436 |
+
in_channel,
|
| 437 |
+
out_channel,
|
| 438 |
+
kernel_size=kernel_size,
|
| 439 |
+
stride=stride,
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
def forward(self, x: torch.Tensor):
|
| 443 |
+
x = self.conv(x)
|
| 444 |
+
return x
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
class Emu3VisionVQVectorQuantizer(nn.Module):
|
| 448 |
+
|
| 449 |
+
def __init__(self, config: Emu3VisionVQConfig):
|
| 450 |
+
super().__init__()
|
| 451 |
+
self.embedding = nn.Embedding(config.codebook_size, config.embed_dim)
|
| 452 |
+
self.embedding.weight.data.uniform_(-1.0 / config.codebook_size, 1.0 / config.codebook_size)
|
| 453 |
+
|
| 454 |
+
def forward(self, x: torch.Tensor):
|
| 455 |
+
# b t c h w -> b t h w c
|
| 456 |
+
b, t, c, h, w = x.shape
|
| 457 |
+
x = x.permute(0, 1, 3, 4, 2).contiguous()
|
| 458 |
+
x_flattened = x.view(-1, c)
|
| 459 |
+
|
| 460 |
+
codebook = self.embedding.weight
|
| 461 |
+
|
| 462 |
+
d = torch.sum(x_flattened ** 2, dim=1, keepdim=True) + \
|
| 463 |
+
torch.sum(codebook ** 2, dim=1) - 2 * \
|
| 464 |
+
torch.einsum('bd,dn->bn', x_flattened, codebook.permute(1, 0))
|
| 465 |
+
|
| 466 |
+
indices = torch.argmin(d, dim=1)
|
| 467 |
+
indices = indices.view(b, t, h, w)
|
| 468 |
+
return indices
|
| 469 |
+
|
| 470 |
+
|
| 471 |
+
class Emu3VisionVQEncoder(nn.Module):
|
| 472 |
+
|
| 473 |
+
def __init__(self, config: Emu3VisionVQConfig):
|
| 474 |
+
super().__init__()
|
| 475 |
+
self.ch = config.ch
|
| 476 |
+
self.num_resolutions = len(config.ch_mult)
|
| 477 |
+
self.num_res_blocks = config.num_res_blocks
|
| 478 |
+
self.in_channels = config.in_channels
|
| 479 |
+
|
| 480 |
+
# downsampling
|
| 481 |
+
self.conv_in = nn.Conv2d(
|
| 482 |
+
self.in_channels,
|
| 483 |
+
self.ch,
|
| 484 |
+
kernel_size=3,
|
| 485 |
+
stride=1,
|
| 486 |
+
padding=1
|
| 487 |
+
)
|
| 488 |
+
|
| 489 |
+
in_ch_mult = (1,) + tuple(config.ch_mult)
|
| 490 |
+
self.down = nn.ModuleList()
|
| 491 |
+
for i_level in range(self.num_resolutions):
|
| 492 |
+
block = nn.ModuleList()
|
| 493 |
+
attn = nn.ModuleList()
|
| 494 |
+
block_in = config.ch * in_ch_mult[i_level]
|
| 495 |
+
block_out = config.ch * config.ch_mult[i_level]
|
| 496 |
+
for i_block in range(self.num_res_blocks):
|
| 497 |
+
block.append(
|
| 498 |
+
Emu3VisionVQResnetBlock(
|
| 499 |
+
in_channels=block_in,
|
| 500 |
+
out_channels=block_out,
|
| 501 |
+
dropout=config.dropout,
|
| 502 |
+
)
|
| 503 |
+
)
|
| 504 |
+
block_in = block_out
|
| 505 |
+
if i_level in config.attn_resolutions:
|
| 506 |
+
attn.append(Emu3VisionVQAttnBlock(block_in))
|
| 507 |
+
|
| 508 |
+
down = nn.Module()
|
| 509 |
+
down.block = block
|
| 510 |
+
down.attn = attn
|
| 511 |
+
if i_level != self.num_resolutions - 1:
|
| 512 |
+
down.downsample = Emu3VisionVQDownsample(block_in)
|
| 513 |
+
|
| 514 |
+
self.down.append(down)
|
| 515 |
+
|
| 516 |
+
# middle
|
| 517 |
+
self.mid = nn.Module()
|
| 518 |
+
self.mid.block_1 = Emu3VisionVQResnetBlock(
|
| 519 |
+
in_channels=block_in,
|
| 520 |
+
out_channels=block_in,
|
| 521 |
+
dropout=config.dropout,
|
| 522 |
+
)
|
| 523 |
+
self.mid.attn_1 = Emu3VisionVQAttnBlock(block_in)
|
| 524 |
+
self.mid.block_2 = Emu3VisionVQResnetBlock(
|
| 525 |
+
in_channels=block_in,
|
| 526 |
+
out_channels=block_in,
|
| 527 |
+
dropout=config.dropout,
|
| 528 |
+
)
|
| 529 |
+
|
| 530 |
+
# end
|
| 531 |
+
self.norm_out = nn.GroupNorm(num_channels=block_in, num_groups=32, eps=1e-6, affine=True)
|
| 532 |
+
|
| 533 |
+
out_z_channels = 2 * config.z_channels if config.double_z else config.z_channels
|
| 534 |
+
self.conv_out = nn.Conv2d(
|
| 535 |
+
block_in,
|
| 536 |
+
out_z_channels,
|
| 537 |
+
kernel_size=3,
|
| 538 |
+
stride=1,
|
| 539 |
+
padding=1,
|
| 540 |
+
)
|
| 541 |
+
|
| 542 |
+
temporal_down_blocks = int(math.log2(config.temporal_downsample_factor))
|
| 543 |
+
self.time_conv = nn.ModuleList()
|
| 544 |
+
|
| 545 |
+
for i in range(temporal_down_blocks):
|
| 546 |
+
conv = Emu3VisionVQTemporalDownsample(out_z_channels, out_z_channels)
|
| 547 |
+
self.time_conv.append(conv)
|
| 548 |
+
|
| 549 |
+
self.time_res_stack = nn.Sequential(*[
|
| 550 |
+
Emu3VisionVQResnetTemporalBlock(
|
| 551 |
+
in_channels=out_z_channels,
|
| 552 |
+
out_channels=out_z_channels,
|
| 553 |
+
dropout=config.dropout,
|
| 554 |
+
) for _ in range(self.num_res_blocks)
|
| 555 |
+
])
|
| 556 |
+
|
| 557 |
+
self.act = Emu3VisionVQActivation()
|
| 558 |
+
|
| 559 |
+
def forward(self, x: torch.Tensor):
|
| 560 |
+
t = x.shape[1]
|
| 561 |
+
x = x.reshape(-1, *x.shape[2:])
|
| 562 |
+
|
| 563 |
+
# downsampling
|
| 564 |
+
h = self.conv_in(x)
|
| 565 |
+
for i_level in range(self.num_resolutions):
|
| 566 |
+
for i_block in range(self.num_res_blocks):
|
| 567 |
+
h = self.down[i_level].block[i_block](h)
|
| 568 |
+
if len(self.down[i_level].attn) > 0:
|
| 569 |
+
h = self.down[i_level].attn[i_block](h)
|
| 570 |
+
|
| 571 |
+
if i_level != self.num_resolutions - 1:
|
| 572 |
+
h = self.down[i_level].downsample(h)
|
| 573 |
+
|
| 574 |
+
h = self.mid.block_1(h)
|
| 575 |
+
h = self.mid.attn_1(h)
|
| 576 |
+
h = self.mid.block_2(h)
|
| 577 |
+
|
| 578 |
+
# end
|
| 579 |
+
h = self.norm_out(h)
|
| 580 |
+
h = self.act(h)
|
| 581 |
+
|
| 582 |
+
h = self.conv_out(h)
|
| 583 |
+
|
| 584 |
+
h = h.reshape(-1, t, *h.shape[1:])
|
| 585 |
+
h = h.permute(0, 2, 1, 3, 4)
|
| 586 |
+
|
| 587 |
+
for conv in self.time_conv:
|
| 588 |
+
h = self.act(conv(h))
|
| 589 |
+
|
| 590 |
+
h = self.time_res_stack(h)
|
| 591 |
+
h = h.permute(0, 2, 1, 3, 4)
|
| 592 |
+
|
| 593 |
+
return h
|
| 594 |
+
|
| 595 |
+
|
| 596 |
+
class Emu3VisionVQDecoder(nn.Module):
|
| 597 |
+
|
| 598 |
+
def __init__(self, config: Emu3VisionVQConfig):
|
| 599 |
+
super().__init__()
|
| 600 |
+
self.ch = config.ch
|
| 601 |
+
self.num_resolutions = len(config.ch_mult)
|
| 602 |
+
self.num_res_blocks = config.num_res_blocks
|
| 603 |
+
|
| 604 |
+
in_ch_mult = (1,) + tuple(config.ch_mult)
|
| 605 |
+
zq_ch = config.embed_dim
|
| 606 |
+
|
| 607 |
+
block_in = config.ch * config.ch_mult[-1]
|
| 608 |
+
self.time_res_stack = nn.Sequential(*[
|
| 609 |
+
Emu3VisionVQResnetTemporalBlock(
|
| 610 |
+
in_channels=config.z_channels,
|
| 611 |
+
out_channels=config.z_channels,
|
| 612 |
+
dropout=config.dropout,
|
| 613 |
+
) for _ in range(config.num_res_blocks)
|
| 614 |
+
])
|
| 615 |
+
|
| 616 |
+
tempo_upsample_block_num = int(math.log2(config.temporal_downsample_factor))
|
| 617 |
+
self.time_conv = nn.ModuleList()
|
| 618 |
+
for i in range(tempo_upsample_block_num):
|
| 619 |
+
conv = Emu3VisionVQTemporalUpsample(config.z_channels, config.z_channels)
|
| 620 |
+
self.time_conv.append(conv)
|
| 621 |
+
|
| 622 |
+
self.conv_in = nn.Conv2d(
|
| 623 |
+
config.z_channels,
|
| 624 |
+
block_in,
|
| 625 |
+
kernel_size=3,
|
| 626 |
+
stride=1,
|
| 627 |
+
padding=1,
|
| 628 |
+
)
|
| 629 |
+
|
| 630 |
+
# middle
|
| 631 |
+
self.mid = nn.Module()
|
| 632 |
+
self.mid.block_1 = Emu3VisionVQResnetBlock(
|
| 633 |
+
in_channels=block_in,
|
| 634 |
+
out_channels=block_in,
|
| 635 |
+
dropout=config.dropout,
|
| 636 |
+
zq_ch=zq_ch,
|
| 637 |
+
)
|
| 638 |
+
self.mid.attn_1 = Emu3VisionVQAttnBlock(block_in, zq_ch)
|
| 639 |
+
self.mid.block_2 = Emu3VisionVQResnetBlock(
|
| 640 |
+
in_channels=block_in,
|
| 641 |
+
out_channels=block_in,
|
| 642 |
+
dropout=config.dropout,
|
| 643 |
+
zq_ch=zq_ch,
|
| 644 |
+
)
|
| 645 |
+
|
| 646 |
+
# upsampling
|
| 647 |
+
self.up = nn.ModuleList()
|
| 648 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 649 |
+
block = nn.ModuleList()
|
| 650 |
+
attn = nn.ModuleList()
|
| 651 |
+
block_out = config.ch * config.ch_mult[i_level]
|
| 652 |
+
for i_block in range(self.num_res_blocks + 1):
|
| 653 |
+
block.append(
|
| 654 |
+
Emu3VisionVQResnetBlock(
|
| 655 |
+
in_channels=block_in,
|
| 656 |
+
out_channels=block_out,
|
| 657 |
+
dropout=config.dropout,
|
| 658 |
+
zq_ch=zq_ch,
|
| 659 |
+
)
|
| 660 |
+
)
|
| 661 |
+
block_in = block_out
|
| 662 |
+
if i_level in config.attn_resolutions:
|
| 663 |
+
attn.append(Emu3VisionVQAttnBlock(block_in, zq_ch))
|
| 664 |
+
|
| 665 |
+
up = nn.Module()
|
| 666 |
+
up.block = block
|
| 667 |
+
up.attn = attn
|
| 668 |
+
if i_level != 0:
|
| 669 |
+
up.upsample = Emu3VisionVQUpsample(block_in)
|
| 670 |
+
|
| 671 |
+
self.up.insert(0, up)
|
| 672 |
+
|
| 673 |
+
self.act = Emu3VisionVQActivation()
|
| 674 |
+
|
| 675 |
+
self.norm_out = Emu3VisionVQSpatialNorm(block_in, zq_ch)
|
| 676 |
+
self.conv_out = nn.Conv2d(
|
| 677 |
+
block_in,
|
| 678 |
+
config.out_channels,
|
| 679 |
+
kernel_size=3,
|
| 680 |
+
stride=1,
|
| 681 |
+
padding=1,
|
| 682 |
+
)
|
| 683 |
+
|
| 684 |
+
def forward(self, z: torch.Tensor, zq: torch.Tensor):
|
| 685 |
+
z_zq = torch.cat((z, zq), dim=0)
|
| 686 |
+
z_zq = z_zq.permute(0, 2, 1, 3, 4)
|
| 687 |
+
z_zq = self.time_res_stack(z_zq)
|
| 688 |
+
|
| 689 |
+
for conv in self.time_conv:
|
| 690 |
+
z_zq = self.act(conv(z_zq))
|
| 691 |
+
|
| 692 |
+
z_zq = z_zq.permute(0, 2, 1, 3, 4)
|
| 693 |
+
|
| 694 |
+
h, zq = torch.chunk(z_zq, 2, dim=0)
|
| 695 |
+
|
| 696 |
+
h = h.reshape(-1, *h.shape[2:])
|
| 697 |
+
zq = zq.reshape(-1, *zq.shape[2:])
|
| 698 |
+
|
| 699 |
+
h = self.conv_in(h)
|
| 700 |
+
|
| 701 |
+
# middle
|
| 702 |
+
h = self.mid.block_1(h, zq)
|
| 703 |
+
h = self.mid.attn_1(h, zq)
|
| 704 |
+
h = self.mid.block_2(h, zq)
|
| 705 |
+
|
| 706 |
+
# upsampling
|
| 707 |
+
for i_level in reversed(range(self.num_resolutions)):
|
| 708 |
+
for i_block in range(self.num_res_blocks+1):
|
| 709 |
+
h = self.up[i_level].block[i_block](h, zq)
|
| 710 |
+
if len(self.up[i_level].attn) > 0:
|
| 711 |
+
h = self.up[i_level].attn[i_block](h, zq)
|
| 712 |
+
|
| 713 |
+
if i_level != 0:
|
| 714 |
+
h = self.up[i_level].upsample(h)
|
| 715 |
+
|
| 716 |
+
h = self.norm_out(h, zq)
|
| 717 |
+
h = self.act(h)
|
| 718 |
+
h = self.conv_out(h)
|
| 719 |
+
|
| 720 |
+
return h
|
| 721 |
+
|
| 722 |
+
|
| 723 |
+
class Emu3VisionVQPretrainedModel(PreTrainedModel):
|
| 724 |
+
"""
|
| 725 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 726 |
+
models.
|
| 727 |
+
"""
|
| 728 |
+
|
| 729 |
+
config_class = Emu3VisionVQConfig
|
| 730 |
+
base_model_prefix = "emuvideovq"
|
| 731 |
+
main_input_name = "pixel_values"
|
| 732 |
+
_no_split_modules = ["Emu3VisionVQResnetBlock", "Emu3VisionVQAttnBlock", "Emu3VisionVQResnetTemporalBlock"]
|
| 733 |
+
|
| 734 |
+
def _init_weights(self, module):
|
| 735 |
+
if isinstance(module, (nn.Conv2d, nn.Conv3d)):
|
| 736 |
+
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
|
| 737 |
+
# copied from the `reset_parameters` method of `class Linear(Module)` in `torch`.
|
| 738 |
+
elif isinstance(module, nn.Linear):
|
| 739 |
+
nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
|
| 740 |
+
if module.bias is not None:
|
| 741 |
+
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight)
|
| 742 |
+
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
|
| 743 |
+
nn.init.uniform_(module.bias, -bound, bound)
|
| 744 |
+
elif isinstance(module, (nn.BatchNorm2d, nn.BatchNorm3d, nn.GroupNorm)):
|
| 745 |
+
nn.init.constant_(module.weight, 1)
|
| 746 |
+
nn.init.constant_(module.bias, 0)
|
| 747 |
+
|
| 748 |
+
|
| 749 |
+
class Emu3VisionVQModel(Emu3VisionVQPretrainedModel):
|
| 750 |
+
|
| 751 |
+
def __init__(self, config):
|
| 752 |
+
super().__init__(config)
|
| 753 |
+
self.config = config
|
| 754 |
+
|
| 755 |
+
self.encoder = Emu3VisionVQEncoder(config)
|
| 756 |
+
self.decoder = Emu3VisionVQDecoder(config)
|
| 757 |
+
self.quantize = Emu3VisionVQVectorQuantizer(config)
|
| 758 |
+
|
| 759 |
+
self.quant_conv = Emu3VisionVQCausalConv3d(config.z_channels, config.embed_dim)
|
| 760 |
+
self.post_quant_conv = Emu3VisionVQCausalConv3d(config.embed_dim, config.z_channels)
|
| 761 |
+
|
| 762 |
+
self.spatial_scale_factor = 2 ** (len(config.ch_mult) - 1)
|
| 763 |
+
|
| 764 |
+
self.post_init()
|
| 765 |
+
|
| 766 |
+
def encode(self, x: torch.Tensor):
|
| 767 |
+
ndim = x.ndim
|
| 768 |
+
if ndim == 4:
|
| 769 |
+
t = self.config.temporal_downsample_factor
|
| 770 |
+
b, c, h, w = x.shape
|
| 771 |
+
x = x.unsqueeze(1).repeat(1, t, 1, 1, 1)
|
| 772 |
+
elif ndim == 5:
|
| 773 |
+
b, t, c, h, w = x.shape
|
| 774 |
+
|
| 775 |
+
h = self.encoder(x)
|
| 776 |
+
|
| 777 |
+
# b t c h w -> b c t h w
|
| 778 |
+
h = h.permute(0, 2, 1, 3, 4)
|
| 779 |
+
h = self.quant_conv(h)
|
| 780 |
+
# b c t h w -> b t c h w
|
| 781 |
+
h = h.permute(0, 2, 1, 3, 4)
|
| 782 |
+
|
| 783 |
+
codes = self.quantize(h)
|
| 784 |
+
|
| 785 |
+
if ndim == 4:
|
| 786 |
+
codes = codes.squeeze(1)
|
| 787 |
+
|
| 788 |
+
return codes
|
| 789 |
+
|
| 790 |
+
def decode(self, x: torch.Tensor):
|
| 791 |
+
ndim = x.ndim
|
| 792 |
+
if ndim == 3:
|
| 793 |
+
x = x.unsqueeze(1)
|
| 794 |
+
|
| 795 |
+
b, t, h, w = x.shape
|
| 796 |
+
quant = self.quantize.embedding(x.flatten())
|
| 797 |
+
c = quant.shape[-1]
|
| 798 |
+
quant = quant.view(b, t, h, w, c).permute(0, 4, 1, 2, 3).contiguous()
|
| 799 |
+
quant2 = self.post_quant_conv(quant)
|
| 800 |
+
|
| 801 |
+
quant = quant.permute(0, 2, 1, 3, 4)
|
| 802 |
+
quant2 = quant2.permute(0, 2, 1, 3, 4)
|
| 803 |
+
|
| 804 |
+
video = self.decoder(quant2, quant)
|
| 805 |
+
video = video.reshape(
|
| 806 |
+
b,
|
| 807 |
+
t * self.config.temporal_downsample_factor,
|
| 808 |
+
self.config.out_channels,
|
| 809 |
+
h * self.spatial_scale_factor,
|
| 810 |
+
w * self.spatial_scale_factor,
|
| 811 |
+
)
|
| 812 |
+
if ndim == 3:
|
| 813 |
+
return video[:, 0]
|
| 814 |
+
return video
|
| 815 |
+
|
| 816 |
+
@property
|
| 817 |
+
def device(self):
|
| 818 |
+
return next(self.parameters()).device
|
| 819 |
+
|
| 820 |
+
@property
|
| 821 |
+
def dtype(self):
|
| 822 |
+
return next(self.parameters()).dtype
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoImageProcessor": "image_processing_emu3visionvq.Emu3VisionVQImageProcessor"
|
| 4 |
+
},
|
| 5 |
+
"do_convert_rgb": true,
|
| 6 |
+
"do_normalize": true,
|
| 7 |
+
"do_rescale": true,
|
| 8 |
+
"do_resize": true,
|
| 9 |
+
"image_mean": [
|
| 10 |
+
0.5,
|
| 11 |
+
0.5,
|
| 12 |
+
0.5
|
| 13 |
+
],
|
| 14 |
+
"image_processor_type": "Emu3VisionVQImageProcessor",
|
| 15 |
+
"image_std": [
|
| 16 |
+
0.5,
|
| 17 |
+
0.5,
|
| 18 |
+
0.5
|
| 19 |
+
],
|
| 20 |
+
"max_pixels": 1048576,
|
| 21 |
+
"min_pixels": 262144,
|
| 22 |
+
"resample": 3,
|
| 23 |
+
"rescale_factor": 0.00392156862745098,
|
| 24 |
+
"size": {
|
| 25 |
+
"max_pixels": 1048576,
|
| 26 |
+
"min_pixels": 262144
|
| 27 |
+
},
|
| 28 |
+
"spatial_factor": 8
|
| 29 |
+
}
|