BAAI
/

File size: 5,756 Bytes
8f2764b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
license: mit
language:
- en
- zh
- ar
- fr
- es
metrics:
- recall
base_model:
- Qwen/Qwen2.5-VL-3B-Instruct
library_name: transformers == 4.51.3
---

<h1 align="center">Vis-IR: Unifying Search With Visualized Information Retrieval</h1>

<p align="center">
    <a href="https://arxiv.org/abs/2502.11431">
        <img alt="Build" src="http://img.shields.io/badge/arXiv-2502.11431-B31B1B.svg">
    </a>
    <a href="https://github.com/VectorSpaceLab/Vis-IR">
        <img alt="Build" src="https://img.shields.io/badge/Github-Code-blue">
    </a>
    <a href="https://huggingface.co/datasets/marsh123/VIRA/">
        <img alt="Build" src="https://img.shields.io/badge/πŸ€— Datasets-VIRA-yellow">
    </a>  
    <a href="https://huggingface.co/datasets/marsh123/MVRB">
        <img alt="Build" src="https://img.shields.io/badge/πŸ€— Datasets-MVRB-yellow">
    </a>  
    <!-- <a href="">
        <img alt="Build" src="https://img.shields.io/badge/πŸ€— Model-UniSE CLIP-yellow">
    </a>  -->
    <a href="https://huggingface.co/marsh123/UniSE">
        <img alt="Build" src="https://img.shields.io/badge/πŸ€— Model-UniSE MLLM-yellow">
    </a> 
     
</p>

<h4 align="center">
    <p>
        <a href=#news>News</a> |
        <a href=#release-plan>Release Plan</a> |
        <a href=#overview>Overview</a> |
        <a href="#license">License</a> |
        <a href="#citation">Citation</a>
    <p>
</h4>

## News

```2025-04-06``` πŸš€πŸš€ MVRB Dataset are released on Huggingface: [MVRB](https://huggingface.co/datasets/marsh123/MVRB)

```2025-04-02``` πŸš€πŸš€ VIRA Dataset are released on Huggingface: [VIRA](https://huggingface.co/datasets/marsh123/VIRA/)

```2025-04-01``` πŸš€πŸš€ UniSE models are released on Huggingface: [UniSE-MLMM](https://huggingface.co/marsh123/UniSE-MLLM/)

```2025-02-17``` πŸŽ‰πŸŽ‰ Release our paper: [Any Information Is Just Worth One Single Screenshot: Unifying Search With Visualized Information Retrieval](https://arxiv.org/abs/2502.11431).

## Release Plan
- [x] Paper
- [x] UniSE models
- [x] VIRA Dataset
- [x] MVRB benchmark
- [ ] Evaluation code
- [ ] Fine-tuning code

## Overview

In this work, we formally define an emerging IR paradigm called Visualized Information Retrieval, or **VisIR**, where multimodal information, such as texts, images, tables and charts, is jointly represented by a unified visual format called **Screenshots**, for various retrieval applications. We further make three key contributions for VisIR. First, we create **VIRA** (Vis-IR Aggregation), a large-scale dataset comprising a vast collection of screenshots from diverse sources, carefully curated into captioned and questionanswer formats. Second, we develop **UniSE** (Universal Screenshot Embeddings), a family of retrieval models that enable screenshots to query or be queried across arbitrary data modalities. Finally, we construct **MVRB** (Massive Visualized IR Benchmark), a comprehensive benchmark covering a variety of task forms and application scenarios. Through extensive evaluations on MVRB, we highlight the deficiency from existing multimodal retrievers and the substantial improvements made by UniSE.

## Model Usage

> Our code works well on transformers==4.51.3, and we recommend using this version.

### 1. UniSE-MLLM Models

```python
import torch
from transformers import AutoModel

MODEL_NAME = "BAAI/BGE-VL-Screenshot"
model = AutoModel.from_pretrained(MODEL_NAME, 
                    trust_remote_code=True, 
                    attn_implementation="flash_attention_2", 
                    torch_dtype=torch.bfloat16
                ) # You must set trust_remote_code=True, and we recommend using flash_attention_2 and bfloat16
model.set_processor(MODEL_NAME)

with torch.no_grad():
    device = torch.device("cuda:0")
    model = model.to(device)
    model.eval()

    query_inputs = model.data_process(
        images=["./assets/query_1.png", "./assets/query_2.png"],    
        text=["After a 17% drop, what is Nvidia's closing stock price?", "I would like to see a detailed and intuitive performance comparison between the two models."],
        q_or_c="query",
        task_instruction="Represent the given image with the given query."
    )

    candidate_inputs = model.data_process(
        images=["./assets/positive_1.jpeg", "./assets/neg_1.jpeg",
                "./assets/positive_2.jpeg", "./assets/neg_2.jpeg"],
        q_or_c="candidate"
    )

    query_embeddings = model(**query_inputs)
    candidate_embeddings = model(**candidate_inputs)
    scores = torch.matmul(query_embeddings, candidate_embeddings.T)
    print(scores)
    # Expected output:
    #    [[0.5352, 0.3223, 0.1738, 0.1348],
    #     [0.1592, 0.0757, 0.4375, 0.4180]]
```

## Performance on MVRB

MVRB is a comprehensive benchmark designed for the retrieval task centered on screenshots. It includes four meta tasks: Screenshot Retrieval (SR), Composed Screenshot Retrieval (CSR), Screenshot QA (SQA), and Open-Vocabulary Classification (OVC). We evaluate three main types of retrievers on MVRB: OCR+Text Retrievers, General Multimodal Retrievers, and Screenshot Document Retrievers. Our proposed UniSE-MLLM achieves state-of-the-art (SOTA) performance on this benchmark.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/66164f6245336ca774679611/igMgX-BvQ55Dyxuw26sgs.png)



## License
Vis-IR is licensed under the [MIT License](LICENSE). 


## Citation
If you find this model useful, please cite:

```
@article{liu2025any,
  title={Any Information Is Just Worth One Single Screenshot: Unifying Search With Visualized Information Retrieval},
  author={Liu, Ze and Liang, Zhengyang and Zhou, Junjie and Liu, Zheng and Lian, Defu},
  journal={arXiv preprint arXiv:2502.11431},
  year={2025}
}
```