Improve language tag
Browse filesHi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.
README.md
CHANGED
@@ -1,66 +1,77 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
datasets:
|
4 |
-
- Azure99/blossom-v6-sft-stage1
|
5 |
-
- Azure99/blossom-v6-sft-stage2
|
6 |
-
language:
|
7 |
-
-
|
8 |
-
-
|
9 |
-
|
10 |
-
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
model
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
```
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- Azure99/blossom-v6-sft-stage1
|
5 |
+
- Azure99/blossom-v6-sft-stage2
|
6 |
+
language:
|
7 |
+
- zho
|
8 |
+
- eng
|
9 |
+
- fra
|
10 |
+
- spa
|
11 |
+
- por
|
12 |
+
- deu
|
13 |
+
- ita
|
14 |
+
- rus
|
15 |
+
- jpn
|
16 |
+
- kor
|
17 |
+
- vie
|
18 |
+
- tha
|
19 |
+
- ara
|
20 |
+
base_model:
|
21 |
+
- Qwen/Qwen2.5-32B
|
22 |
+
---
|
23 |
+
# **BLOSSOM-V6-32B**
|
24 |
+
|
25 |
+
[💻Github](https://github.com/Azure99/BlossomLM) • [🚀Blossom Chat Demo](https://blossom-chat.com/)
|
26 |
+
|
27 |
+
### Introduction
|
28 |
+
|
29 |
+
Blossom is a powerful open-source conversational large language model that provides reproducible post-training data, dedicated to delivering an open, powerful, and cost-effective locally accessible general-purpose model for everyone.
|
30 |
+
|
31 |
+
| Chat Model | Resource | Base Model |
|
32 |
+
| ------------------------------------------------------------ | ------------------------------------------------------------ | ----------- |
|
33 |
+
| [Blossom-V6-32B](https://huggingface.co/Azure99/Blossom-V6-32B) | [Demo](https://huggingface.co/spaces/Azure99/Blossom-V6-32B-AWQ-Demo) [AWQ](https://huggingface.co/Azure99/Blossom-V6-32B-AWQ) [GGUF](https://huggingface.co/Azure99/Blossom-V6-32B-GGUF) [Ollama](https://ollama.com/azure99/blossom-v6:32b) | Qwen2.5-32B |
|
34 |
+
| [Blossom-V6-14B](https://huggingface.co/Azure99/Blossom-V6-14B) | [Demo](https://huggingface.co/spaces/Azure99/Blossom-V6-14B-Demo) [AWQ](https://huggingface.co/Azure99/Blossom-V6-14B-AWQ) [GGUF](https://huggingface.co/Azure99/Blossom-V6-14B-GGUF) [Ollama](https://ollama.com/azure99/blossom-v6:14b) | Qwen2.5-14B |
|
35 |
+
| [Blossom-V6-7B](https://huggingface.co/Azure99/Blossom-V6-7B) | [Demo](https://huggingface.co/spaces/Azure99/Blossom-V6-7B-Demo) [AWQ](https://huggingface.co/Azure99/Blossom-V6-7B-AWQ) [GGUF](https://huggingface.co/Azure99/Blossom-V6-7B-GGUF) [Ollama](https://ollama.com/azure99/blossom-v6:7b) | Qwen2.5-7B |
|
36 |
+
|
37 |
+
You can find the training data here: [Blossom-V6-SFT-Stage1](https://huggingface.co/datasets/Azure99/blossom-v6-sft-stage1) (1 epoch)、[Blossom-V6-SFT-Stage2](https://huggingface.co/datasets/Azure99/blossom-v6-sft-stage2) (3 epoch)。
|
38 |
+
|
39 |
+
### **Data Synthesis Workflow Overview**
|
40 |
+
|
41 |
+
Primarily employs three cost-effective models—Yi-Lightning, Deepseek-V2.5, and Doubao-Pro-32K (denoted as A, B, C)—to regenerate responses under different scenarios using tailored synthesis strategies.
|
42 |
+
|
43 |
+
For example:
|
44 |
+
|
45 |
+
- In objective scenarios like mathematics (where answers are unique), Model A first generates responses as a "teacher." If reference answers exist in the source data, Model B verifies the correctness of A's responses against them. If no reference answers exist, Model C generates a second response, and Model B checks consistency between A and C's outputs. Inconsistent responses are filtered out.
|
46 |
+
- For subjective scenarios, three models cross-evaluate each other. For instance, Models A and B generate responses to a question, and Model C evaluates which is better. The superior response may be retained as training data or used for preference data construction. To mitigate model bias, roles (respondent/evaluator) are randomly assigned to A, B, and C in each instance.
|
47 |
+
|
48 |
+
Additional rule-based filtering is applied, such as:
|
49 |
+
|
50 |
+
- N-Gram filtering to remove data with many repetitions.
|
51 |
+
- Discarding questions containing toxic content that triggers teacher model refusals.
|
52 |
+
|
53 |
+
Further technical details will be released in the future. The data is synthesized by the [🌸BlossomData](https://github.com/Azure99/BlossomData) framework.
|
54 |
+
|
55 |
+
### Inference
|
56 |
+
|
57 |
+
```python
|
58 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
59 |
+
|
60 |
+
MODEL = "Azure99/Blossom-V6-32B"
|
61 |
+
|
62 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL)
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
64 |
+
|
65 |
+
messages = [
|
66 |
+
{"role": "user", "content": "北京有什么好吃的"}
|
67 |
+
]
|
68 |
+
|
69 |
+
formatted_input = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
70 |
+
input_ids = tokenizer([formatted_input], return_tensors="pt").to(model.device).input_ids
|
71 |
+
generated_ids = model.generate(input_ids, max_new_tokens=512)
|
72 |
+
generated_ids = [
|
73 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(input_ids, generated_ids)
|
74 |
+
]
|
75 |
+
|
76 |
+
print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0])
|
77 |
```
|