Frederick Lee
commited on
Commit
·
0465aa6
1
Parent(s):
210bb79
Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- botp/yentinglin-zh_TW_c4
|
4 |
+
language:
|
5 |
+
- zh
|
6 |
+
pipeline_tag: fill-mask
|
7 |
+
---
|
8 |
+
|
9 |
+
| Dataset\BERT Pretrain | bert-based-chinese | ckiplab | GufoLab |
|
10 |
+
| ------------- |:-------------:|:-------------:|:-------------:|
|
11 |
+
| 5000 Tradition Chinese Dataset |0.7183| 0.6989| **0.8081**|
|
12 |
+
| 10000 Sol-Idea Dataset | 0.7874| 0.7913| **0.8025**|
|
13 |
+
| ALL DataSet | 0.7694| 0.7678| **0.8038**|
|
14 |
+
|
15 |
+
### Model Sources
|
16 |
+
- **Paper:** [BERT](https://arxiv.org/abs/1810.04805)
|
17 |
+
|
18 |
+
## Uses
|
19 |
+
|
20 |
+
#### Direct Use
|
21 |
+
|
22 |
+
This model can be used for masked language modeling
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
## Risks, Limitations and Biases
|
27 |
+
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.**
|
28 |
+
|
29 |
+
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
|
30 |
+
|
31 |
+
|
32 |
+
## Training
|
33 |
+
|
34 |
+
#### Training Procedure
|
35 |
+
* **type_vocab_size:** 2
|
36 |
+
* **vocab_size:** 21128
|
37 |
+
* **num_hidden_layers:** 12
|
38 |
+
|
39 |
+
#### Training Data
|
40 |
+
botp/yentinglin-zh_TW_c4
|
41 |
+
|
42 |
+
## Evaluation
|
43 |
+
|
44 |
+
#### Results
|
45 |
+
|
46 |
+
[More Information Needed]
|
47 |
+
|
48 |
+
|
49 |
+
## How to Get Started With the Model
|
50 |
+
```python
|
51 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
52 |
+
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained('EZlee/bert-based-chinese', use_auth_token=True)
|
54 |
+
|
55 |
+
model = AutoModelForMaskedLM.from_pretrained("EZlee/bert-based-chinese", use_auth_token=True)
|
56 |
+
|
57 |
+
```
|