Avirallm commited on
Commit
af5622d
Β·
verified Β·
1 Parent(s): 740c5fe

Upload README (1).md

Browse files
Files changed (1) hide show
  1. README (1).md +154 -0
README (1).md ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🧠 Custom Knowledge LLM: Tony Stark Edition
2
+
3
+ This is a fine-tuned version of the [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) large language model, trained specifically to answer questions related to **Tony Stark**, the legendary Marvel character. The project demonstrates how to adapt open-source instruction-tuned LLMs for domain-specific knowledge tasks using efficient fine-tuning methods.
4
+
5
+ ---
6
+
7
+ ## πŸ“Œ What It Is
8
+
9
+ A lightweight, instruction-tuned **knowledge retrieval LLM** that can answer factual, fan-oriented questions about **Tony Stark**. It uses a custom dataset of prompt-completion pairs and adapts the Qwen2.5 model using **PEFT (Parameter-Efficient Fine-Tuning)** with **LoRA (Low-Rank Adaptation)**.
10
+
11
+ ---
12
+
13
+ ## 🎯 Why It Is
14
+
15
+ This is a **learning + fun project**, aimed at:
16
+ - Understanding how to fine-tune LLMs on specific knowledge domains
17
+ - Exploring lightweight training using LoRA for limited GPU environments (Colab)
18
+ - Showing how fan-based or fictional datasets can help test LLM customization
19
+
20
+ Though it's themed around Tony Stark, the process used is **reproducible** and applicable to serious production tasks like:
21
+ - Domain-specific customer support
22
+ - FAQ bots for organizations
23
+ - Internal knowledge base assistants
24
+
25
+ ---
26
+
27
+ ## πŸ› οΈ How It Is Built
28
+
29
+ ### ✳️ Model Choice
30
+ - **Qwen2.5-3B-Instruct** was selected because:
31
+ - It's small enough to fine-tune on Colab
32
+ - Instruction-tuned already (saves effort)
33
+ - Multilingual and instruction-following by default
34
+
35
+ ### ✳️ Fine-tuning Method
36
+ - Used **LoRA via PEFT**, which:
37
+ - Freezes most of the model weights
38
+ - Only trains small adapter layers (RAM/GPU efficient)
39
+ - Works with Hugging Face `Trainer` API
40
+
41
+ ### ✳️ Dataset
42
+ - Custom-built JSON with Q&A pairs like:
43
+ - `"Who is Tony Stark?"`
44
+ - `"List of suits developed by Stark"`
45
+ - `"What tech does Iron Man use?"`
46
+
47
+ ---
48
+
49
+ ## πŸ” Can This Be Used for Other Models?
50
+
51
+ βœ… **Yes!**
52
+ The fine-tuning method used (LoRA via PEFT) is **model-agnostic** β€” you can apply the same code pipeline to:
53
+ - LLaMA / Mistral / Falcon / OpenLLaMA
54
+ - BERT-style models (with changes for classification)
55
+ - Any Hugging Face `AutoModelForCausalLM`-compatible model
56
+
57
+ Just ensure:
58
+ - The model supports text generation
59
+ - You choose correct `target_modules` for LoRA
60
+ - Tokenizer and dataset are aligned
61
+
62
+ ---
63
+
64
+ ## πŸ“‚ What's Inside
65
+
66
+ - `tonyst.json` β€” your training dataset
67
+ - `train.ipynb` β€” full training pipeline
68
+ - `model.zip` β€” ready-to-share model
69
+ - `tonyst.json` β€” Custome made dataset
70
+
71
+ ---
72
+
73
+ ## πŸ§ͺ Example Usage
74
+
75
+ ```python
76
+ from transformers import pipeline
77
+
78
+ qa = pipeline(
79
+ model="./my_qwen",
80
+ tokenizer="./my_qwen",
81
+ device="cuda"
82
+ )
83
+
84
+ qa("What is Tony Stark’s most advanced suit?")
85
+
86
+ ```
87
+
88
+ ## πŸš€ Want a Custom LLM for Your Brand or Domain?
89
+
90
+ This project is more than a fun fan experiment β€” it's a **blueprint** for real-world applications.
91
+ With this exact method, you can create tailored AI models for:
92
+
93
+ πŸ”Ή **Startups** building niche AI products
94
+ πŸ”Ή **Enterprises** needing internal knowledge assistants
95
+ πŸ”Ή **Educators** creating curriculum-aligned AI tutors
96
+ πŸ”Ή **Healthcare** teams developing symptom-checker bots
97
+ πŸ”Ή **E-commerce** stores launching personalized shopping agents
98
+ πŸ”Ή **Legal firms** automating case Q&A from documents
99
+ πŸ”Ή Even **fictional universe chatbots** for games, comics, or interactive apps
100
+
101
+ ---
102
+
103
+ ## πŸ› οΈ What I Can Help You Build
104
+
105
+ βœ… Domain-specific LLM (like your brand’s private ChatGPT)
106
+ βœ… Fine-tuned Q&A assistant trained on your docs, FAQs, or customer support logs
107
+ βœ… Lightweight LoRA fine-tuning without the need for massive GPUs
108
+ βœ… Custom pipelines for Hugging Face or local deployment
109
+
110
+ ---
111
+
112
+ ## πŸ“¬ Let’s Talk!
113
+
114
+ Whether you're:
115
+ - a **founder** prototyping your first AI MVP,
116
+ - a **developer** trying to scale your AI features, or
117
+ - a **company** looking to automate knowledge tasks...
118
+
119
+ **πŸ“© Reach out:** [[email protected]](mailto:[email protected])
120
+ I'm open to collaborations, consulting, and freelance work.
121
+
122
+ ---
123
+
124
+ ## πŸ’‘ Why Trust This Method?
125
+
126
+ This entire project was built using:
127
+ - ⚑ Efficient fine-tuning via **LoRA**
128
+ - 🧠 Hugging Face ecosystem for flexibility
129
+ - πŸ” Custom data and tokenizer alignment
130
+ - πŸ’» Trained fully on **Google Colab** – no paid GPUs needed
131
+
132
+ If this worked for Tony Stark’s mind, it can work for **your knowledge base too** πŸ˜‰
133
+
134
+
135
+ ## πŸ™Œ Credits
136
+
137
+ - **Developer:**
138
+ [Aviral Srivastava](mailto:[email protected])
139
+ [GitHub](http://github.com/aviral-sri) | [LinkedIn](https://www.linkedin.com/in/aviral-srivastava26/)
140
+
141
+ - **Base Model:**
142
+ [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) by Alibaba Cloud
143
+
144
+ - **Libraries & Tools Used:**
145
+ - [Transformers](https://github.com/huggingface/transformers) by Hugging Face
146
+ - [Datasets](https://github.com/huggingface/datasets)
147
+ - [PEFT (LoRA)](https://github.com/huggingface/peft)
148
+ - [Torch](https://pytorch.org/)
149
+ - Google Colab (training environment)
150
+ - [Weights & Biases](https://wandb.ai/) for logging
151
+
152
+ - **Inspiration:**
153
+ Tony Stark / Iron Man (Marvel Universe)
154
+ This is a non-commercial fan project meant for learning and experimentation.