File size: 5,036 Bytes
740c5fe 7ebe029 b680ff9 740c5fe 18bdcae 7ebe029 18bdcae 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 01ee11f 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe 7ebe029 740c5fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
---
base_model: Qwen/Qwen2.5-3B-Instruct
library_name: peft
pipeline_tag: text-generation
tags:
- base_model:adapter:Qwen/Qwen2.5-3B-Instruct
- lora
- transformers
- custom-llm
- knowledge-llm
- tony-stark
- fine-tuning
license: mit
language:
- en
---
# π§ Custom Knowledge LLM: Tony Stark Edition

This is a fine-tuned version of the [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) model, adapted to answer domain-specific questions related to **Tony Stark**, using the LoRA (Low-Rank Adaptation) method for parameter-efficient fine-tuning.
---
## π Model Details
### Model Description
This project is a fun + educational experiment that fine-tunes a base LLM using a fictional dataset based on Tony Stark from the Marvel universe.
- **Developed by:** [Aviral Srivastava](https://www.linkedin.com/in/aviral-srivastava26/)
- **Model type:** Causal Language Model (Instruction-tuned)
- **Language:** English
- **License:** MIT
- **Finetuned from model:** [`Qwen/Qwen2.5-3B-Instruct`](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct)
---
## π§βπ» Uses
### Direct Use
This model is fine-tuned to answer Tony Starkβrelated prompts such as:
- "Who is Tony Stark?"
- "What suits did Iron Man build?"
- "What are leadership traits of Stark?"
### Downstream Use
The methodology can be directly reused for:
- Corporate knowledge assistants
- Domain-specific customer support
- Educational tutors trained on custom material
- Healthcare, law, and e-commerce Q&A bots
### Out-of-Scope Use
This model is not designed for:
- Real-world advice in medical, legal, or financial domains
- Factual accuracy outside of Tony Stark lore
- Handling unrelated general-purpose queries
---
## β οΈ Bias, Risks, and Limitations
- This model is trained on fictional data and is not meant for serious tasks.
- It reflects only the content provided in the custom dataset.
- It may "hallucinate" facts if asked general questions.
### Recommendations
Please do not use this for any commercial or factual purpose without re-training on a verified dataset.
---
## π How to Use
```python
from transformers import pipeline
qa = pipeline(
model="Avirallm/Custom-Knowledge-LLM-Tony-Stark-Edition",
tokenizer="Avirallm/Custom-Knowledge-LLM-Tony-Stark-Edition",
device="cuda" # or "cpu" if not using GPU
)
qa("List all Iron Man suits and their features.")
```
## ποΈββοΈ Training Details
### π¦ Training Data
A custom JSON dataset of prompt-completion pairs related to Tony Stark. Example entry:
~json
{
"prompt": "Who is Tony Stark?",
"completion": "Tony Stark is a fictional billionaire inventor from Marvel..."
}
~
### π§ Training Hyperparameters
- **Epochs:** 10
- **Batch Size:** 1
- **Optimizer:** AdamW
- **Learning Rate:** 0.001
- **Mixed Precision:** FP16
- **Framework:** Hugging Face `Trainer` + PEFT LoRA
### π₯οΈ Training Setup
- Trained fully on **Google Colab Free Tier**
- Using **Qwen/Qwen2.5-3B-Instruct** with LoRA adapters
- Fine-tuned only **adapter layers** (not full model)
---
## π Evaluation
This project is **primarily exploratory** and not evaluated on public benchmarks.
---
## π± Environmental Impact
- **Hardware:** Google Colab Free GPU (Tesla T4)
- **Training Time:** ~380 seconds (10 epochs, 1580 steps)
- **Carbon Emission:** Negligible (low-compute, single GPU)
---
## π§ Architecture
- **Base Model:** Qwen2.5-3B-Instruct (Alibaba Cloud)
- **Fine-Tuning:** LoRA adapters on top of base weights
- **Task Type:** Text generation, instruction following
- **Token Limit:** 128 tokens (during training)
---
## β¨ Example Applications
- Fan-based AI chatbot (Iron Man Assistant)
- Fictional universe assistants for games and comics
- Domain-specific tutors for educational platforms
- Startup knowledge bots (replace "Tony Stark" with your brand)
---
## π Repository Structure
- `adapter_model.safetensors` β LoRA adapter weights
- `tokenizer_config.json`, `tokenizer.json`, `vocab.json` β Tokenizer files
- `README.md` β Project overview
- `training_args.bin` β Training arguments
- `tonyst.json` (optional) β Custom dataset (if shared)
---
## π¬ Get in Touch
Have a use case in mind? Want your own custom-trained LLM?
π§ **Email:** [[email protected]](mailto:[email protected])
π **LinkedIn:** [Aviral Srivastava](https://www.linkedin.com/in/aviral-srivastava26/)
π» **GitHub:** [aviral-sri](https://github.com/aviral-sri)
---
## π Credits
- **Base Model:** [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct)
- **Fine-Tuning:** PEFT + LoRA
- **Tools Used:**
- Hugging Face Transformers
- Hugging Face Datasets
- Google Colab
- W&B for tracking
**Inspired by:** Marvel's Tony Stark (for learning only, non-commercial)
---
## πͺͺ License
This project is licensed under the MIT License.
Feel free to modify, share, and build upon it.
|