Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# new2
|
2 |
+
|
3 |
+
This is a LORA adapter fine-tuned on the base model [NousResearch/DeepHermes-3-Llama-3-3B-Preview](https://huggingface.co/NousResearch/DeepHermes-3-Llama-3-3B-Preview).
|
4 |
+
|
5 |
+
## Model Details
|
6 |
+
- **Base Model:** NousResearch/DeepHermes-3-Llama-3-3B-Preview
|
7 |
+
- **Adapter Type:** LORA
|
8 |
+
- **Task:** JEE Mathematics 3D Geometry Problem
|
9 |
+
|
10 |
+
## Usage
|
11 |
+
|
12 |
+
```python
|
13 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
14 |
+
from peft import PeftModel
|
15 |
+
import torch
|
16 |
+
|
17 |
+
# Load base model and tokenizer
|
18 |
+
base_model = "NousResearch/DeepHermes-3-Llama-3-3B-Preview"
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
21 |
+
|
22 |
+
# Load the LoRA adapter
|
23 |
+
adapter_model = "AthenaAgent42/new2"
|
24 |
+
model = PeftModel.from_pretrained(model, adapter_model)
|
25 |
+
|
26 |
+
# Example prompt
|
27 |
+
prompt = """
|
28 |
+
<Your prompt here>
|
29 |
+
"""
|
30 |
+
|
31 |
+
# Generate response
|
32 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
33 |
+
outputs = model.generate(input_ids, max_new_tokens=512)
|
34 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
35 |
+
print(response)
|
36 |
+
```
|
37 |
+
|
38 |
+
|