import re from typing import List, Optional, Union, Dict, Any from functools import cached_property import pypinyin import torch from hangul_romanize import Transliter from hangul_romanize.rule import academic from num2words import num2words from spacy.lang.ar import Arabic from spacy.lang.en import English from spacy.lang.es import Spanish from spacy.lang.ja import Japanese from spacy.lang.zh import Chinese from transformers import PreTrainedTokenizerFast, BatchEncoding from transformers.tokenization_utils_base import TruncationStrategy, PaddingStrategy from tokenizers import Tokenizer from tokenizers.pre_tokenizers import WhitespaceSplit from tokenizers.processors import TemplateProcessing from auralis.models.xttsv2.components.tts.layers.xtts.zh_num2words import TextNorm as zh_num2words import cutlet def get_spacy_lang(lang): if lang == "zh": return Chinese() elif lang == "ja": return Japanese() elif lang == "ar": return Arabic() elif lang == "es": return Spanish() else: # For most languages, English does the job return English() def find_best_split_point(text: str, target_pos: int, window_size: int = 30) -> int: """ Find best split point near target position considering punctuation and language markers. added for better sentence splitting in TTS. """ # Define split markers by priority markers = [ # Strong breaks (longest pause) (r'[.!?؟။။။]+[\s]*', 1.0), # Periods, exclamation, question (multi-script) (r'[\n\r]+\s*[\n\r]+', 1.0), # Multiple newlines (r'[:|;;:;][\s]*', 0.9), # Colons, semicolons (multi-script) # Medium breaks (r'[,,،、][\s]*', 0.8), # Commas (multi-script) (r'[)}\])】』»›》\s]+', 0.7), # Closing brackets/parentheses (r'[-—−]+[\s]*', 0.7), # Dashes # Weak breaks (r'\s+[&+=/\s]+\s+', 0.6), # Special characters with spaces (r'[\s]+', 0.5), # Any whitespace as last resort ] # Calculate window boundaries start = max(0, target_pos - window_size) end = min(len(text), target_pos + window_size) window = text[start:end] best_pos = target_pos best_score = 0 for pattern, priority in markers: matches = list(re.finditer(pattern, window)) for match in matches: # Calculate position score based on distance from target pos = start + match.end() distance = abs(pos - target_pos) distance_score = 1 - (distance / (window_size * 2)) # Combine priority and position scores score = priority * distance_score if score > best_score: best_score = score best_pos = pos return best_pos def split_sentence(text: str, lang: str, text_split_length: int = 250) -> List[str]: """ Enhanced sentence splitting with language awareness and optimal breakpoints. Args: text: Input text to split lang: Language code text_split_length: Target length for splits Returns: List of text splits optimized for TTS """ text = text.strip() if len(text) <= text_split_length: return [text] nlp = get_spacy_lang(lang) if "sentencizer" not in nlp.pipe_names: nlp.add_pipe("sentencizer") # Get base sentences using spaCy doc = nlp(text) sentences = list(doc.sents) splits = [] current_split = [] current_length = 0 for sent in sentences: sentence_text = str(sent).strip() sentence_length = len(sentence_text) # If sentence fits in current split if current_length + sentence_length <= text_split_length: current_split.append(sentence_text) current_length += sentence_length + 1 # Handle long sentences elif sentence_length > text_split_length: # Add current split if exists if current_split: splits.append(" ".join(current_split)) current_split = [] current_length = 0 # Split long sentence at optimal points remaining = sentence_text while len(remaining) > text_split_length: split_pos = find_best_split_point( remaining, text_split_length, window_size=30 ) # Add split and continue with remainder splits.append(remaining[:split_pos].strip()) remaining = remaining[split_pos:].strip() # Handle remaining text if remaining: current_split = [remaining] current_length = len(remaining) # Start new split else: splits.append(" ".join(current_split)) current_split = [sentence_text] current_length = sentence_length # Add final split if needed if current_split: splits.append(" ".join(current_split)) cleaned_sentences = [s[:-1]+' ' if s.endswith('.') else s for s in splits if s] # prevents annoying sounds in italian # Clean up splits return cleaned_sentences _whitespace_re = re.compile(r"\s+") # List of (regular expression, replacement) pairs for abbreviations: _abbreviations = { "en": [ (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) for x in [ ("mrs", "misess"), ("mr", "mister"), ("dr", "doctor"), ("st", "saint"), ("co", "company"), ("jr", "junior"), ("maj", "major"), ("gen", "general"), ("drs", "doctors"), ("rev", "reverend"), ("lt", "lieutenant"), ("hon", "honorable"), ("sgt", "sergeant"), ("capt", "captain"), ("esq", "esquire"), ("ltd", "limited"), ("col", "colonel"), ("ft", "fort"), ] ], "es": [ (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) for x in [ ("sra", "señora"), ("sr", "señor"), ("dr", "doctor"), ("dra", "doctora"), ("st", "santo"), ("co", "compañía"), ("jr", "junior"), ("ltd", "limitada"), ] ], "fr": [ (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) for x in [ ("mme", "madame"), ("mr", "monsieur"), ("dr", "docteur"), ("st", "saint"), ("co", "compagnie"), ("jr", "junior"), ("ltd", "limitée"), ] ], "de": [ (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) for x in [ ("fr", "frau"), ("dr", "doktor"), ("st", "sankt"), ("co", "firma"), ("jr", "junior"), ] ], "pt": [ (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) for x in [ ("sra", "senhora"), ("sr", "senhor"), ("dr", "doutor"), ("dra", "doutora"), ("st", "santo"), ("co", "companhia"), ("jr", "júnior"), ("ltd", "limitada"), ] ], "it": [ (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) for x in [ # ("sig.ra", "signora"), ("sig", "signore"), ("dr", "dottore"), ("st", "santo"), ("co", "compagnia"), ("jr", "junior"), ("ltd", "limitata"), ] ], "pl": [ (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) for x in [ ("p", "pani"), ("m", "pan"), ("dr", "doktor"), ("sw", "święty"), ("jr", "junior"), ] ], "ar": [ (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) for x in [ # There are not many common abbreviations in Arabic as in English. ] ], "zh": [ (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) for x in [ # Chinese doesn't typically use abbreviations in the same way as Latin-based scripts. ] ], "cs": [ (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) for x in [ ("dr", "doktor"), # doctor ("ing", "inženýr"), # engineer ("p", "pan"), # Could also map to pani for woman but no easy way to do it # Other abbreviations would be specialized and not as common. ] ], "ru": [ (re.compile("\\b%s\\b" % x[0], re.IGNORECASE), x[1]) for x in [ ("г-жа", "госпожа"), # Mrs. ("г-н", "господин"), # Mr. ("д-р", "доктор"), # doctor # Other abbreviations are less common or specialized. ] ], "nl": [ (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) for x in [ ("dhr", "de heer"), # Mr. ("mevr", "mevrouw"), # Mrs. ("dr", "dokter"), # doctor ("jhr", "jonkheer"), # young lord or nobleman # Dutch uses more abbreviations, but these are the most common ones. ] ], "tr": [ (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) for x in [ ("b", "bay"), # Mr. ("byk", "büyük"), # büyük ("dr", "doktor"), # doctor # Add other Turkish abbreviations here if needed. ] ], "hu": [ (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) for x in [ ("dr", "doktor"), # doctor ("b", "bácsi"), # Mr. ("nőv", "nővér"), # nurse # Add other Hungarian abbreviations here if needed. ] ], "ko": [ (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1]) for x in [ # Korean doesn't typically use abbreviations in the same way as Latin-based scripts. ] ], } def expand_abbreviations_multilingual(text, lang="en"): if lang in _abbreviations: for regex, replacement in _abbreviations[lang]: text = re.sub(regex, replacement, text) return text _symbols_multilingual = { "en": [ (re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1]) for x in [ ("&", " and "), ("@", " at "), ("%", " percent "), ("#", " hash "), ("$", " dollar "), ("£", " pound "), ("°", " degree "), ] ], "es": [ (re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1]) for x in [ ("&", " y "), ("@", " arroba "), ("%", " por ciento "), ("#", " numeral "), ("$", " dolar "), ("£", " libra "), ("°", " grados "), ] ], "fr": [ (re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1]) for x in [ ("&", " et "), ("@", " arobase "), ("%", " pour cent "), ("#", " dièse "), ("$", " dollar "), ("£", " livre "), ("°", " degrés "), ] ], "de": [ (re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1]) for x in [ ("&", " und "), ("@", " at "), ("%", " prozent "), ("#", " raute "), ("$", " dollar "), ("£", " pfund "), ("°", " grad "), ] ], "pt": [ (re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1]) for x in [ ("&", " e "), ("@", " arroba "), ("%", " por cento "), ("#", " cardinal "), ("$", " dólar "), ("£", " libra "), ("°", " graus "), ] ], "it": [ (re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1]) for x in [ ("&", " e "), ("@", " chiocciola "), ("%", " per cento "), ("#", " cancelletto "), ("$", " dollaro "), ("£", " sterlina "), ("°", " gradi "), ] ], "pl": [ (re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1]) for x in [ ("&", " i "), ("@", " małpa "), ("%", " procent "), ("#", " krzyżyk "), ("$", " dolar "), ("£", " funt "), ("°", " stopnie "), ] ], "ar": [ # Arabic (re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1]) for x in [ ("&", " و "), ("@", " على "), ("%", " في المئة "), ("#", " رقم "), ("$", " دولار "), ("£", " جنيه "), ("°", " درجة "), ] ], "zh": [ # Chinese (re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1]) for x in [ ("&", " 和 "), ("@", " 在 "), ("%", " 百分之 "), ("#", " 号 "), ("$", " 美元 "), ("£", " 英镑 "), ("°", " 度 "), ] ], "cs": [ # Czech (re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1]) for x in [ ("&", " a "), ("@", " na "), ("%", " procento "), ("#", " křížek "), ("$", " dolar "), ("£", " libra "), ("°", " stupně "), ] ], "ru": [ # Russian (re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1]) for x in [ ("&", " и "), ("@", " собака "), ("%", " процентов "), ("#", " номер "), ("$", " доллар "), ("£", " фунт "), ("°", " градус "), ] ], "nl": [ # Dutch (re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1]) for x in [ ("&", " en "), ("@", " bij "), ("%", " procent "), ("#", " hekje "), ("$", " dollar "), ("£", " pond "), ("°", " graden "), ] ], "tr": [ (re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1]) for x in [ ("&", " ve "), ("@", " at "), ("%", " yüzde "), ("#", " diyez "), ("$", " dolar "), ("£", " sterlin "), ("°", " derece "), ] ], "hu": [ (re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1]) for x in [ ("&", " és "), ("@", " kukac "), ("%", " százalék "), ("#", " kettőskereszt "), ("$", " dollár "), ("£", " font "), ("°", " fok "), ] ], "ko": [ # Korean (re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1]) for x in [ ("&", " 그리고 "), ("@", " 에 "), ("%", " 퍼센트 "), ("#", " 번호 "), ("$", " 달러 "), ("£", " 파운드 "), ("°", " 도 "), ] ], } def expand_symbols_multilingual(text, lang="en"): if lang in _symbols_multilingual: for regex, replacement in _symbols_multilingual[lang]: text = re.sub(regex, replacement, text) text = text.replace(" ", " ") # Ensure there are no double spaces return text.strip() _ordinal_re = { "en": re.compile(r"([0-9]+)(st|nd|rd|th)"), "es": re.compile(r"([0-9]+)(º|ª|er|o|a|os|as)"), "fr": re.compile(r"([0-9]+)(º|ª|er|re|e|ème)"), "de": re.compile(r"([0-9]+)(st|nd|rd|th|º|ª|\.(?=\s|$))"), "pt": re.compile(r"([0-9]+)(º|ª|o|a|os|as)"), "it": re.compile(r"([0-9]+)(º|°|ª|o|a|i|e)"), "pl": re.compile(r"([0-9]+)(º|ª|st|nd|rd|th)"), "ar": re.compile(r"([0-9]+)(ون|ين|ث|ر|ى)"), "cs": re.compile(r"([0-9]+)\.(?=\s|$)"), # In Czech, a dot is often used after the number to indicate ordinals. "ru": re.compile(r"([0-9]+)(-й|-я|-е|-ое|-ье|-го)"), "nl": re.compile(r"([0-9]+)(de|ste|e)"), "tr": re.compile(r"([0-9]+)(\.|inci|nci|uncu|üncü|\.)"), "hu": re.compile(r"([0-9]+)(\.|adik|edik|odik|edik|ödik|ödike|ik)"), "ko": re.compile(r"([0-9]+)(번째|번|차|째)"), } _number_re = re.compile(r"[0-9]+") # noinspection Annotator _currency_re = { "USD": re.compile(r"((\$[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+\$))"), "GBP": re.compile(r"((£[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+£))"), "EUR": re.compile(r"(([0-9\.\,]*[0-9]+€)|((€[0-9\.\,]*[0-9]+)))"), } _comma_number_re = re.compile(r"\b\d{1,3}(,\d{3})*(\.\d+)?\b") _dot_number_re = re.compile(r"\b\d{1,3}(\.\d{3})*(\,\d+)?\b") _decimal_number_re = re.compile(r"([0-9]+[.,][0-9]+)") def _remove_commas(m): text = m.group(0) if "," in text: text = text.replace(",", "") return text def _remove_dots(m): text = m.group(0) if "." in text: text = text.replace(".", "") return text def _expand_decimal_point(m, lang="en"): amount = m.group(1).replace(",", ".") return num2words(float(amount), lang=lang if lang != "cs" else "cz") def _expand_currency(m, lang="en", currency="USD"): amount = float((re.sub(r"[^\d.]", "", m.group(0).replace(",", ".")))) full_amount = num2words(amount, to="currency", currency=currency, lang=lang if lang != "cs" else "cz") and_equivalents = { "en": ", ", "es": " con ", "fr": " et ", "de": " und ", "pt": " e ", "it": " e ", "pl": ", ", "cs": ", ", "ru": ", ", "nl": ", ", "ar": ", ", "tr": ", ", "hu": ", ", "ko": ", ", } if amount.is_integer(): last_and = full_amount.rfind(and_equivalents.get(lang, ", ")) if last_and != -1: full_amount = full_amount[:last_and] return full_amount def _expand_ordinal(m, lang="en"): return num2words(int(m.group(1)), ordinal=True, lang=lang if lang != "cs" else "cz") def _expand_number(m, lang="en"): return num2words(int(m.group(0)), lang=lang if lang != "cs" else "cz") def expand_numbers_multilingual(text, lang="en"): if lang == "zh": text = zh_num2words()(text) else: if lang in ["en", "ru"]: text = re.sub(_comma_number_re, _remove_commas, text) else: text = re.sub(_dot_number_re, _remove_dots, text) try: text = re.sub(_currency_re["GBP"], lambda m: _expand_currency(m, lang, "GBP"), text) text = re.sub(_currency_re["USD"], lambda m: _expand_currency(m, lang, "USD"), text) text = re.sub(_currency_re["EUR"], lambda m: _expand_currency(m, lang, "EUR"), text) except Exception as e: pass if lang != "tr": text = re.sub(_decimal_number_re, lambda m: _expand_decimal_point(m, lang), text) if lang in _ordinal_re: text = re.sub(_ordinal_re[lang], lambda m: _expand_ordinal(m, lang), text) text = re.sub(_number_re, lambda m: _expand_number(m, lang), text) return text def lowercase(text): return text.lower() def collapse_whitespace(text): return re.sub(_whitespace_re, " ", text) def multilingual_cleaners(text, lang): text = text.replace('"', "") if lang == "tr": text = text.replace("İ", "i") text = text.replace("Ö", "ö") text = text.replace("Ü", "ü") text = lowercase(text) text = expand_numbers_multilingual(text, lang) text = expand_abbreviations_multilingual(text, lang) text = expand_symbols_multilingual(text, lang=lang) text = collapse_whitespace(text) return text def basic_cleaners(text): """Basic pipeline that lowercases and collapses whitespace without transliteration.""" text = lowercase(text) text = collapse_whitespace(text) return text def chinese_transliterate(text): return "".join( [p[0] for p in pypinyin.pinyin(text, style=pypinyin.Style.TONE3, heteronym=False, neutral_tone_with_five=True)] ) def japanese_cleaners(text, katsu): text = katsu.romaji(text) text = lowercase(text) return text def korean_transliterate(text, transliter): return transliter.translit(text) # Fast Tokenizer Class class XTTSTokenizerFast(PreTrainedTokenizerFast): """ Fast Tokenizer implementation for XTTS model using HuggingFace's PreTrainedTokenizerFast """ def __init__( self, vocab_file: str = None, tokenizer_object: Optional[Tokenizer] = None, unk_token: str = "[UNK]", pad_token: str = "[PAD]", bos_token: str = "[START]", eos_token: str = "[STOP]", auto_map: dict = {"AutoTokenizer": ["AstraMindAI/xtts2-gpt--tokenizer.XTTSTokenizerFast", None]}, clean_up_tokenization_spaces: bool = True, **kwargs ): if tokenizer_object is None and vocab_file is not None: tokenizer_object = Tokenizer.from_file(vocab_file) if tokenizer_object is not None: # Configure the tokenizer tokenizer_object.pre_tokenizer = WhitespaceSplit() tokenizer_object.post_processor = TemplateProcessing( single=f"{bos_token} $A {eos_token}", special_tokens=[ (bos_token, tokenizer_object.token_to_id(bos_token)), (eos_token, tokenizer_object.token_to_id(eos_token)), ], ) super().__init__( tokenizer_object=tokenizer_object, unk_token=unk_token, pad_token=pad_token, bos_token=bos_token, eos_token=eos_token, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs ) # Character limits per language self.char_limits = { "en": 250, "de": 253, "fr": 273, "es": 239, "it": 213, "pt": 203, "pl": 224, "zh": 82, "ar": 166, "cs": 186, "ru": 182, "nl": 251, "tr": 226, "ja": 71, "hu": 224, "ko": 95, } # Initialize language tools self._katsu = None self._korean_transliter = Transliter(academic) # Ensure pad_token_id is set if self.pad_token_id is None: self.pad_token_id = self.tokenizer.token_to_id(self.pad_token) @cached_property def katsu(self): if self._katsu is None: self._katsu = cutlet.Cutlet() return self._katsu def preprocess_text(self, text: str, lang: str) -> str: """Apply text preprocessing for language""" base_lang = lang.split("-")[0] # remove region if base_lang in {"ar", "cs", "de", "en", "es", "fr", "hu", "it", "nl", "pl", "pt", "ru", "tr", "zh", "ko"}: text = multilingual_cleaners(text, base_lang) if base_lang == "zh": text = chinese_transliterate(text) if base_lang == "ko": text = korean_transliterate(text, self._korean_transliter) elif base_lang == "ja": text = japanese_cleaners(text, self.katsu) else: text = basic_cleaners(text) return text def batch_encode_with_split(self, texts: Union[str, List[str]], lang: Union[str, List[str]], **kwargs) -> torch.Tensor: """ Split texts into smaller chunks based on language character limits and encode them using HuggingFace fast tokenizer. strictly mimic the xttsv2 tokenizer """ # Convert single inputs to lists if isinstance(texts, str): texts = [texts] if isinstance(lang, str): lang = [lang] # Ensure lang list matches texts list if len(lang) == 1 and len(texts) > 1: lang = lang * len(texts) # Check if texts and lang have the same length if len(texts) != len(lang): raise ValueError(f"Number of texts ({len(texts)}) does not match number of languages ({len(lang)}).") chunk_list = [] max_splits = 0 # For each text, split into chunks based on character limit for text, text_lang in zip(texts, lang): # Get language character limit base_lang = text_lang.split("-")[0] char_limit = self.char_limits.get(base_lang, 250) # Clean and preprocess #text = self.preprocess_text(text, text_lang) we do this in the hidden function # Split text into sentences/chunks based on language chunk_list = split_sentence(text, base_lang, text_split_length=char_limit) # Ensure the tokenizer is a fast tokenizer if not self.is_fast: raise ValueError("The tokenizer must be a fast tokenizer.") # Encode all chunks using the fast tokenizer encoding: BatchEncoding = self( chunk_list, lang = lang, add_special_tokens=False, padding=False, **kwargs ) # The 'input_ids' tensor will have shape [total_chunks, max_sequence_length] return encoding['input_ids'] # Tensor of shape [total_chunks, sequence_length] def _batch_encode_plus( self, batch_text_or_text_pairs, add_special_tokens: bool = True, padding_strategy=PaddingStrategy.DO_NOT_PAD, truncation_strategy=TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, is_split_into_words: bool = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs ) -> Dict[str, Any]: """ Override batch encoding to handle language-specific preprocessing """ lang = kwargs.pop("lang", ["en"] * len(batch_text_or_text_pairs)) if isinstance(lang, str): lang = [lang] # Ensure lang list matches texts list if len(lang) == 1 and len(batch_text_or_text_pairs) > 1: lang = lang * len(batch_text_or_text_pairs) # Check if batch_text_or_text_pairs and lang have the same length if len(batch_text_or_text_pairs) != len(lang): raise ValueError(f"Number of texts ({len(batch_text_or_text_pairs)}) does not match number of languages ({len(lang)}).") # Preprocess each text in the batch with its corresponding language processed_texts = [] for text, text_lang in zip(batch_text_or_text_pairs, lang): if isinstance(text, str): # Check length and preprocess #self.check_input_length(text, text_lang) processed_text = self.preprocess_text(text, text_lang) # Format text with language tag and spaces base_lang = text_lang.split("-")[0] lang_code = "zh-cn" if base_lang == "zh" else base_lang processed_text = f"[{lang_code}]{processed_text}" processed_text = processed_text.replace(" ", "[SPACE]") processed_texts.append(processed_text) else: processed_texts.append(text) # Call the parent class's encoding method with processed texts return super()._batch_encode_plus( processed_texts, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, is_split_into_words=is_split_into_words, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs ) def __call__( self, text: Union[str, List[str]], lang: Union[str, List[str]] = "en", add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = False, max_length: Optional[int] = None, stride: int = 0, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = True, **kwargs ): """ Main tokenization method """ # Convert single string to list for batch processing if isinstance(text, str): text = [text] if isinstance(lang, str): lang = [lang] # Ensure lang list matches texts list if len(lang) == 1 and len(text) > 1: lang = lang * len(text) # Ensure text and lang lists have same length if len(text) != len(lang): raise ValueError(f"Number of texts ({len(text)}) does not match number of languages ({len(lang)}).") # Convert padding strategy if isinstance(padding, bool): padding_strategy = PaddingStrategy.LONGEST if padding else PaddingStrategy.DO_NOT_PAD else: padding_strategy = PaddingStrategy(padding) # Convert truncation strategy if isinstance(truncation, bool): truncation_strategy = TruncationStrategy.LONGEST_FIRST if truncation else TruncationStrategy.DO_NOT_TRUNCATE else: truncation_strategy = TruncationStrategy(truncation) # Use the batch encoding method encoded = self._batch_encode_plus( text, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, lang=lang, **kwargs ) return encoded