Michielo commited on
Commit
367f77f
·
verified ·
1 Parent(s): 7d1b126

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +144 -0
README.md ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - HumanLLMs/Human-Like-DPO-Dataset
5
+ language:
6
+ - en
7
+ base_model:
8
+ - HuggingFaceTB/SmolLM2-135M-Instruct
9
+ pipeline_tag: text-generation
10
+ library_name: transformers
11
+ tags:
12
+ - safetensors
13
+ - humanized
14
+ - smollm
15
+ ---
16
+
17
+
18
+ # SmolLM2-135M-Humanized
19
+
20
+ ## Table of Contents
21
+
22
+ 1. [Model Summary](##model-summary)
23
+ 2. [Limitations](##limitations)
24
+ 3. [Training](##training)
25
+ 4. [License](##license)
26
+ 5. [Citation](##citation)
27
+
28
+ ## Model Summary
29
+
30
+ **SmolLM2-135M-Humanized** is a fine-tuned version of the [SmolLM2-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-135M-Instruct) model, optimized using the Direct Preference Optimization (DPO) method.
31
+
32
+ Unlike traditional fine-tuning approaches that aim to improve specific benchmarks or metrics, DPO fine-tuning focuses on aligning the model's behavior with human preferences. This process enhances the model's ability to generate more natural, human-like responses, making it particularly well-suited for conversational applications.
33
+
34
+ By emphasizing response quality and relatability, SmolLM2-135M-Humanized is designed to deliver an engaging and intuitive user experience in dialogue-based scenarios.
35
+
36
+
37
+ ### How to use
38
+
39
+ ### Transformers
40
+ ```bash
41
+ pip install transformers
42
+ ```
43
+
44
+ ```python
45
+ from transformers import AutoModelForCausalLM, AutoTokenizer
46
+ checkpoint = "HuggingFaceTB/SmolLM2-135M-Instruct"
47
+
48
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
49
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
50
+ # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
51
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
52
+
53
+ messages = [{"role": "user", "content": "What is gravity?"}]
54
+ input_text=tokenizer.apply_chat_template(messages, tokenize=False)
55
+ print(input_text)
56
+ inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
57
+ outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)
58
+ print(tokenizer.decode(outputs[0]))
59
+ ```
60
+
61
+ ### Chat in TRL
62
+ You can also use the TRL CLI to chat with the model from the terminal:
63
+ ```bash
64
+ pip install trl
65
+ trl chat --model_name_or_path HuggingFaceTB/SmolLM2-135M-Instruct --device cpu
66
+ ```
67
+
68
+ ## Evaluation
69
+
70
+ In this section, we report the evaluation results of SmolLM2. All evaluations are zero-shot unless stated otherwise, and we use [lighteval](https://github.com/huggingface/lighteval) to run them.
71
+
72
+ ## Base pre-trained model
73
+
74
+ | Metrics | SmolLM2-135M-8k | SmolLM-135M |
75
+ |:-------------------|:----------------:|:------------:|
76
+ | HellaSwag | **42.1** | 41.2 |
77
+ | ARC (Average) | **43.9** | 42.4 |
78
+ | PIQA | 68.4 | 68.4 |
79
+ | MMLU (cloze) | **31.5** | 30.2 |
80
+ | CommonsenseQA | **33.9** | 32.7 |
81
+ | TriviaQA | 4.1 | **4.3** |
82
+ | Winogrande | 51.3 | 51.3 |
83
+ | OpenBookQA | **34.6** | 34.0 |
84
+ | GSM8K (5-shot) | **1.4** | 1.0 |
85
+
86
+
87
+ ## Instruction model
88
+
89
+ | Metric | SmolLM2-135M-Instruct | SmolLM-135M-Instruct |
90
+ |:-----------------------------|:---------------------:|:--------------------:|
91
+ | IFEval (Average prompt/inst) | **29.9** | 17.2 |
92
+ | MT-Bench | **19.8** | 16.8 |
93
+ | HellaSwag | **40.9** | 38.9 |
94
+ | ARC (Average) | **37.3** | 33.9 |
95
+ | PIQA | **66.3** | 64.0 |
96
+ | MMLU (cloze) | **29.3** | 28.3 |
97
+ | BBH (3-shot) | **28.2** | 25.2 |
98
+ | GSM8K (5-shot) | 1.4 | 1.4 |
99
+
100
+
101
+
102
+ ## Limitations
103
+
104
+ SmolLM2 models primarily understand and generate content in English. They can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content.
105
+
106
+ ## Training
107
+
108
+ ### Model
109
+
110
+ - **Architecture:** Transformer decoder
111
+ - **Pretraining tokens:** 2T
112
+ - **Precision:** bfloat16
113
+
114
+ ### Hardware
115
+
116
+ - **GPUs:** 64 H100
117
+
118
+ ### Software
119
+
120
+ - **Training Framework:** [nanotron](https://github.com/huggingface/nanotron/tree/main)
121
+
122
+ ## License
123
+
124
+ [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
125
+
126
+ ## Citation
127
+ ```bash
128
+ @misc{allal2024SmolLM2,
129
+ title={SmolLM2 - with great data, comes great performance},
130
+ author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Gabriel Martín Blázquez and Lewis Tunstall and Agustín Piqueres and Andres Marafioti and Cyril Zakka and Leandro von Werra and Thomas Wolf},
131
+ year={2024},
132
+ }
133
+ ```
134
+ ```bash
135
+ @misc{çalık2025enhancinghumanlikeresponseslarge,
136
+ title={Enhancing Human-Like Responses in Large Language Models},
137
+ author={Ethem Yağız Çalık and Talha Rüzgar Akkuş},
138
+ year={2025},
139
+ eprint={2501.05032},
140
+ archivePrefix={arXiv},
141
+ primaryClass={cs.CL},
142
+ url={https://arxiv.org/abs/2501.05032},
143
+ }
144
+ ```