--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-quora-insincere results: [] --- # distilbert-base-uncased-finetuned-quora-insincere This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on [quora-insincere](https://huggingface.co/datasets/UKPLab/insincere-questions) dataset. It achieves the following results on the evaluation set: - Loss: 0.0946 - Accuracy: 0.9676 - F1 Score: 0.7309 ## Model description LABEL_0 = Sincere question LABEL_1 = Insincere question ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.093 | 1.0 | 62807 | 0.0859 | 0.9644 | | 0.0695 | 2.0 | 125614 | 0.0946 | 0.9676 | ### Evaluation results 'eval_loss': 0.09461139887571335, 'eval_accuracy': 0.9676, 'eval_f1': 0.7308970099667774, ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1