Upload UsingApretrainedSwinTransformerModelForImageClassification.ipynb
Browse files
UsingApretrainedSwinTransformerModelForImageClassification.ipynb
ADDED
@@ -0,0 +1,1425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
},
|
15 |
+
"widgets": {
|
16 |
+
"application/vnd.jupyter.widget-state+json": {
|
17 |
+
"dc7ab4859abf4fdaa598729ec421129a": {
|
18 |
+
"model_module": "@jupyter-widgets/controls",
|
19 |
+
"model_name": "HBoxModel",
|
20 |
+
"model_module_version": "1.5.0",
|
21 |
+
"state": {
|
22 |
+
"_dom_classes": [],
|
23 |
+
"_model_module": "@jupyter-widgets/controls",
|
24 |
+
"_model_module_version": "1.5.0",
|
25 |
+
"_model_name": "HBoxModel",
|
26 |
+
"_view_count": null,
|
27 |
+
"_view_module": "@jupyter-widgets/controls",
|
28 |
+
"_view_module_version": "1.5.0",
|
29 |
+
"_view_name": "HBoxView",
|
30 |
+
"box_style": "",
|
31 |
+
"children": [
|
32 |
+
"IPY_MODEL_5441781ef8f046dd979a8c389a8e7587",
|
33 |
+
"IPY_MODEL_999c37c9cce448a792df58915545135f",
|
34 |
+
"IPY_MODEL_db66afed001a4324bdd44f51efeaafa1"
|
35 |
+
],
|
36 |
+
"layout": "IPY_MODEL_11cb47a0455044af83969ae1994af22f"
|
37 |
+
}
|
38 |
+
},
|
39 |
+
"5441781ef8f046dd979a8c389a8e7587": {
|
40 |
+
"model_module": "@jupyter-widgets/controls",
|
41 |
+
"model_name": "HTMLModel",
|
42 |
+
"model_module_version": "1.5.0",
|
43 |
+
"state": {
|
44 |
+
"_dom_classes": [],
|
45 |
+
"_model_module": "@jupyter-widgets/controls",
|
46 |
+
"_model_module_version": "1.5.0",
|
47 |
+
"_model_name": "HTMLModel",
|
48 |
+
"_view_count": null,
|
49 |
+
"_view_module": "@jupyter-widgets/controls",
|
50 |
+
"_view_module_version": "1.5.0",
|
51 |
+
"_view_name": "HTMLView",
|
52 |
+
"description": "",
|
53 |
+
"description_tooltip": null,
|
54 |
+
"layout": "IPY_MODEL_f884e42910e14b5aa9dc9919558cf75f",
|
55 |
+
"placeholder": "",
|
56 |
+
"style": "IPY_MODEL_53cc94f964d54d71923bc295d2882216",
|
57 |
+
"value": "config.json: 100%"
|
58 |
+
}
|
59 |
+
},
|
60 |
+
"999c37c9cce448a792df58915545135f": {
|
61 |
+
"model_module": "@jupyter-widgets/controls",
|
62 |
+
"model_name": "FloatProgressModel",
|
63 |
+
"model_module_version": "1.5.0",
|
64 |
+
"state": {
|
65 |
+
"_dom_classes": [],
|
66 |
+
"_model_module": "@jupyter-widgets/controls",
|
67 |
+
"_model_module_version": "1.5.0",
|
68 |
+
"_model_name": "FloatProgressModel",
|
69 |
+
"_view_count": null,
|
70 |
+
"_view_module": "@jupyter-widgets/controls",
|
71 |
+
"_view_module_version": "1.5.0",
|
72 |
+
"_view_name": "ProgressView",
|
73 |
+
"bar_style": "success",
|
74 |
+
"description": "",
|
75 |
+
"description_tooltip": null,
|
76 |
+
"layout": "IPY_MODEL_b0a3d7e1d2ea4e3bb7e3264c8089b26d",
|
77 |
+
"max": 71813,
|
78 |
+
"min": 0,
|
79 |
+
"orientation": "horizontal",
|
80 |
+
"style": "IPY_MODEL_279f9349c7334713bb760bbc4bff3d3c",
|
81 |
+
"value": 71813
|
82 |
+
}
|
83 |
+
},
|
84 |
+
"db66afed001a4324bdd44f51efeaafa1": {
|
85 |
+
"model_module": "@jupyter-widgets/controls",
|
86 |
+
"model_name": "HTMLModel",
|
87 |
+
"model_module_version": "1.5.0",
|
88 |
+
"state": {
|
89 |
+
"_dom_classes": [],
|
90 |
+
"_model_module": "@jupyter-widgets/controls",
|
91 |
+
"_model_module_version": "1.5.0",
|
92 |
+
"_model_name": "HTMLModel",
|
93 |
+
"_view_count": null,
|
94 |
+
"_view_module": "@jupyter-widgets/controls",
|
95 |
+
"_view_module_version": "1.5.0",
|
96 |
+
"_view_name": "HTMLView",
|
97 |
+
"description": "",
|
98 |
+
"description_tooltip": null,
|
99 |
+
"layout": "IPY_MODEL_865cd86f5627433e9d92c1de46917f08",
|
100 |
+
"placeholder": "",
|
101 |
+
"style": "IPY_MODEL_73db46b258794cfe922424d06689e44e",
|
102 |
+
"value": " 71.8k/71.8k [00:00<00:00, 3.22MB/s]"
|
103 |
+
}
|
104 |
+
},
|
105 |
+
"11cb47a0455044af83969ae1994af22f": {
|
106 |
+
"model_module": "@jupyter-widgets/base",
|
107 |
+
"model_name": "LayoutModel",
|
108 |
+
"model_module_version": "1.2.0",
|
109 |
+
"state": {
|
110 |
+
"_model_module": "@jupyter-widgets/base",
|
111 |
+
"_model_module_version": "1.2.0",
|
112 |
+
"_model_name": "LayoutModel",
|
113 |
+
"_view_count": null,
|
114 |
+
"_view_module": "@jupyter-widgets/base",
|
115 |
+
"_view_module_version": "1.2.0",
|
116 |
+
"_view_name": "LayoutView",
|
117 |
+
"align_content": null,
|
118 |
+
"align_items": null,
|
119 |
+
"align_self": null,
|
120 |
+
"border": null,
|
121 |
+
"bottom": null,
|
122 |
+
"display": null,
|
123 |
+
"flex": null,
|
124 |
+
"flex_flow": null,
|
125 |
+
"grid_area": null,
|
126 |
+
"grid_auto_columns": null,
|
127 |
+
"grid_auto_flow": null,
|
128 |
+
"grid_auto_rows": null,
|
129 |
+
"grid_column": null,
|
130 |
+
"grid_gap": null,
|
131 |
+
"grid_row": null,
|
132 |
+
"grid_template_areas": null,
|
133 |
+
"grid_template_columns": null,
|
134 |
+
"grid_template_rows": null,
|
135 |
+
"height": null,
|
136 |
+
"justify_content": null,
|
137 |
+
"justify_items": null,
|
138 |
+
"left": null,
|
139 |
+
"margin": null,
|
140 |
+
"max_height": null,
|
141 |
+
"max_width": null,
|
142 |
+
"min_height": null,
|
143 |
+
"min_width": null,
|
144 |
+
"object_fit": null,
|
145 |
+
"object_position": null,
|
146 |
+
"order": null,
|
147 |
+
"overflow": null,
|
148 |
+
"overflow_x": null,
|
149 |
+
"overflow_y": null,
|
150 |
+
"padding": null,
|
151 |
+
"right": null,
|
152 |
+
"top": null,
|
153 |
+
"visibility": null,
|
154 |
+
"width": null
|
155 |
+
}
|
156 |
+
},
|
157 |
+
"f884e42910e14b5aa9dc9919558cf75f": {
|
158 |
+
"model_module": "@jupyter-widgets/base",
|
159 |
+
"model_name": "LayoutModel",
|
160 |
+
"model_module_version": "1.2.0",
|
161 |
+
"state": {
|
162 |
+
"_model_module": "@jupyter-widgets/base",
|
163 |
+
"_model_module_version": "1.2.0",
|
164 |
+
"_model_name": "LayoutModel",
|
165 |
+
"_view_count": null,
|
166 |
+
"_view_module": "@jupyter-widgets/base",
|
167 |
+
"_view_module_version": "1.2.0",
|
168 |
+
"_view_name": "LayoutView",
|
169 |
+
"align_content": null,
|
170 |
+
"align_items": null,
|
171 |
+
"align_self": null,
|
172 |
+
"border": null,
|
173 |
+
"bottom": null,
|
174 |
+
"display": null,
|
175 |
+
"flex": null,
|
176 |
+
"flex_flow": null,
|
177 |
+
"grid_area": null,
|
178 |
+
"grid_auto_columns": null,
|
179 |
+
"grid_auto_flow": null,
|
180 |
+
"grid_auto_rows": null,
|
181 |
+
"grid_column": null,
|
182 |
+
"grid_gap": null,
|
183 |
+
"grid_row": null,
|
184 |
+
"grid_template_areas": null,
|
185 |
+
"grid_template_columns": null,
|
186 |
+
"grid_template_rows": null,
|
187 |
+
"height": null,
|
188 |
+
"justify_content": null,
|
189 |
+
"justify_items": null,
|
190 |
+
"left": null,
|
191 |
+
"margin": null,
|
192 |
+
"max_height": null,
|
193 |
+
"max_width": null,
|
194 |
+
"min_height": null,
|
195 |
+
"min_width": null,
|
196 |
+
"object_fit": null,
|
197 |
+
"object_position": null,
|
198 |
+
"order": null,
|
199 |
+
"overflow": null,
|
200 |
+
"overflow_x": null,
|
201 |
+
"overflow_y": null,
|
202 |
+
"padding": null,
|
203 |
+
"right": null,
|
204 |
+
"top": null,
|
205 |
+
"visibility": null,
|
206 |
+
"width": null
|
207 |
+
}
|
208 |
+
},
|
209 |
+
"53cc94f964d54d71923bc295d2882216": {
|
210 |
+
"model_module": "@jupyter-widgets/controls",
|
211 |
+
"model_name": "DescriptionStyleModel",
|
212 |
+
"model_module_version": "1.5.0",
|
213 |
+
"state": {
|
214 |
+
"_model_module": "@jupyter-widgets/controls",
|
215 |
+
"_model_module_version": "1.5.0",
|
216 |
+
"_model_name": "DescriptionStyleModel",
|
217 |
+
"_view_count": null,
|
218 |
+
"_view_module": "@jupyter-widgets/base",
|
219 |
+
"_view_module_version": "1.2.0",
|
220 |
+
"_view_name": "StyleView",
|
221 |
+
"description_width": ""
|
222 |
+
}
|
223 |
+
},
|
224 |
+
"b0a3d7e1d2ea4e3bb7e3264c8089b26d": {
|
225 |
+
"model_module": "@jupyter-widgets/base",
|
226 |
+
"model_name": "LayoutModel",
|
227 |
+
"model_module_version": "1.2.0",
|
228 |
+
"state": {
|
229 |
+
"_model_module": "@jupyter-widgets/base",
|
230 |
+
"_model_module_version": "1.2.0",
|
231 |
+
"_model_name": "LayoutModel",
|
232 |
+
"_view_count": null,
|
233 |
+
"_view_module": "@jupyter-widgets/base",
|
234 |
+
"_view_module_version": "1.2.0",
|
235 |
+
"_view_name": "LayoutView",
|
236 |
+
"align_content": null,
|
237 |
+
"align_items": null,
|
238 |
+
"align_self": null,
|
239 |
+
"border": null,
|
240 |
+
"bottom": null,
|
241 |
+
"display": null,
|
242 |
+
"flex": null,
|
243 |
+
"flex_flow": null,
|
244 |
+
"grid_area": null,
|
245 |
+
"grid_auto_columns": null,
|
246 |
+
"grid_auto_flow": null,
|
247 |
+
"grid_auto_rows": null,
|
248 |
+
"grid_column": null,
|
249 |
+
"grid_gap": null,
|
250 |
+
"grid_row": null,
|
251 |
+
"grid_template_areas": null,
|
252 |
+
"grid_template_columns": null,
|
253 |
+
"grid_template_rows": null,
|
254 |
+
"height": null,
|
255 |
+
"justify_content": null,
|
256 |
+
"justify_items": null,
|
257 |
+
"left": null,
|
258 |
+
"margin": null,
|
259 |
+
"max_height": null,
|
260 |
+
"max_width": null,
|
261 |
+
"min_height": null,
|
262 |
+
"min_width": null,
|
263 |
+
"object_fit": null,
|
264 |
+
"object_position": null,
|
265 |
+
"order": null,
|
266 |
+
"overflow": null,
|
267 |
+
"overflow_x": null,
|
268 |
+
"overflow_y": null,
|
269 |
+
"padding": null,
|
270 |
+
"right": null,
|
271 |
+
"top": null,
|
272 |
+
"visibility": null,
|
273 |
+
"width": null
|
274 |
+
}
|
275 |
+
},
|
276 |
+
"279f9349c7334713bb760bbc4bff3d3c": {
|
277 |
+
"model_module": "@jupyter-widgets/controls",
|
278 |
+
"model_name": "ProgressStyleModel",
|
279 |
+
"model_module_version": "1.5.0",
|
280 |
+
"state": {
|
281 |
+
"_model_module": "@jupyter-widgets/controls",
|
282 |
+
"_model_module_version": "1.5.0",
|
283 |
+
"_model_name": "ProgressStyleModel",
|
284 |
+
"_view_count": null,
|
285 |
+
"_view_module": "@jupyter-widgets/base",
|
286 |
+
"_view_module_version": "1.2.0",
|
287 |
+
"_view_name": "StyleView",
|
288 |
+
"bar_color": null,
|
289 |
+
"description_width": ""
|
290 |
+
}
|
291 |
+
},
|
292 |
+
"865cd86f5627433e9d92c1de46917f08": {
|
293 |
+
"model_module": "@jupyter-widgets/base",
|
294 |
+
"model_name": "LayoutModel",
|
295 |
+
"model_module_version": "1.2.0",
|
296 |
+
"state": {
|
297 |
+
"_model_module": "@jupyter-widgets/base",
|
298 |
+
"_model_module_version": "1.2.0",
|
299 |
+
"_model_name": "LayoutModel",
|
300 |
+
"_view_count": null,
|
301 |
+
"_view_module": "@jupyter-widgets/base",
|
302 |
+
"_view_module_version": "1.2.0",
|
303 |
+
"_view_name": "LayoutView",
|
304 |
+
"align_content": null,
|
305 |
+
"align_items": null,
|
306 |
+
"align_self": null,
|
307 |
+
"border": null,
|
308 |
+
"bottom": null,
|
309 |
+
"display": null,
|
310 |
+
"flex": null,
|
311 |
+
"flex_flow": null,
|
312 |
+
"grid_area": null,
|
313 |
+
"grid_auto_columns": null,
|
314 |
+
"grid_auto_flow": null,
|
315 |
+
"grid_auto_rows": null,
|
316 |
+
"grid_column": null,
|
317 |
+
"grid_gap": null,
|
318 |
+
"grid_row": null,
|
319 |
+
"grid_template_areas": null,
|
320 |
+
"grid_template_columns": null,
|
321 |
+
"grid_template_rows": null,
|
322 |
+
"height": null,
|
323 |
+
"justify_content": null,
|
324 |
+
"justify_items": null,
|
325 |
+
"left": null,
|
326 |
+
"margin": null,
|
327 |
+
"max_height": null,
|
328 |
+
"max_width": null,
|
329 |
+
"min_height": null,
|
330 |
+
"min_width": null,
|
331 |
+
"object_fit": null,
|
332 |
+
"object_position": null,
|
333 |
+
"order": null,
|
334 |
+
"overflow": null,
|
335 |
+
"overflow_x": null,
|
336 |
+
"overflow_y": null,
|
337 |
+
"padding": null,
|
338 |
+
"right": null,
|
339 |
+
"top": null,
|
340 |
+
"visibility": null,
|
341 |
+
"width": null
|
342 |
+
}
|
343 |
+
},
|
344 |
+
"73db46b258794cfe922424d06689e44e": {
|
345 |
+
"model_module": "@jupyter-widgets/controls",
|
346 |
+
"model_name": "DescriptionStyleModel",
|
347 |
+
"model_module_version": "1.5.0",
|
348 |
+
"state": {
|
349 |
+
"_model_module": "@jupyter-widgets/controls",
|
350 |
+
"_model_module_version": "1.5.0",
|
351 |
+
"_model_name": "DescriptionStyleModel",
|
352 |
+
"_view_count": null,
|
353 |
+
"_view_module": "@jupyter-widgets/base",
|
354 |
+
"_view_module_version": "1.2.0",
|
355 |
+
"_view_name": "StyleView",
|
356 |
+
"description_width": ""
|
357 |
+
}
|
358 |
+
},
|
359 |
+
"cd77cd0c2d1741c39b9ca6f36ec562c3": {
|
360 |
+
"model_module": "@jupyter-widgets/controls",
|
361 |
+
"model_name": "HBoxModel",
|
362 |
+
"model_module_version": "1.5.0",
|
363 |
+
"state": {
|
364 |
+
"_dom_classes": [],
|
365 |
+
"_model_module": "@jupyter-widgets/controls",
|
366 |
+
"_model_module_version": "1.5.0",
|
367 |
+
"_model_name": "HBoxModel",
|
368 |
+
"_view_count": null,
|
369 |
+
"_view_module": "@jupyter-widgets/controls",
|
370 |
+
"_view_module_version": "1.5.0",
|
371 |
+
"_view_name": "HBoxView",
|
372 |
+
"box_style": "",
|
373 |
+
"children": [
|
374 |
+
"IPY_MODEL_4f28a143f3cd438b87a74a62d9c5bea4",
|
375 |
+
"IPY_MODEL_256dc2937cb2449f84ec14b9dae2e51f",
|
376 |
+
"IPY_MODEL_a60bc29c8c1044f690a6cd4f74ed7c2c"
|
377 |
+
],
|
378 |
+
"layout": "IPY_MODEL_a33d503834a741a9a23a26c03c1c3aaf"
|
379 |
+
}
|
380 |
+
},
|
381 |
+
"4f28a143f3cd438b87a74a62d9c5bea4": {
|
382 |
+
"model_module": "@jupyter-widgets/controls",
|
383 |
+
"model_name": "HTMLModel",
|
384 |
+
"model_module_version": "1.5.0",
|
385 |
+
"state": {
|
386 |
+
"_dom_classes": [],
|
387 |
+
"_model_module": "@jupyter-widgets/controls",
|
388 |
+
"_model_module_version": "1.5.0",
|
389 |
+
"_model_name": "HTMLModel",
|
390 |
+
"_view_count": null,
|
391 |
+
"_view_module": "@jupyter-widgets/controls",
|
392 |
+
"_view_module_version": "1.5.0",
|
393 |
+
"_view_name": "HTMLView",
|
394 |
+
"description": "",
|
395 |
+
"description_tooltip": null,
|
396 |
+
"layout": "IPY_MODEL_a2f0b441f346498faabf97d5d8eabd3a",
|
397 |
+
"placeholder": "",
|
398 |
+
"style": "IPY_MODEL_3243191638d14067a1565ae2f03f48de",
|
399 |
+
"value": "model.safetensors: 100%"
|
400 |
+
}
|
401 |
+
},
|
402 |
+
"256dc2937cb2449f84ec14b9dae2e51f": {
|
403 |
+
"model_module": "@jupyter-widgets/controls",
|
404 |
+
"model_name": "FloatProgressModel",
|
405 |
+
"model_module_version": "1.5.0",
|
406 |
+
"state": {
|
407 |
+
"_dom_classes": [],
|
408 |
+
"_model_module": "@jupyter-widgets/controls",
|
409 |
+
"_model_module_version": "1.5.0",
|
410 |
+
"_model_name": "FloatProgressModel",
|
411 |
+
"_view_count": null,
|
412 |
+
"_view_module": "@jupyter-widgets/controls",
|
413 |
+
"_view_module_version": "1.5.0",
|
414 |
+
"_view_name": "ProgressView",
|
415 |
+
"bar_style": "success",
|
416 |
+
"description": "",
|
417 |
+
"description_tooltip": null,
|
418 |
+
"layout": "IPY_MODEL_f0b74718119e4f3a9bb6295bc7567f6d",
|
419 |
+
"max": 113412768,
|
420 |
+
"min": 0,
|
421 |
+
"orientation": "horizontal",
|
422 |
+
"style": "IPY_MODEL_fd6d8576cbc444e1b22111ddf4fa1dc2",
|
423 |
+
"value": 113412768
|
424 |
+
}
|
425 |
+
},
|
426 |
+
"a60bc29c8c1044f690a6cd4f74ed7c2c": {
|
427 |
+
"model_module": "@jupyter-widgets/controls",
|
428 |
+
"model_name": "HTMLModel",
|
429 |
+
"model_module_version": "1.5.0",
|
430 |
+
"state": {
|
431 |
+
"_dom_classes": [],
|
432 |
+
"_model_module": "@jupyter-widgets/controls",
|
433 |
+
"_model_module_version": "1.5.0",
|
434 |
+
"_model_name": "HTMLModel",
|
435 |
+
"_view_count": null,
|
436 |
+
"_view_module": "@jupyter-widgets/controls",
|
437 |
+
"_view_module_version": "1.5.0",
|
438 |
+
"_view_name": "HTMLView",
|
439 |
+
"description": "",
|
440 |
+
"description_tooltip": null,
|
441 |
+
"layout": "IPY_MODEL_c469ed61c6b946b78bb0308f36cb915b",
|
442 |
+
"placeholder": "",
|
443 |
+
"style": "IPY_MODEL_e0db11f2d42744e982e2206a1640344a",
|
444 |
+
"value": " 113M/113M [00:01<00:00, 130MB/s]"
|
445 |
+
}
|
446 |
+
},
|
447 |
+
"a33d503834a741a9a23a26c03c1c3aaf": {
|
448 |
+
"model_module": "@jupyter-widgets/base",
|
449 |
+
"model_name": "LayoutModel",
|
450 |
+
"model_module_version": "1.2.0",
|
451 |
+
"state": {
|
452 |
+
"_model_module": "@jupyter-widgets/base",
|
453 |
+
"_model_module_version": "1.2.0",
|
454 |
+
"_model_name": "LayoutModel",
|
455 |
+
"_view_count": null,
|
456 |
+
"_view_module": "@jupyter-widgets/base",
|
457 |
+
"_view_module_version": "1.2.0",
|
458 |
+
"_view_name": "LayoutView",
|
459 |
+
"align_content": null,
|
460 |
+
"align_items": null,
|
461 |
+
"align_self": null,
|
462 |
+
"border": null,
|
463 |
+
"bottom": null,
|
464 |
+
"display": null,
|
465 |
+
"flex": null,
|
466 |
+
"flex_flow": null,
|
467 |
+
"grid_area": null,
|
468 |
+
"grid_auto_columns": null,
|
469 |
+
"grid_auto_flow": null,
|
470 |
+
"grid_auto_rows": null,
|
471 |
+
"grid_column": null,
|
472 |
+
"grid_gap": null,
|
473 |
+
"grid_row": null,
|
474 |
+
"grid_template_areas": null,
|
475 |
+
"grid_template_columns": null,
|
476 |
+
"grid_template_rows": null,
|
477 |
+
"height": null,
|
478 |
+
"justify_content": null,
|
479 |
+
"justify_items": null,
|
480 |
+
"left": null,
|
481 |
+
"margin": null,
|
482 |
+
"max_height": null,
|
483 |
+
"max_width": null,
|
484 |
+
"min_height": null,
|
485 |
+
"min_width": null,
|
486 |
+
"object_fit": null,
|
487 |
+
"object_position": null,
|
488 |
+
"order": null,
|
489 |
+
"overflow": null,
|
490 |
+
"overflow_x": null,
|
491 |
+
"overflow_y": null,
|
492 |
+
"padding": null,
|
493 |
+
"right": null,
|
494 |
+
"top": null,
|
495 |
+
"visibility": null,
|
496 |
+
"width": null
|
497 |
+
}
|
498 |
+
},
|
499 |
+
"a2f0b441f346498faabf97d5d8eabd3a": {
|
500 |
+
"model_module": "@jupyter-widgets/base",
|
501 |
+
"model_name": "LayoutModel",
|
502 |
+
"model_module_version": "1.2.0",
|
503 |
+
"state": {
|
504 |
+
"_model_module": "@jupyter-widgets/base",
|
505 |
+
"_model_module_version": "1.2.0",
|
506 |
+
"_model_name": "LayoutModel",
|
507 |
+
"_view_count": null,
|
508 |
+
"_view_module": "@jupyter-widgets/base",
|
509 |
+
"_view_module_version": "1.2.0",
|
510 |
+
"_view_name": "LayoutView",
|
511 |
+
"align_content": null,
|
512 |
+
"align_items": null,
|
513 |
+
"align_self": null,
|
514 |
+
"border": null,
|
515 |
+
"bottom": null,
|
516 |
+
"display": null,
|
517 |
+
"flex": null,
|
518 |
+
"flex_flow": null,
|
519 |
+
"grid_area": null,
|
520 |
+
"grid_auto_columns": null,
|
521 |
+
"grid_auto_flow": null,
|
522 |
+
"grid_auto_rows": null,
|
523 |
+
"grid_column": null,
|
524 |
+
"grid_gap": null,
|
525 |
+
"grid_row": null,
|
526 |
+
"grid_template_areas": null,
|
527 |
+
"grid_template_columns": null,
|
528 |
+
"grid_template_rows": null,
|
529 |
+
"height": null,
|
530 |
+
"justify_content": null,
|
531 |
+
"justify_items": null,
|
532 |
+
"left": null,
|
533 |
+
"margin": null,
|
534 |
+
"max_height": null,
|
535 |
+
"max_width": null,
|
536 |
+
"min_height": null,
|
537 |
+
"min_width": null,
|
538 |
+
"object_fit": null,
|
539 |
+
"object_position": null,
|
540 |
+
"order": null,
|
541 |
+
"overflow": null,
|
542 |
+
"overflow_x": null,
|
543 |
+
"overflow_y": null,
|
544 |
+
"padding": null,
|
545 |
+
"right": null,
|
546 |
+
"top": null,
|
547 |
+
"visibility": null,
|
548 |
+
"width": null
|
549 |
+
}
|
550 |
+
},
|
551 |
+
"3243191638d14067a1565ae2f03f48de": {
|
552 |
+
"model_module": "@jupyter-widgets/controls",
|
553 |
+
"model_name": "DescriptionStyleModel",
|
554 |
+
"model_module_version": "1.5.0",
|
555 |
+
"state": {
|
556 |
+
"_model_module": "@jupyter-widgets/controls",
|
557 |
+
"_model_module_version": "1.5.0",
|
558 |
+
"_model_name": "DescriptionStyleModel",
|
559 |
+
"_view_count": null,
|
560 |
+
"_view_module": "@jupyter-widgets/base",
|
561 |
+
"_view_module_version": "1.2.0",
|
562 |
+
"_view_name": "StyleView",
|
563 |
+
"description_width": ""
|
564 |
+
}
|
565 |
+
},
|
566 |
+
"f0b74718119e4f3a9bb6295bc7567f6d": {
|
567 |
+
"model_module": "@jupyter-widgets/base",
|
568 |
+
"model_name": "LayoutModel",
|
569 |
+
"model_module_version": "1.2.0",
|
570 |
+
"state": {
|
571 |
+
"_model_module": "@jupyter-widgets/base",
|
572 |
+
"_model_module_version": "1.2.0",
|
573 |
+
"_model_name": "LayoutModel",
|
574 |
+
"_view_count": null,
|
575 |
+
"_view_module": "@jupyter-widgets/base",
|
576 |
+
"_view_module_version": "1.2.0",
|
577 |
+
"_view_name": "LayoutView",
|
578 |
+
"align_content": null,
|
579 |
+
"align_items": null,
|
580 |
+
"align_self": null,
|
581 |
+
"border": null,
|
582 |
+
"bottom": null,
|
583 |
+
"display": null,
|
584 |
+
"flex": null,
|
585 |
+
"flex_flow": null,
|
586 |
+
"grid_area": null,
|
587 |
+
"grid_auto_columns": null,
|
588 |
+
"grid_auto_flow": null,
|
589 |
+
"grid_auto_rows": null,
|
590 |
+
"grid_column": null,
|
591 |
+
"grid_gap": null,
|
592 |
+
"grid_row": null,
|
593 |
+
"grid_template_areas": null,
|
594 |
+
"grid_template_columns": null,
|
595 |
+
"grid_template_rows": null,
|
596 |
+
"height": null,
|
597 |
+
"justify_content": null,
|
598 |
+
"justify_items": null,
|
599 |
+
"left": null,
|
600 |
+
"margin": null,
|
601 |
+
"max_height": null,
|
602 |
+
"max_width": null,
|
603 |
+
"min_height": null,
|
604 |
+
"min_width": null,
|
605 |
+
"object_fit": null,
|
606 |
+
"object_position": null,
|
607 |
+
"order": null,
|
608 |
+
"overflow": null,
|
609 |
+
"overflow_x": null,
|
610 |
+
"overflow_y": null,
|
611 |
+
"padding": null,
|
612 |
+
"right": null,
|
613 |
+
"top": null,
|
614 |
+
"visibility": null,
|
615 |
+
"width": null
|
616 |
+
}
|
617 |
+
},
|
618 |
+
"fd6d8576cbc444e1b22111ddf4fa1dc2": {
|
619 |
+
"model_module": "@jupyter-widgets/controls",
|
620 |
+
"model_name": "ProgressStyleModel",
|
621 |
+
"model_module_version": "1.5.0",
|
622 |
+
"state": {
|
623 |
+
"_model_module": "@jupyter-widgets/controls",
|
624 |
+
"_model_module_version": "1.5.0",
|
625 |
+
"_model_name": "ProgressStyleModel",
|
626 |
+
"_view_count": null,
|
627 |
+
"_view_module": "@jupyter-widgets/base",
|
628 |
+
"_view_module_version": "1.2.0",
|
629 |
+
"_view_name": "StyleView",
|
630 |
+
"bar_color": null,
|
631 |
+
"description_width": ""
|
632 |
+
}
|
633 |
+
},
|
634 |
+
"c469ed61c6b946b78bb0308f36cb915b": {
|
635 |
+
"model_module": "@jupyter-widgets/base",
|
636 |
+
"model_name": "LayoutModel",
|
637 |
+
"model_module_version": "1.2.0",
|
638 |
+
"state": {
|
639 |
+
"_model_module": "@jupyter-widgets/base",
|
640 |
+
"_model_module_version": "1.2.0",
|
641 |
+
"_model_name": "LayoutModel",
|
642 |
+
"_view_count": null,
|
643 |
+
"_view_module": "@jupyter-widgets/base",
|
644 |
+
"_view_module_version": "1.2.0",
|
645 |
+
"_view_name": "LayoutView",
|
646 |
+
"align_content": null,
|
647 |
+
"align_items": null,
|
648 |
+
"align_self": null,
|
649 |
+
"border": null,
|
650 |
+
"bottom": null,
|
651 |
+
"display": null,
|
652 |
+
"flex": null,
|
653 |
+
"flex_flow": null,
|
654 |
+
"grid_area": null,
|
655 |
+
"grid_auto_columns": null,
|
656 |
+
"grid_auto_flow": null,
|
657 |
+
"grid_auto_rows": null,
|
658 |
+
"grid_column": null,
|
659 |
+
"grid_gap": null,
|
660 |
+
"grid_row": null,
|
661 |
+
"grid_template_areas": null,
|
662 |
+
"grid_template_columns": null,
|
663 |
+
"grid_template_rows": null,
|
664 |
+
"height": null,
|
665 |
+
"justify_content": null,
|
666 |
+
"justify_items": null,
|
667 |
+
"left": null,
|
668 |
+
"margin": null,
|
669 |
+
"max_height": null,
|
670 |
+
"max_width": null,
|
671 |
+
"min_height": null,
|
672 |
+
"min_width": null,
|
673 |
+
"object_fit": null,
|
674 |
+
"object_position": null,
|
675 |
+
"order": null,
|
676 |
+
"overflow": null,
|
677 |
+
"overflow_x": null,
|
678 |
+
"overflow_y": null,
|
679 |
+
"padding": null,
|
680 |
+
"right": null,
|
681 |
+
"top": null,
|
682 |
+
"visibility": null,
|
683 |
+
"width": null
|
684 |
+
}
|
685 |
+
},
|
686 |
+
"e0db11f2d42744e982e2206a1640344a": {
|
687 |
+
"model_module": "@jupyter-widgets/controls",
|
688 |
+
"model_name": "DescriptionStyleModel",
|
689 |
+
"model_module_version": "1.5.0",
|
690 |
+
"state": {
|
691 |
+
"_model_module": "@jupyter-widgets/controls",
|
692 |
+
"_model_module_version": "1.5.0",
|
693 |
+
"_model_name": "DescriptionStyleModel",
|
694 |
+
"_view_count": null,
|
695 |
+
"_view_module": "@jupyter-widgets/base",
|
696 |
+
"_view_module_version": "1.2.0",
|
697 |
+
"_view_name": "StyleView",
|
698 |
+
"description_width": ""
|
699 |
+
}
|
700 |
+
}
|
701 |
+
}
|
702 |
+
}
|
703 |
+
},
|
704 |
+
"cells": [
|
705 |
+
{
|
706 |
+
"cell_type": "markdown",
|
707 |
+
"source": [
|
708 |
+
"## using pre-trained swin transformer to train the model"
|
709 |
+
],
|
710 |
+
"metadata": {
|
711 |
+
"id": "kuFuGmlMnSSF"
|
712 |
+
}
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"cell_type": "code",
|
716 |
+
"source": [
|
717 |
+
"import torch\n",
|
718 |
+
"from torchvision import datasets, transforms\n",
|
719 |
+
"from torch.utils.data import DataLoader\n",
|
720 |
+
"\n",
|
721 |
+
"# Define transformation pipeline\n",
|
722 |
+
"transform = transforms.Compose([\n",
|
723 |
+
" transforms.Resize((224, 224)), # Resize to 224x224 for Swin Transformer\n",
|
724 |
+
" transforms.ToTensor(),\n",
|
725 |
+
"])\n",
|
726 |
+
"\n",
|
727 |
+
"# Load dataset\n",
|
728 |
+
"train_dataset = datasets.ImageFolder(root='/content/drive/MyDrive/data/brain_tumor_dataset/train', transform=transform)\n",
|
729 |
+
"val_dataset = datasets.ImageFolder(root='/content/drive/MyDrive/data/brain_tumor_dataset/test', transform=transform)\n",
|
730 |
+
"\n",
|
731 |
+
"# Create dataloaders\n",
|
732 |
+
"train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)\n",
|
733 |
+
"val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)\n"
|
734 |
+
],
|
735 |
+
"metadata": {
|
736 |
+
"id": "dacVmRJWSB-7"
|
737 |
+
},
|
738 |
+
"execution_count": 1,
|
739 |
+
"outputs": []
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"cell_type": "code",
|
743 |
+
"source": [
|
744 |
+
"from transformers import SwinForImageClassification\n",
|
745 |
+
"\n",
|
746 |
+
"# Load the pre-trained Swin Transformer model with 4 output classes\n",
|
747 |
+
"model = SwinForImageClassification.from_pretrained(\n",
|
748 |
+
" 'microsoft/swin-tiny-patch4-window7-224',\n",
|
749 |
+
" num_labels=2, # Number of tumor types\n",
|
750 |
+
" ignore_mismatched_sizes=True # Ignore size mismatch for the classifier layer\n",
|
751 |
+
")"
|
752 |
+
],
|
753 |
+
"metadata": {
|
754 |
+
"colab": {
|
755 |
+
"base_uri": "https://localhost:8080/",
|
756 |
+
"height": 170,
|
757 |
+
"referenced_widgets": [
|
758 |
+
"dc7ab4859abf4fdaa598729ec421129a",
|
759 |
+
"5441781ef8f046dd979a8c389a8e7587",
|
760 |
+
"999c37c9cce448a792df58915545135f",
|
761 |
+
"db66afed001a4324bdd44f51efeaafa1",
|
762 |
+
"11cb47a0455044af83969ae1994af22f",
|
763 |
+
"f884e42910e14b5aa9dc9919558cf75f",
|
764 |
+
"53cc94f964d54d71923bc295d2882216",
|
765 |
+
"b0a3d7e1d2ea4e3bb7e3264c8089b26d",
|
766 |
+
"279f9349c7334713bb760bbc4bff3d3c",
|
767 |
+
"865cd86f5627433e9d92c1de46917f08",
|
768 |
+
"73db46b258794cfe922424d06689e44e",
|
769 |
+
"cd77cd0c2d1741c39b9ca6f36ec562c3",
|
770 |
+
"4f28a143f3cd438b87a74a62d9c5bea4",
|
771 |
+
"256dc2937cb2449f84ec14b9dae2e51f",
|
772 |
+
"a60bc29c8c1044f690a6cd4f74ed7c2c",
|
773 |
+
"a33d503834a741a9a23a26c03c1c3aaf",
|
774 |
+
"a2f0b441f346498faabf97d5d8eabd3a",
|
775 |
+
"3243191638d14067a1565ae2f03f48de",
|
776 |
+
"f0b74718119e4f3a9bb6295bc7567f6d",
|
777 |
+
"fd6d8576cbc444e1b22111ddf4fa1dc2",
|
778 |
+
"c469ed61c6b946b78bb0308f36cb915b",
|
779 |
+
"e0db11f2d42744e982e2206a1640344a"
|
780 |
+
]
|
781 |
+
},
|
782 |
+
"id": "WQb3MZ2oSTLr",
|
783 |
+
"outputId": "f159d174-0444-44de-dfe0-b77a20694146"
|
784 |
+
},
|
785 |
+
"execution_count": 2,
|
786 |
+
"outputs": [
|
787 |
+
{
|
788 |
+
"output_type": "display_data",
|
789 |
+
"data": {
|
790 |
+
"text/plain": [
|
791 |
+
"config.json: 0%| | 0.00/71.8k [00:00<?, ?B/s]"
|
792 |
+
],
|
793 |
+
"application/vnd.jupyter.widget-view+json": {
|
794 |
+
"version_major": 2,
|
795 |
+
"version_minor": 0,
|
796 |
+
"model_id": "dc7ab4859abf4fdaa598729ec421129a"
|
797 |
+
}
|
798 |
+
},
|
799 |
+
"metadata": {}
|
800 |
+
},
|
801 |
+
{
|
802 |
+
"output_type": "display_data",
|
803 |
+
"data": {
|
804 |
+
"text/plain": [
|
805 |
+
"model.safetensors: 0%| | 0.00/113M [00:00<?, ?B/s]"
|
806 |
+
],
|
807 |
+
"application/vnd.jupyter.widget-view+json": {
|
808 |
+
"version_major": 2,
|
809 |
+
"version_minor": 0,
|
810 |
+
"model_id": "cd77cd0c2d1741c39b9ca6f36ec562c3"
|
811 |
+
}
|
812 |
+
},
|
813 |
+
"metadata": {}
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"output_type": "stream",
|
817 |
+
"name": "stderr",
|
818 |
+
"text": [
|
819 |
+
"Some weights of SwinForImageClassification were not initialized from the model checkpoint at microsoft/swin-tiny-patch4-window7-224 and are newly initialized because the shapes did not match:\n",
|
820 |
+
"- classifier.bias: found shape torch.Size([1000]) in the checkpoint and torch.Size([2]) in the model instantiated\n",
|
821 |
+
"- classifier.weight: found shape torch.Size([1000, 768]) in the checkpoint and torch.Size([2, 768]) in the model instantiated\n",
|
822 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
823 |
+
]
|
824 |
+
}
|
825 |
+
]
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"cell_type": "code",
|
829 |
+
"source": [
|
830 |
+
"# Freeze all layers except the final classification head\n",
|
831 |
+
"for param in model.parameters():\n",
|
832 |
+
" param.requires_grad = False\n",
|
833 |
+
"\n",
|
834 |
+
"# Unfreeze the classification layer\n",
|
835 |
+
"for param in model.classifier.parameters():\n",
|
836 |
+
" param.requires_grad = True\n"
|
837 |
+
],
|
838 |
+
"metadata": {
|
839 |
+
"id": "_oCiVhFbSbBQ"
|
840 |
+
},
|
841 |
+
"execution_count": 3,
|
842 |
+
"outputs": []
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"cell_type": "code",
|
846 |
+
"source": [
|
847 |
+
"import torch.optim as optim\n",
|
848 |
+
"from torch.optim.lr_scheduler import StepLR\n",
|
849 |
+
"import torch.nn as nn\n",
|
850 |
+
"\n",
|
851 |
+
"# Set up optimizer and loss function\n",
|
852 |
+
"optimizer = optim.Adam(model.parameters(), lr=1e-4)\n",
|
853 |
+
"criterion = nn.CrossEntropyLoss()\n",
|
854 |
+
"\n",
|
855 |
+
"# Move model to GPU if available\n",
|
856 |
+
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
857 |
+
"model.to(device)"
|
858 |
+
],
|
859 |
+
"metadata": {
|
860 |
+
"colab": {
|
861 |
+
"base_uri": "https://localhost:8080/"
|
862 |
+
},
|
863 |
+
"id": "sfu4me_OTSJx",
|
864 |
+
"outputId": "55f7ff18-72c3-45b2-a97c-587b81c122b5"
|
865 |
+
},
|
866 |
+
"execution_count": 4,
|
867 |
+
"outputs": [
|
868 |
+
{
|
869 |
+
"output_type": "execute_result",
|
870 |
+
"data": {
|
871 |
+
"text/plain": [
|
872 |
+
"SwinForImageClassification(\n",
|
873 |
+
" (swin): SwinModel(\n",
|
874 |
+
" (embeddings): SwinEmbeddings(\n",
|
875 |
+
" (patch_embeddings): SwinPatchEmbeddings(\n",
|
876 |
+
" (projection): Conv2d(3, 96, kernel_size=(4, 4), stride=(4, 4))\n",
|
877 |
+
" )\n",
|
878 |
+
" (norm): LayerNorm((96,), eps=1e-05, elementwise_affine=True)\n",
|
879 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
880 |
+
" )\n",
|
881 |
+
" (encoder): SwinEncoder(\n",
|
882 |
+
" (layers): ModuleList(\n",
|
883 |
+
" (0): SwinStage(\n",
|
884 |
+
" (blocks): ModuleList(\n",
|
885 |
+
" (0-1): 2 x SwinLayer(\n",
|
886 |
+
" (layernorm_before): LayerNorm((96,), eps=1e-05, elementwise_affine=True)\n",
|
887 |
+
" (attention): SwinAttention(\n",
|
888 |
+
" (self): SwinSelfAttention(\n",
|
889 |
+
" (query): Linear(in_features=96, out_features=96, bias=True)\n",
|
890 |
+
" (key): Linear(in_features=96, out_features=96, bias=True)\n",
|
891 |
+
" (value): Linear(in_features=96, out_features=96, bias=True)\n",
|
892 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
893 |
+
" )\n",
|
894 |
+
" (output): SwinSelfOutput(\n",
|
895 |
+
" (dense): Linear(in_features=96, out_features=96, bias=True)\n",
|
896 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
897 |
+
" )\n",
|
898 |
+
" )\n",
|
899 |
+
" (drop_path): SwinDropPath(p=0.1)\n",
|
900 |
+
" (layernorm_after): LayerNorm((96,), eps=1e-05, elementwise_affine=True)\n",
|
901 |
+
" (intermediate): SwinIntermediate(\n",
|
902 |
+
" (dense): Linear(in_features=96, out_features=384, bias=True)\n",
|
903 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
904 |
+
" )\n",
|
905 |
+
" (output): SwinOutput(\n",
|
906 |
+
" (dense): Linear(in_features=384, out_features=96, bias=True)\n",
|
907 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
908 |
+
" )\n",
|
909 |
+
" )\n",
|
910 |
+
" )\n",
|
911 |
+
" (downsample): SwinPatchMerging(\n",
|
912 |
+
" (reduction): Linear(in_features=384, out_features=192, bias=False)\n",
|
913 |
+
" (norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True)\n",
|
914 |
+
" )\n",
|
915 |
+
" )\n",
|
916 |
+
" (1): SwinStage(\n",
|
917 |
+
" (blocks): ModuleList(\n",
|
918 |
+
" (0-1): 2 x SwinLayer(\n",
|
919 |
+
" (layernorm_before): LayerNorm((192,), eps=1e-05, elementwise_affine=True)\n",
|
920 |
+
" (attention): SwinAttention(\n",
|
921 |
+
" (self): SwinSelfAttention(\n",
|
922 |
+
" (query): Linear(in_features=192, out_features=192, bias=True)\n",
|
923 |
+
" (key): Linear(in_features=192, out_features=192, bias=True)\n",
|
924 |
+
" (value): Linear(in_features=192, out_features=192, bias=True)\n",
|
925 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
926 |
+
" )\n",
|
927 |
+
" (output): SwinSelfOutput(\n",
|
928 |
+
" (dense): Linear(in_features=192, out_features=192, bias=True)\n",
|
929 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
930 |
+
" )\n",
|
931 |
+
" )\n",
|
932 |
+
" (drop_path): SwinDropPath(p=0.1)\n",
|
933 |
+
" (layernorm_after): LayerNorm((192,), eps=1e-05, elementwise_affine=True)\n",
|
934 |
+
" (intermediate): SwinIntermediate(\n",
|
935 |
+
" (dense): Linear(in_features=192, out_features=768, bias=True)\n",
|
936 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
937 |
+
" )\n",
|
938 |
+
" (output): SwinOutput(\n",
|
939 |
+
" (dense): Linear(in_features=768, out_features=192, bias=True)\n",
|
940 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
941 |
+
" )\n",
|
942 |
+
" )\n",
|
943 |
+
" )\n",
|
944 |
+
" (downsample): SwinPatchMerging(\n",
|
945 |
+
" (reduction): Linear(in_features=768, out_features=384, bias=False)\n",
|
946 |
+
" (norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n",
|
947 |
+
" )\n",
|
948 |
+
" )\n",
|
949 |
+
" (2): SwinStage(\n",
|
950 |
+
" (blocks): ModuleList(\n",
|
951 |
+
" (0-5): 6 x SwinLayer(\n",
|
952 |
+
" (layernorm_before): LayerNorm((384,), eps=1e-05, elementwise_affine=True)\n",
|
953 |
+
" (attention): SwinAttention(\n",
|
954 |
+
" (self): SwinSelfAttention(\n",
|
955 |
+
" (query): Linear(in_features=384, out_features=384, bias=True)\n",
|
956 |
+
" (key): Linear(in_features=384, out_features=384, bias=True)\n",
|
957 |
+
" (value): Linear(in_features=384, out_features=384, bias=True)\n",
|
958 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
959 |
+
" )\n",
|
960 |
+
" (output): SwinSelfOutput(\n",
|
961 |
+
" (dense): Linear(in_features=384, out_features=384, bias=True)\n",
|
962 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
963 |
+
" )\n",
|
964 |
+
" )\n",
|
965 |
+
" (drop_path): SwinDropPath(p=0.1)\n",
|
966 |
+
" (layernorm_after): LayerNorm((384,), eps=1e-05, elementwise_affine=True)\n",
|
967 |
+
" (intermediate): SwinIntermediate(\n",
|
968 |
+
" (dense): Linear(in_features=384, out_features=1536, bias=True)\n",
|
969 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
970 |
+
" )\n",
|
971 |
+
" (output): SwinOutput(\n",
|
972 |
+
" (dense): Linear(in_features=1536, out_features=384, bias=True)\n",
|
973 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
974 |
+
" )\n",
|
975 |
+
" )\n",
|
976 |
+
" )\n",
|
977 |
+
" (downsample): SwinPatchMerging(\n",
|
978 |
+
" (reduction): Linear(in_features=1536, out_features=768, bias=False)\n",
|
979 |
+
" (norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
|
980 |
+
" )\n",
|
981 |
+
" )\n",
|
982 |
+
" (3): SwinStage(\n",
|
983 |
+
" (blocks): ModuleList(\n",
|
984 |
+
" (0-1): 2 x SwinLayer(\n",
|
985 |
+
" (layernorm_before): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n",
|
986 |
+
" (attention): SwinAttention(\n",
|
987 |
+
" (self): SwinSelfAttention(\n",
|
988 |
+
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
|
989 |
+
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
|
990 |
+
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
|
991 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
992 |
+
" )\n",
|
993 |
+
" (output): SwinSelfOutput(\n",
|
994 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
995 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
996 |
+
" )\n",
|
997 |
+
" )\n",
|
998 |
+
" (drop_path): SwinDropPath(p=0.1)\n",
|
999 |
+
" (layernorm_after): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n",
|
1000 |
+
" (intermediate): SwinIntermediate(\n",
|
1001 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
1002 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
1003 |
+
" )\n",
|
1004 |
+
" (output): SwinOutput(\n",
|
1005 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
1006 |
+
" (dropout): Dropout(p=0.0, inplace=False)\n",
|
1007 |
+
" )\n",
|
1008 |
+
" )\n",
|
1009 |
+
" )\n",
|
1010 |
+
" )\n",
|
1011 |
+
" )\n",
|
1012 |
+
" )\n",
|
1013 |
+
" (layernorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n",
|
1014 |
+
" (pooler): AdaptiveAvgPool1d(output_size=1)\n",
|
1015 |
+
" )\n",
|
1016 |
+
" (classifier): Linear(in_features=768, out_features=2, bias=True)\n",
|
1017 |
+
")"
|
1018 |
+
]
|
1019 |
+
},
|
1020 |
+
"metadata": {},
|
1021 |
+
"execution_count": 4
|
1022 |
+
}
|
1023 |
+
]
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"cell_type": "code",
|
1027 |
+
"source": [
|
1028 |
+
"# Training loop\n",
|
1029 |
+
"for epoch in range(10): # Train for 10 epochs (adjust as needed)\n",
|
1030 |
+
" model.train()\n",
|
1031 |
+
" running_loss = 0.0\n",
|
1032 |
+
" correct = 0\n",
|
1033 |
+
" total = 0\n",
|
1034 |
+
"\n",
|
1035 |
+
" for inputs, labels in train_loader:\n",
|
1036 |
+
" inputs, labels = inputs.to(device), labels.to(device)\n",
|
1037 |
+
"\n",
|
1038 |
+
" # Zero the parameter gradients\n",
|
1039 |
+
" optimizer.zero_grad()\n",
|
1040 |
+
"\n",
|
1041 |
+
" # Forward pass\n",
|
1042 |
+
" outputs = model(inputs).logits\n",
|
1043 |
+
" loss = criterion(outputs, labels)\n",
|
1044 |
+
"\n",
|
1045 |
+
" # Backward pass and optimization\n",
|
1046 |
+
" loss.backward()\n",
|
1047 |
+
" optimizer.step()\n",
|
1048 |
+
"\n",
|
1049 |
+
" # Calculate accuracy\n",
|
1050 |
+
" _, predicted = torch.max(outputs, 1)\n",
|
1051 |
+
" total += labels.size(0)\n",
|
1052 |
+
" correct += (predicted == labels).sum().item()\n",
|
1053 |
+
" running_loss += loss.item()\n",
|
1054 |
+
"\n",
|
1055 |
+
" # Print training stats\n",
|
1056 |
+
" print(f'Epoch [{epoch+1}/10], Loss: {running_loss/len(train_loader)}, Accuracy: {100 * correct / total}%')\n",
|
1057 |
+
"\n",
|
1058 |
+
" # Validation\n",
|
1059 |
+
" model.eval()\n",
|
1060 |
+
" val_correct = 0\n",
|
1061 |
+
" val_total = 0\n",
|
1062 |
+
" with torch.no_grad():\n",
|
1063 |
+
" for inputs, labels in val_loader:\n",
|
1064 |
+
" inputs, labels = inputs.to(device), labels.to(device)\n",
|
1065 |
+
" outputs = model(inputs).logits\n",
|
1066 |
+
" _, predicted = torch.max(outputs, 1)\n",
|
1067 |
+
" val_total += labels.size(0)\n",
|
1068 |
+
" val_correct += (predicted == labels).sum().item()\n",
|
1069 |
+
"\n",
|
1070 |
+
" print(f'Validation Accuracy: {100 * val_correct / val_total}%')"
|
1071 |
+
],
|
1072 |
+
"metadata": {
|
1073 |
+
"colab": {
|
1074 |
+
"base_uri": "https://localhost:8080/"
|
1075 |
+
},
|
1076 |
+
"id": "2Q3sxrxtTXzX",
|
1077 |
+
"outputId": "c5a6b813-c5a4-43b8-cad5-48a146034ece"
|
1078 |
+
},
|
1079 |
+
"execution_count": 5,
|
1080 |
+
"outputs": [
|
1081 |
+
{
|
1082 |
+
"output_type": "stream",
|
1083 |
+
"name": "stdout",
|
1084 |
+
"text": [
|
1085 |
+
"Epoch [1/10], Loss: 0.6803878396749496, Accuracy: 58.13692480359147%\n",
|
1086 |
+
"Validation Accuracy: 59.060402684563755%\n",
|
1087 |
+
"Epoch [2/10], Loss: 0.6379124437059674, Accuracy: 72.61503928170595%\n",
|
1088 |
+
"Validation Accuracy: 69.12751677852349%\n",
|
1089 |
+
"Epoch [3/10], Loss: 0.6045689774411065, Accuracy: 77.32884399551067%\n",
|
1090 |
+
"Validation Accuracy: 74.49664429530202%\n",
|
1091 |
+
"Epoch [4/10], Loss: 0.5734582436936242, Accuracy: 79.12457912457913%\n",
|
1092 |
+
"Validation Accuracy: 78.52348993288591%\n",
|
1093 |
+
"Epoch [5/10], Loss: 0.5508207274334771, Accuracy: 80.13468013468014%\n",
|
1094 |
+
"Validation Accuracy: 80.53691275167785%\n",
|
1095 |
+
"Epoch [6/10], Loss: 0.5296014377049038, Accuracy: 80.69584736251403%\n",
|
1096 |
+
"Validation Accuracy: 78.52348993288591%\n",
|
1097 |
+
"Epoch [7/10], Loss: 0.5103116855025291, Accuracy: 82.37934904601572%\n",
|
1098 |
+
"Validation Accuracy: 79.86577181208054%\n",
|
1099 |
+
"Epoch [8/10], Loss: 0.48474655938999994, Accuracy: 83.72615039281706%\n",
|
1100 |
+
"Validation Accuracy: 77.85234899328859%\n",
|
1101 |
+
"Epoch [9/10], Loss: 0.48020742727177484, Accuracy: 83.16498316498317%\n",
|
1102 |
+
"Validation Accuracy: 79.19463087248322%\n",
|
1103 |
+
"Epoch [10/10], Loss: 0.458157547882625, Accuracy: 84.51178451178451%\n",
|
1104 |
+
"Validation Accuracy: 79.86577181208054%\n"
|
1105 |
+
]
|
1106 |
+
}
|
1107 |
+
]
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"cell_type": "code",
|
1111 |
+
"source": [
|
1112 |
+
"# Test the model\n",
|
1113 |
+
"model.eval()\n",
|
1114 |
+
"test_correct = 0\n",
|
1115 |
+
"test_total = 0\n",
|
1116 |
+
"\n",
|
1117 |
+
"with torch.no_grad():\n",
|
1118 |
+
" for inputs, labels in val_loader:\n",
|
1119 |
+
" inputs, labels = inputs.to(device), labels.to(device)\n",
|
1120 |
+
" outputs = model(inputs).logits\n",
|
1121 |
+
" _, predicted = torch.max(outputs, 1)\n",
|
1122 |
+
" test_total += labels.size(0)\n",
|
1123 |
+
" test_correct += (predicted == labels).sum().item()\n",
|
1124 |
+
"\n",
|
1125 |
+
"print(f'Test Accuracy: {100 * test_correct / test_total}%')"
|
1126 |
+
],
|
1127 |
+
"metadata": {
|
1128 |
+
"colab": {
|
1129 |
+
"base_uri": "https://localhost:8080/"
|
1130 |
+
},
|
1131 |
+
"id": "la_3QpX9TfiP",
|
1132 |
+
"outputId": "3a1f21ca-81a9-4cd8-9d66-ec899d4e0dea"
|
1133 |
+
},
|
1134 |
+
"execution_count": 6,
|
1135 |
+
"outputs": [
|
1136 |
+
{
|
1137 |
+
"output_type": "stream",
|
1138 |
+
"name": "stdout",
|
1139 |
+
"text": [
|
1140 |
+
"Test Accuracy: 79.86577181208054%\n"
|
1141 |
+
]
|
1142 |
+
}
|
1143 |
+
]
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"cell_type": "code",
|
1147 |
+
"source": [
|
1148 |
+
"torch.save(model.state_dict(), 'swin_brain_tumor_classifier.pth')"
|
1149 |
+
],
|
1150 |
+
"metadata": {
|
1151 |
+
"id": "RYS7IhD2T1-a"
|
1152 |
+
},
|
1153 |
+
"execution_count": 7,
|
1154 |
+
"outputs": []
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"cell_type": "code",
|
1158 |
+
"source": [
|
1159 |
+
"from PIL import Image"
|
1160 |
+
],
|
1161 |
+
"metadata": {
|
1162 |
+
"id": "f-mJ9OWQUYdB"
|
1163 |
+
},
|
1164 |
+
"execution_count": 8,
|
1165 |
+
"outputs": []
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"cell_type": "code",
|
1169 |
+
"source": [
|
1170 |
+
"# Load the saved model\n",
|
1171 |
+
"model.load_state_dict(torch.load('swin_brain_tumor_classifier.pth'))\n",
|
1172 |
+
"model.eval()\n",
|
1173 |
+
"\n",
|
1174 |
+
"# Make predictions on new data\n",
|
1175 |
+
"img = Image.open('/content/drive/MyDrive/data/brain_tumor_dataset/test/healthy/0566.jpg')\n",
|
1176 |
+
"img = transform(img).unsqueeze(0).to(device)\n",
|
1177 |
+
"\n",
|
1178 |
+
"# Predict\n",
|
1179 |
+
"output = model(img).logits\n",
|
1180 |
+
"_, predicted = torch.max(output, 1)\n",
|
1181 |
+
"print(f'Predicted class: {predicted.item()}')"
|
1182 |
+
],
|
1183 |
+
"metadata": {
|
1184 |
+
"colab": {
|
1185 |
+
"base_uri": "https://localhost:8080/"
|
1186 |
+
},
|
1187 |
+
"id": "Eq0_X__wT3RV",
|
1188 |
+
"outputId": "6bdfa0ef-cba7-448b-8a5f-ef46f93b8677"
|
1189 |
+
},
|
1190 |
+
"execution_count": 20,
|
1191 |
+
"outputs": [
|
1192 |
+
{
|
1193 |
+
"output_type": "stream",
|
1194 |
+
"name": "stderr",
|
1195 |
+
"text": [
|
1196 |
+
"<ipython-input-20-c22c92cd5d87>:2: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n",
|
1197 |
+
" model.load_state_dict(torch.load('swin_brain_tumor_classifier.pth'))\n"
|
1198 |
+
]
|
1199 |
+
},
|
1200 |
+
{
|
1201 |
+
"output_type": "stream",
|
1202 |
+
"name": "stdout",
|
1203 |
+
"text": [
|
1204 |
+
"Predicted class: 0\n"
|
1205 |
+
]
|
1206 |
+
}
|
1207 |
+
]
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"cell_type": "code",
|
1211 |
+
"source": [
|
1212 |
+
"#healthy tumor\n",
|
1213 |
+
"path = '/content/drive/MyDrive/data/brain_tumor_dataset/test/healthy'\n"
|
1214 |
+
],
|
1215 |
+
"metadata": {
|
1216 |
+
"id": "gzK2C_4-k8F1"
|
1217 |
+
},
|
1218 |
+
"execution_count": 21,
|
1219 |
+
"outputs": []
|
1220 |
+
},
|
1221 |
+
{
|
1222 |
+
"cell_type": "code",
|
1223 |
+
"source": [
|
1224 |
+
"import os"
|
1225 |
+
],
|
1226 |
+
"metadata": {
|
1227 |
+
"id": "6EDJd38AxZFv"
|
1228 |
+
},
|
1229 |
+
"execution_count": 22,
|
1230 |
+
"outputs": []
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"cell_type": "code",
|
1234 |
+
"source": [
|
1235 |
+
"files = os.listdir(path)\n",
|
1236 |
+
"\n",
|
1237 |
+
"for f in files:\n",
|
1238 |
+
" try:\n",
|
1239 |
+
" img = Image.open(os.path.join(path,f))\n",
|
1240 |
+
" img = transform(img).unsqueeze(0).to(device)\n",
|
1241 |
+
" output = model(img).logits\n",
|
1242 |
+
" _, predicted = torch.max(output, 1)\n",
|
1243 |
+
" print(f'predicted class: {predicted.item()} filename: {f} actual class: 0')\n",
|
1244 |
+
" except Exception as e:\n",
|
1245 |
+
" print(e)\n",
|
1246 |
+
" continue"
|
1247 |
+
],
|
1248 |
+
"metadata": {
|
1249 |
+
"colab": {
|
1250 |
+
"base_uri": "https://localhost:8080/"
|
1251 |
+
},
|
1252 |
+
"id": "1jTDGblkxdAn",
|
1253 |
+
"outputId": "5610b6fc-ac47-4a6b-9314-f5398ea2787d"
|
1254 |
+
},
|
1255 |
+
"execution_count": 25,
|
1256 |
+
"outputs": [
|
1257 |
+
{
|
1258 |
+
"output_type": "stream",
|
1259 |
+
"name": "stdout",
|
1260 |
+
"text": [
|
1261 |
+
"predicted class: 0 filename: 0796.jpg actual class: 0\n",
|
1262 |
+
"predicted class: 0 filename: 0676.jpg actual class: 0\n",
|
1263 |
+
"predicted class: 1 filename: 0698.jpg actual class: 0\n",
|
1264 |
+
"predicted class: 1 filename: 0601.jpg actual class: 0\n",
|
1265 |
+
"predicted class: 0 filename: 0861.jpg actual class: 0\n",
|
1266 |
+
"predicted class: 1 filename: 0615.jpg actual class: 0\n",
|
1267 |
+
"predicted class: 0 filename: 0874.jpg actual class: 0\n",
|
1268 |
+
"predicted class: 0 filename: 0820.jpg actual class: 0\n",
|
1269 |
+
"predicted class: 0 filename: 0785.jpg actual class: 0\n",
|
1270 |
+
"predicted class: 0 filename: 0792.jpg actual class: 0\n",
|
1271 |
+
"predicted class: 0 filename: 0731.jpg actual class: 0\n",
|
1272 |
+
"predicted class: 0 filename: 0762.jpg actual class: 0\n",
|
1273 |
+
"predicted class: 1 filename: 0710.jpg actual class: 0\n",
|
1274 |
+
"predicted class: 0 filename: 0858.jpg actual class: 0\n",
|
1275 |
+
"predicted class: 0 filename: 0691.jpg actual class: 0\n",
|
1276 |
+
"predicted class: 0 filename: 0791.jpg actual class: 0\n",
|
1277 |
+
"predicted class: 1 filename: 0639.jpg actual class: 0\n",
|
1278 |
+
"predicted class: 1 filename: 0596.jpg actual class: 0\n",
|
1279 |
+
"predicted class: 1 filename: 0591.jpg actual class: 0\n",
|
1280 |
+
"predicted class: 0 filename: 0730.jpg actual class: 0\n",
|
1281 |
+
"predicted class: 0 filename: 0638.jpg actual class: 0\n",
|
1282 |
+
"predicted class: 0 filename: 0566.jpg actual class: 0\n",
|
1283 |
+
"predicted class: 1 filename: 0645.jpg actual class: 0\n",
|
1284 |
+
"predicted class: 0 filename: 0565.jpg actual class: 0\n",
|
1285 |
+
"predicted class: 1 filename: 0778.jpg actual class: 0\n",
|
1286 |
+
"predicted class: 0 filename: 0697.jpg actual class: 0\n",
|
1287 |
+
"predicted class: 1 filename: 0800.jpg actual class: 0\n",
|
1288 |
+
"predicted class: 0 filename: 0857.jpg actual class: 0\n",
|
1289 |
+
"predicted class: 0 filename: 0879.jpg actual class: 0\n",
|
1290 |
+
"predicted class: 0 filename: 0765.jpg actual class: 0\n",
|
1291 |
+
"predicted class: 0 filename: 0562.jpg actual class: 0\n",
|
1292 |
+
"predicted class: 0 filename: 0719.jpg actual class: 0\n",
|
1293 |
+
"predicted class: 0 filename: 0740.jpg actual class: 0\n",
|
1294 |
+
"predicted class: 0 filename: 0607.jpg actual class: 0\n",
|
1295 |
+
"predicted class: 0 filename: 0580.jpg actual class: 0\n",
|
1296 |
+
"predicted class: 1 filename: 0839.jpg actual class: 0\n",
|
1297 |
+
"predicted class: 0 filename: 0860.jpg actual class: 0\n",
|
1298 |
+
"predicted class: 0 filename: 0718.jpg actual class: 0\n",
|
1299 |
+
"predicted class: 0 filename: 0793.jpg actual class: 0\n",
|
1300 |
+
"predicted class: 0 filename: 0881.jpg actual class: 0\n",
|
1301 |
+
"predicted class: 0 filename: 0864.jpg actual class: 0\n",
|
1302 |
+
"predicted class: 0 filename: 0696.jpg actual class: 0\n",
|
1303 |
+
"predicted class: 0 filename: 0724.jpg actual class: 0\n",
|
1304 |
+
"predicted class: 0 filename: 0703.jpg actual class: 0\n",
|
1305 |
+
"predicted class: 0 filename: 0721.jpg actual class: 0\n",
|
1306 |
+
"predicted class: 1 filename: 0652.jpg actual class: 0\n",
|
1307 |
+
"predicted class: 0 filename: 0551.jpg actual class: 0\n",
|
1308 |
+
"predicted class: 0 filename: 0720.jpg actual class: 0\n",
|
1309 |
+
"predicted class: 0 filename: 0689.jpg actual class: 0\n",
|
1310 |
+
"predicted class: 0 filename: 0795.jpg actual class: 0\n",
|
1311 |
+
"predicted class: 1 filename: 0571.jpg actual class: 0\n",
|
1312 |
+
"predicted class: 0 filename: 0640.jpg actual class: 0\n",
|
1313 |
+
"predicted class: 0 filename: 0806.jpg actual class: 0\n",
|
1314 |
+
"predicted class: 0 filename: 0761.jpg actual class: 0\n",
|
1315 |
+
"predicted class: 1 filename: 0715.jpg actual class: 0\n",
|
1316 |
+
"predicted class: 0 filename: 0884.jpg actual class: 0\n",
|
1317 |
+
"predicted class: 1 filename: 0684.jpg actual class: 0\n",
|
1318 |
+
"predicted class: 0 filename: 0846.jpg actual class: 0\n",
|
1319 |
+
"predicted class: 0 filename: 0805.jpg actual class: 0\n",
|
1320 |
+
"predicted class: 0 filename: 0872.jpg actual class: 0\n",
|
1321 |
+
"predicted class: 1 filename: 0707.jpg actual class: 0\n",
|
1322 |
+
"predicted class: 0 filename: 0868.jpg actual class: 0\n",
|
1323 |
+
"predicted class: 1 filename: 0863.jpg actual class: 0\n",
|
1324 |
+
"predicted class: 1 filename: 0871.jpg actual class: 0\n",
|
1325 |
+
"predicted class: 0 filename: 0859.jpg actual class: 0\n",
|
1326 |
+
"predicted class: 1 filename: 0769.jpg actual class: 0\n",
|
1327 |
+
"predicted class: 0 filename: 0888.jpg actual class: 0\n",
|
1328 |
+
"predicted class: 0 filename: 0733.jpg actual class: 0\n",
|
1329 |
+
"predicted class: 0 filename: 0835.jpg actual class: 0\n",
|
1330 |
+
"predicted class: 1 filename: 0841.jpg actual class: 0\n",
|
1331 |
+
"predicted class: 0 filename: 0768.jpg actual class: 0\n",
|
1332 |
+
"predicted class: 1 filename: 0878.jpg actual class: 0\n",
|
1333 |
+
"[Errno 21] Is a directory: '/content/drive/MyDrive/data/brain_tumor_dataset/test/healthy/.ipynb_checkpoints'\n"
|
1334 |
+
]
|
1335 |
+
}
|
1336 |
+
]
|
1337 |
+
},
|
1338 |
+
{
|
1339 |
+
"cell_type": "code",
|
1340 |
+
"source": [
|
1341 |
+
"#calculating the accuracy\n",
|
1342 |
+
"def calculate_accuracy(model, img_path, img_files, actual_class):\n",
|
1343 |
+
" total_images = len(img_files)\n",
|
1344 |
+
" predicted_ones = 0\n",
|
1345 |
+
" for i in img_files:\n",
|
1346 |
+
" try:\n",
|
1347 |
+
" img = Image.open(os.path.join(img_path,i))\n",
|
1348 |
+
" img = transform(img).unsqueeze(0).to(device)\n",
|
1349 |
+
" output = model(img).logits\n",
|
1350 |
+
" _, predicted = torch.max(output, 1)\n",
|
1351 |
+
" if int(predicted.item()) == int(actual_class):\n",
|
1352 |
+
" predicted_ones += 1\n",
|
1353 |
+
" except Exception as e:\n",
|
1354 |
+
" continue\n",
|
1355 |
+
" accuracy_score = (predicted_ones/total_images)*100\n",
|
1356 |
+
" return accuracy_score"
|
1357 |
+
],
|
1358 |
+
"metadata": {
|
1359 |
+
"id": "j92hyOmB15e0"
|
1360 |
+
},
|
1361 |
+
"execution_count": 39,
|
1362 |
+
"outputs": []
|
1363 |
+
},
|
1364 |
+
{
|
1365 |
+
"cell_type": "code",
|
1366 |
+
"source": [
|
1367 |
+
"img_path = '/content/drive/MyDrive/data/brain_tumor_dataset/train/healthy'\n",
|
1368 |
+
"img_files = os.listdir(img_path)\n",
|
1369 |
+
"print(\"Accuracy score:\",calculate_accuracy(model, img_path, img_files, 0))"
|
1370 |
+
],
|
1371 |
+
"metadata": {
|
1372 |
+
"colab": {
|
1373 |
+
"base_uri": "https://localhost:8080/"
|
1374 |
+
},
|
1375 |
+
"id": "mAMy1XYG5DCw",
|
1376 |
+
"outputId": "5ff76b58-7972-4b05-ea88-5758e0c17483"
|
1377 |
+
},
|
1378 |
+
"execution_count": 40,
|
1379 |
+
"outputs": [
|
1380 |
+
{
|
1381 |
+
"output_type": "stream",
|
1382 |
+
"name": "stdout",
|
1383 |
+
"text": [
|
1384 |
+
"Accuracy score: 62.02830188679245\n"
|
1385 |
+
]
|
1386 |
+
}
|
1387 |
+
]
|
1388 |
+
},
|
1389 |
+
{
|
1390 |
+
"cell_type": "code",
|
1391 |
+
"source": [
|
1392 |
+
"img_path = '/content/drive/MyDrive/data/brain_tumor_dataset/train/tumor'\n",
|
1393 |
+
"img_files = os.listdir(img_path)\n",
|
1394 |
+
"print(\"Accuracy score:\",calculate_accuracy(model, img_path, img_files, 1))"
|
1395 |
+
],
|
1396 |
+
"metadata": {
|
1397 |
+
"colab": {
|
1398 |
+
"base_uri": "https://localhost:8080/"
|
1399 |
+
},
|
1400 |
+
"id": "I4y62G1K5lXF",
|
1401 |
+
"outputId": "fb1f6ebe-0862-4f62-e268-8bc42fd803f7"
|
1402 |
+
},
|
1403 |
+
"execution_count": 41,
|
1404 |
+
"outputs": [
|
1405 |
+
{
|
1406 |
+
"output_type": "stream",
|
1407 |
+
"name": "stdout",
|
1408 |
+
"text": [
|
1409 |
+
"Accuracy score: 85.65310492505354\n"
|
1410 |
+
]
|
1411 |
+
}
|
1412 |
+
]
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"cell_type": "markdown",
|
1416 |
+
"source": [
|
1417 |
+
"### For healthy class model accuracy score is 62%\n",
|
1418 |
+
"### For tumor images model accuracy score is 85%"
|
1419 |
+
],
|
1420 |
+
"metadata": {
|
1421 |
+
"id": "oLFI0ASV7YKJ"
|
1422 |
+
}
|
1423 |
+
}
|
1424 |
+
]
|
1425 |
+
}
|