ArtusDev commited on
Commit
5684af4
·
verified ·
1 Parent(s): 4550e97

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - Delta-Vector/Hydrus-Instruct-SmolTalk-V2
4
+ - Delta-Vector/Hydrus-SonnetOrca-V2
5
+ - Delta-Vector/Hydrus-FeedSum-ShareGPT
6
+ - Delta-Vector/Hydrus-Tulu-Personas-Filtered-Sharegpt
7
+ - Delta-Vector/Hydrus-No_Robots-R1-Filtered
8
+ - Delta-Vector/Hydrus-Chat_error-Pure-Dove-sharegpt
9
+ - Delta-Vector/Hydrus-HelpSteer2
10
+ - Delta-Vector/Hydrus-R1-Thinking-Sharegpt
11
+ - Delta-Vector/Hydrus-Science-QA-sharegpt
12
+ - Delta-Vector/Hydrus-Claude-Instruct-2.7K
13
+ - Delta-Vector/Hydrus-Claude-Instruct-5K
14
+ - PocketDoc/Dans-Assistantmaxx-UnnaturalInstructions-GPT4
15
+ - PocketDoc/Dans-Toolmaxx-ShellCommands
16
+ - PocketDoc/Dans-MemoryCore-CoreCurriculum-Small
17
+ - PocketDoc/Dans-Logicmaxx-SAT-AP
18
+ - PocketDoc/Dans-Benchmaxx
19
+ - Nitral-AI/ARES-ShareGPT
20
+ - PocketDoc/Dans-Taskmaxx-TableGPT
21
+ - Delta-Vector/Ursa-Erebus-16K
22
+ - Delta-Vector/Ursa-Books-Light-Novels-V1
23
+ - NewEden/Orion-LIT
24
+ - Delta-Vector/Ursa-Asstr-V2-18k
25
+ - Delta-Vector/Ursa-Books-V2
26
+ - Delta-Vector/Ursa-Scribblehub-7k
27
+ - Delta-Vector/Ursa-Orion-EA-Comp-Filtered
28
+ - Delta-Vector/Ursa-HoneyFeed
29
+ - Delta-Vector/Ursa-Falling-through-the-world
30
+ base_model:
31
+ - NewEden/Sol-Reaver-15B-Pretrain
32
+ tags:
33
+ - roleplay
34
+ - instruct
35
+ - creative_writing
36
+ - story-writing
37
+ - mistral
38
+ ---
39
+ <!DOCTYPE html>
40
+ <html lang="en">
41
+ <head>
42
+ <meta charset="UTF-8">
43
+ <meta name="viewport" content="width=device-width, initial-scale=1.0">
44
+ <title>Sol-Reaver 15B</title>
45
+ <link href="https://fonts.googleapis.com/css2?family=Quicksand:wght@400;500;600&display=swap" rel="stylesheet">
46
+ <style>
47
+ body {
48
+ font-family: 'Quicksand', sans-serif;
49
+ background: linear-gradient(135deg, #ffeef8 0%, #fff0e6 50%, #f8e8ff 100%);
50
+ color: #8b4a6b;
51
+ margin: 0;
52
+ padding: 0;
53
+ font-size: 16px;
54
+ min-height: 100vh;
55
+ }
56
+ .container {
57
+ margin: 20px;
58
+ background: linear-gradient(145deg, rgba(255, 255, 255, 0.9), rgba(255, 245, 250, 0.95));
59
+ padding: 30px;
60
+ border-radius: 20px;
61
+ box-shadow: 0 8px 32px rgba(255, 182, 193, 0.3), 0 4px 16px rgba(255, 215, 0, 0.2);
62
+ border: 2px solid rgba(255, 182, 193, 0.4);
63
+ position: relative;
64
+ backdrop-filter: blur(10px);
65
+ }
66
+ .container::before {
67
+ content: '';
68
+ position: absolute;
69
+ top: 0;
70
+ left: 0;
71
+ right: 0;
72
+ bottom: 0;
73
+ background: linear-gradient(45deg, rgba(255, 192, 203, 0.1), rgba(255, 215, 0, 0.1), rgba(221, 160, 221, 0.1));
74
+ border-radius: 20px;
75
+ z-index: -1;
76
+ }
77
+ .header h1 {
78
+ font-size: 32px;
79
+ background: linear-gradient(45deg, #d63384, #fd7e14, #e91e63);
80
+ -webkit-background-clip: text;
81
+ -webkit-text-fill-color: transparent;
82
+ background-clip: text;
83
+ margin: 0 0 20px 0;
84
+ text-align: center;
85
+ font-weight: 600;
86
+ text-shadow: 0 2px 4px rgba(255, 182, 193, 0.3);
87
+ }
88
+ .section {
89
+ margin-top: 30px;
90
+ }
91
+ .section h2 {
92
+ font-size: 24px;
93
+ background: linear-gradient(45deg, #d63384, #fd7e14);
94
+ -webkit-background-clip: text;
95
+ -webkit-text-fill-color: transparent;
96
+ background-clip: text;
97
+ text-align: center;
98
+ font-weight: 600;
99
+ margin-bottom: 20px;
100
+ }
101
+ .info p {
102
+ color: #8b4a6b;
103
+ line-height: 1.8;
104
+ font-size: 16px;
105
+ }
106
+ .info img {
107
+ width: 85%;
108
+ border-radius: 15px;
109
+ margin: 0 auto 15px;
110
+ display: block;
111
+ box-shadow: 0 8px 25px rgba(255, 182, 193, 0.4);
112
+ border: 2px solid rgba(255, 192, 203, 0.5);
113
+ }
114
+ a {
115
+ color: #d63384;
116
+ text-decoration: none;
117
+ transition: all 0.3s ease;
118
+ font-weight: 500;
119
+ }
120
+ a:hover {
121
+ color: #fd7e14;
122
+ text-shadow: 0 0 8px rgba(255, 215, 0, 0.6);
123
+ }
124
+ .button {
125
+ display: inline-block;
126
+ background: linear-gradient(45deg, #ffb6c1, #ffd700);
127
+ color: #8b4a6b;
128
+ padding: 12px 24px;
129
+ border-radius: 25px;
130
+ cursor: pointer;
131
+ text-decoration: none;
132
+ transition: all 0.3s ease;
133
+ border: 1px solid rgba(255, 182, 193, 0.5);
134
+ font-weight: 500;
135
+ }
136
+ .button:hover {
137
+ background: linear-gradient(45deg, #ff91a4, #ffed4e);
138
+ box-shadow: 0 4px 15px rgba(255, 182, 193, 0.6);
139
+ transform: translateY(-2px);
140
+ }
141
+ pre {
142
+ background: linear-gradient(135deg, rgba(255, 240, 245, 0.8), rgba(255, 248, 220, 0.8));
143
+ padding: 20px;
144
+ border-radius: 12px;
145
+ overflow-x: auto;
146
+ border: 1px solid rgba(255, 182, 193, 0.3);
147
+ box-shadow: inset 0 2px 4px rgba(255, 182, 193, 0.2);
148
+ }
149
+ code {
150
+ font-family: 'Courier New', monospace;
151
+ color: #8b4a6b;
152
+ }
153
+ .info-card {
154
+ background: linear-gradient(145deg, rgba(255, 240, 245, 0.9), rgba(255, 248, 220, 0.9));
155
+ border: 2px solid rgba(255, 182, 193, 0.4);
156
+ border-radius: 15px;
157
+ overflow: hidden;
158
+ box-shadow: 0 4px 20px rgba(255, 182, 193, 0.3);
159
+ }
160
+ .info-header {
161
+ background: linear-gradient(135deg, rgba(255, 192, 203, 0.3), rgba(255, 215, 0, 0.2));
162
+ padding: 25px;
163
+ border-bottom: 1px solid rgba(255, 182, 193, 0.3);
164
+ }
165
+ .info-header h3 {
166
+ background: linear-gradient(45deg, #d63384, #fd7e14);
167
+ -webkit-background-clip: text;
168
+ -webkit-text-fill-color: transparent;
169
+ background-clip: text;
170
+ margin: 0 0 15px 0;
171
+ font-size: 22px;
172
+ text-align: center;
173
+ font-weight: 600;
174
+ }
175
+ .model-tags {
176
+ display: flex;
177
+ gap: 10px;
178
+ flex-wrap: wrap;
179
+ justify-content: center;
180
+ }
181
+ .model-tag {
182
+ background: linear-gradient(45deg, rgba(255, 182, 193, 0.4), rgba(255, 215, 0, 0.3));
183
+ color: #8b4a6b;
184
+ padding: 8px 16px;
185
+ border-radius: 20px;
186
+ font-size: 13px;
187
+ border: 1px solid rgba(255, 182, 193, 0.5);
188
+ font-weight: 500;
189
+ box-shadow: 0 2px 8px rgba(255, 182, 193, 0.2);
190
+ }
191
+ .model-composition {
192
+ padding: 25px;
193
+ border-bottom: 1px solid rgba(255, 182, 193, 0.3);
194
+ }
195
+ .model-composition h4 {
196
+ background: linear-gradient(45deg, #d63384, #fd7e14);
197
+ -webkit-background-clip: text;
198
+ -webkit-text-fill-color: transparent;
199
+ background-clip: text;
200
+ margin: 0 0 20px 0;
201
+ font-size: 18px;
202
+ text-align: center;
203
+ font-weight: 600;
204
+ }
205
+ .composition-list {
206
+ list-style: none;
207
+ padding: 0;
208
+ margin: 0;
209
+ display: grid;
210
+ gap: 15px;
211
+ }
212
+ .composition-list li {
213
+ color: #8b4a6b;
214
+ display: flex;
215
+ align-items: baseline;
216
+ gap: 12px;
217
+ padding: 10px;
218
+ background: rgba(255, 240, 245, 0.5);
219
+ border-radius: 8px;
220
+ border-left: 4px solid #ffb6c1;
221
+ }
222
+ .model-component {
223
+ font-weight: 600;
224
+ min-width: 120px;
225
+ }
226
+ .model-description {
227
+ padding: 25px;
228
+ background: linear-gradient(135deg, rgba(255, 255, 255, 0.7), rgba(255, 240, 245, 0.8));
229
+ }
230
+ .metrics-section {
231
+ margin-bottom: 30px;
232
+ }
233
+ .metrics-section details {
234
+ background: linear-gradient(145deg, rgba(255, 240, 245, 0.9), rgba(255, 248, 220, 0.9));
235
+ border: 2px solid rgba(255, 182, 193, 0.4);
236
+ border-radius: 12px;
237
+ padding: 20px;
238
+ margin-bottom: 20px;
239
+ box-shadow: 0 4px 15px rgba(255, 182, 193, 0.2);
240
+ }
241
+ .metrics-section summary {
242
+ background: linear-gradient(45deg, #d63384, #fd7e14);
243
+ -webkit-background-clip: text;
244
+ -webkit-text-fill-color: transparent;
245
+ background-clip: text;
246
+ font-size: 18px;
247
+ cursor: pointer;
248
+ outline: none;
249
+ padding: 8px 0;
250
+ text-align: center;
251
+ font-weight: 600;
252
+ transition: all 0.3s ease;
253
+ }
254
+ .metrics-section summary:hover {
255
+ text-shadow: 0 0 8px rgba(255, 215, 0, 0.6);
256
+ }
257
+ .creator-section {
258
+ margin: 20px 0;
259
+ text-align: center;
260
+ }
261
+ .creator-badge {
262
+ display: inline-flex;
263
+ align-items: center;
264
+ background: linear-gradient(145deg, rgba(255, 240, 245, 0.9), rgba(255, 248, 220, 0.9));
265
+ border: 2px solid rgba(255, 182, 193, 0.4);
266
+ border-radius: 25px;
267
+ padding: 15px 20px;
268
+ box-shadow: 0 4px 15px rgba(255, 182, 193, 0.3);
269
+ }
270
+ .creator-label {
271
+ color: #8b4a6b;
272
+ font-size: 14px;
273
+ margin-right: 10px;
274
+ font-weight: 500;
275
+ }
276
+ .creator-link {
277
+ display: flex;
278
+ align-items: center;
279
+ gap: 8px;
280
+ color: #d63384;
281
+ text-decoration: none;
282
+ transition: all 0.3s ease;
283
+ }
284
+ .creator-name {
285
+ font-weight: 600;
286
+ }
287
+ .creator-arrow {
288
+ font-size: 16px;
289
+ transition: transform 0.3s ease;
290
+ }
291
+ .creator-link:hover .creator-arrow {
292
+ transform: translateX(4px);
293
+ color: #fd7e14;
294
+ }
295
+ .creator-link:hover {
296
+ color: #fd7e14;
297
+ text-shadow: 0 0 8px rgba(255, 215, 0, 0.6);
298
+ }
299
+ .link-arrow {
300
+ display: inline-block;
301
+ transition: transform 0.3s ease;
302
+ }
303
+ a:hover .link-arrow {
304
+ transform: translateX(3px);
305
+ }
306
+ .axolotl-container {
307
+ display: flex;
308
+ text-align: center; /* This is correctly applied to center the image itself */
309
+ justify-content: center;
310
+ margin: 30px 0;
311
+ }
312
+ .axolotl-container img {
313
+ max-width: 300px;
314
+ border-radius: 15px;
315
+ box-shadow: 0 6px 20px rgba(255, 182, 193, 0.4);
316
+ border: 2px solid rgba(255, 192, 203, 0.5);
317
+ transition: transform 0.3s ease;
318
+ display: block; /* Make the image a block element */
319
+ margin: 0 auto; /* Center it horizontally within its parent */
320
+ }
321
+ .axolotl-container img:hover {
322
+ transform: scale(1.05);
323
+ }
324
+ </style>
325
+ </head>
326
+ <body>
327
+ <div class="container">
328
+ <div class="header">
329
+ <h1>Sol Reaver 15B</h1>
330
+ </div>
331
+ <div class="info">
332
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/66c26b6fb01b19d8c3c2467b/DYgyLUEaHAv9kTffBYH-F.jpeg" alt="Model banner">
333
+ <div style="text-align: center;">
334
+ <div class="creator-section">
335
+ <div class="creator-badge">
336
+ <span class="creator-label">Created by</span>
337
+ <a href="https://huggingface.co/Delta-Vector" target="_blank" class="creator-link">
338
+ <span class="creator-name">Delta-Vector</span>
339
+ <span class="creator-arrow">→</span>
340
+ </a>
341
+ </div>
342
+ </div>
343
+ <div class="model-info">
344
+ <h2>Model Information</h2>
345
+ <div class="info-card">
346
+ <div class="info-header">
347
+ <h3>Sol-Reaver-15B-Instruct</h3>
348
+ <div class="model-tags">
349
+ <span class="model-tag">15B parameters</span>
350
+ <span class="model-tag">Creative / Fresh Prose</span>
351
+ <span class="model-tag">Co-writing/Roleplay/Adventure Generalist</span>
352
+ </div>
353
+ </div>
354
+ <div class="model-description">
355
+ <p>The first in the line of a New series of Roleplay / Adventure / Co-writer Models - Finetuned ontop of Sol-Reaver-15B-Pretrain</p>
356
+ <p>This model has been trained on 200M tokens of high quality Instruct data, It's focus is to provide a base for further finetuning|Merging</p>
357
+ <p>It's goal is to have refreshing Prose, Creativity, Good Instruct following and the *Brains*.</p>
358
+ <p>Support me on Ko-Fi: https://ko-fi.com/deltavector</p>
359
+ </div>
360
+ </div>
361
+ </div>
362
+ <div class="section">
363
+ <h2>Quantized Versions</h2>
364
+ <div class="info-card">
365
+ <div class="model-composition">
366
+ <h4>Available Downloads</h4>
367
+ <ul class="composition-list">
368
+ <li><span class="model-component"><a href="" target="_blank">GGUF Format</a></span>For use with LLama.cpp & Forks(Coming Soon!)</li>
369
+ <li><span class="model-component"><a href="" target="_blank">EXL2 Format</a></span>For use with TabbyAPI (Coming Soon!)</li>
370
+ <li><span class="model-component"><a href="" target="_blank">EXL3 Format</a></span>For use with TabbyAPI (Slower on Ampere))</li>
371
+ </ul>
372
+ </div>
373
+ </div>
374
+ </div>
375
+ <div class="section">
376
+ <h2>Prompting</h2>
377
+ <p>Model has been tuned with the ChatML formatting. A typical input would look like this:</p>
378
+ <pre><code>&lt;|im_start|&gt;user
379
+ Hi there!&lt;|im_end|&gt;
380
+ &lt;|im_start|&gt;assistant
381
+ Nice to meet you!&lt;|im_end|&gt;
382
+ &lt;|im_start|&gt;user
383
+ Can I ask a question?&lt;|im_end|&gt;
384
+ &lt;|im_start|&gt;assistant
385
+ </code></pre>
386
+ </div>
387
+ <div class="section">
388
+ <h2>Samplers</h2>
389
+ <p>For testing of this model, I used Temp=1, 0.1 Min-P.</p>
390
+ <div class="metrics-section">
391
+ <details>
392
+ <summary>See Axolotl Config</summary>
393
+ <pre><code>
394
+ https://files.catbox.moe/u9dakg.yml
395
+ </code></pre>
396
+ </details>
397
+ </div>
398
+ </div>
399
+ <div class="section">
400
+ <h2>Training</h2>
401
+ <p>The training was done for 2 epoch using 8 x <a href="https://www.nvidia.com/en-us/data-center/h200/">H200s</a> GPUs graciously provided by <a href="https://huggingface.co/kalomaze">Kalomaze</a> for the fine-tuning of the model.</p>
402
+ <div class="axolotl-container">
403
+ <a href="https://github.com/OpenAccess-AI-Collective/axolotl" target="_blank">
404
+ <img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl">
405
+ </a>
406
+ </div>
407
+ </div>
408
+ <div class="section">
409
+ <h2>Credits</h2>
410
+ <p>Thank you to <a href="https://huggingface.co/lucyknada">Lucy Knada</a>, <a href="https://huggingface.co/Ateron">Ateron</a>, <a href="https://huggingface.co/AliCat2">Alicat</a>, <a href="https://huggingface.co/intervitens">Intervitens</a>, <a href="https://huggingface.co/cgato">Cgato</a>, <a href="https://huggingface.co/kubernetes-bad">Kubernetes Bad</a> and the rest of <a href="https://huggingface.co/anthracite-org">Anthracite</a>.</p>
411
+ </div>
412
+ </div>
413
+ </div>
414
+ </body>
415
+ </html>
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MistralForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "head_dim": 128,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 5120,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 65536,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 50,
17
+ "num_key_value_heads": 8,
18
+ "pad_token_id": 10,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.51.3",
26
+ "unsloth_version": "2025.4.7",
27
+ "use_cache": false,
28
+ "vocab_size": 131072,
29
+ "quantization_config": {
30
+ "quant_method": "exl2",
31
+ "version": "0.3.0",
32
+ "bits": 3.5,
33
+ "head_bits": 6,
34
+ "calibration": {
35
+ "rows": 115,
36
+ "length": 2048,
37
+ "dataset": "(default)"
38
+ }
39
+ }
40
+ }
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 2,
6
+ "max_length": 65536,
7
+ "pad_token_id": 10,
8
+ "transformers_version": "4.51.3"
9
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step848
measurement.json ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors.index.json ADDED
@@ -0,0 +1,460 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 29948364800
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00007-of-00007.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00007.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00007.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00007.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00007.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00007.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00007.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00007.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00007.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00007.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00007.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00007.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00007.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00007.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00007.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00007.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00007.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00007.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00007.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00007.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00007.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00007.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00007.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00007.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00007.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00007.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00007.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00007.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00004-of-00007.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00007.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00007.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00007.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00007.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00007.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00005-of-00007.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00005-of-00007.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00007.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
323
+ "model.layers.40.input_layernorm.weight": "model-00005-of-00007.safetensors",
324
+ "model.layers.40.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
325
+ "model.layers.40.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
326
+ "model.layers.40.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
327
+ "model.layers.40.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
328
+ "model.layers.40.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
329
+ "model.layers.40.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
330
+ "model.layers.40.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
331
+ "model.layers.40.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
332
+ "model.layers.41.input_layernorm.weight": "model-00005-of-00007.safetensors",
333
+ "model.layers.41.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
334
+ "model.layers.41.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
335
+ "model.layers.41.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
336
+ "model.layers.41.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
337
+ "model.layers.41.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
338
+ "model.layers.41.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
339
+ "model.layers.41.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
340
+ "model.layers.41.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
341
+ "model.layers.42.input_layernorm.weight": "model-00006-of-00007.safetensors",
342
+ "model.layers.42.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
343
+ "model.layers.42.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
344
+ "model.layers.42.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
345
+ "model.layers.42.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
346
+ "model.layers.42.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
347
+ "model.layers.42.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
348
+ "model.layers.42.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
349
+ "model.layers.42.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
350
+ "model.layers.43.input_layernorm.weight": "model-00006-of-00007.safetensors",
351
+ "model.layers.43.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
352
+ "model.layers.43.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
353
+ "model.layers.43.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
354
+ "model.layers.43.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
355
+ "model.layers.43.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
356
+ "model.layers.43.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
357
+ "model.layers.43.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
358
+ "model.layers.43.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
359
+ "model.layers.44.input_layernorm.weight": "model-00006-of-00007.safetensors",
360
+ "model.layers.44.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
361
+ "model.layers.44.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
362
+ "model.layers.44.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
363
+ "model.layers.44.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
364
+ "model.layers.44.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
365
+ "model.layers.44.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
366
+ "model.layers.44.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
367
+ "model.layers.44.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
368
+ "model.layers.45.input_layernorm.weight": "model-00006-of-00007.safetensors",
369
+ "model.layers.45.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
370
+ "model.layers.45.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
371
+ "model.layers.45.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
372
+ "model.layers.45.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
373
+ "model.layers.45.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
374
+ "model.layers.45.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
375
+ "model.layers.45.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
376
+ "model.layers.45.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
377
+ "model.layers.46.input_layernorm.weight": "model-00006-of-00007.safetensors",
378
+ "model.layers.46.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
379
+ "model.layers.46.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
380
+ "model.layers.46.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
381
+ "model.layers.46.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
382
+ "model.layers.46.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
383
+ "model.layers.46.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
384
+ "model.layers.46.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
385
+ "model.layers.46.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
386
+ "model.layers.47.input_layernorm.weight": "model-00006-of-00007.safetensors",
387
+ "model.layers.47.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
388
+ "model.layers.47.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
389
+ "model.layers.47.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
390
+ "model.layers.47.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
391
+ "model.layers.47.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
392
+ "model.layers.47.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
393
+ "model.layers.47.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
394
+ "model.layers.47.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
395
+ "model.layers.48.input_layernorm.weight": "model-00006-of-00007.safetensors",
396
+ "model.layers.48.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
397
+ "model.layers.48.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
398
+ "model.layers.48.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
399
+ "model.layers.48.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
400
+ "model.layers.48.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
401
+ "model.layers.48.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
402
+ "model.layers.48.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
403
+ "model.layers.48.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
404
+ "model.layers.49.input_layernorm.weight": "model-00006-of-00007.safetensors",
405
+ "model.layers.49.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
406
+ "model.layers.49.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
407
+ "model.layers.49.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
408
+ "model.layers.49.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
409
+ "model.layers.49.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
410
+ "model.layers.49.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
411
+ "model.layers.49.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
412
+ "model.layers.49.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
413
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00007.safetensors",
414
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
415
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
416
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
417
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
418
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
419
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
420
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
421
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
422
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00007.safetensors",
423
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
424
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
425
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
426
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
427
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
428
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
429
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
430
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
431
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00007.safetensors",
432
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
433
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
434
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
435
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
436
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
437
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
438
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
439
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
440
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00007.safetensors",
441
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
442
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
443
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
444
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
445
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
446
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
447
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
448
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
449
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00007.safetensors",
450
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
451
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
452
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
453
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
454
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
455
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
456
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
457
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
458
+ "model.norm.weight": "model-00006-of-00007.safetensors"
459
+ }
460
+ }
output.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c132d43bb7e8693e35bc8dcfff50f62dcdb802fdeb9ebcd02b528493ca7454c8
3
+ size 7838306180
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a2fbcd26bac3ea7dc02fc9ede5b8a1914ca51611473722a11a969e1f26ac0ee
3
+ size 15984
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66d97b511d2fdb8061e5bf72c139923941c148260fac1caedd654028da6986c1
3
+ size 15984
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3839473129eb8c438ab312370daa55eb10a0790f33d38fc5eaa24859b54b0d1f
3
+ size 15984
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5088a0d34c7015afe60457fbb3f0a4740839369017a42ea4b3250322c2d63ceb
3
+ size 15984
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9cac0eb25286b75549fa2030810940adf357064a83facaf5c58ebe37190b6ac
3
+ size 15984
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0a57d29811122d52bd53f81af680412b91dde1cd2a12fa885d8a54388be8e2d
3
+ size 15984
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c90ab29b255eaf920ecc1cba0b586e426f8e2db67b44a65576693f84178a04f
3
+ size 15984
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4efbfa3cfb1bb8fb9c3380e65959a8b4eaf3bceb0507a26ffba1a3e4636ddb1
3
+ size 15984
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:faeb1a635984d135e9011d54b7e922d80780dc8bdc8698d280b304da2bb53b48
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|im_end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41c323e23875139dce13b6e6eeb3c31e2f1d259d590cee328ba4793bd8b053cc
3
+ size 17078334
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)