File size: 5,310 Bytes
4eb7d6f
 
2ede5cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eb7d6f
 
 
 
ce37bfe
 
 
 
 
 
4eb7d6f
0e8e218
 
 
4eb7d6f
6f0692c
 
 
 
4eb7d6f
 
60bd78b
4eb7d6f
6f0692c
4eb7d6f
 
 
 
 
 
 
 
 
 
 
 
 
 
6e97a8f
 
 
 
 
4eb7d6f
 
 
 
2ede5cf
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
---
license: apache-2.0
model-index:
- name: ArliAI-RPMax-12B-v1.1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 53.49
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ArliAI/ArliAI-RPMax-12B-v1.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 24.81
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ArliAI/ArliAI-RPMax-12B-v1.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 9.21
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ArliAI/ArliAI-RPMax-12B-v1.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 4.25
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ArliAI/ArliAI-RPMax-12B-v1.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 5.56
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ArliAI/ArliAI-RPMax-12B-v1.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 26.49
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ArliAI/ArliAI-RPMax-12B-v1.1
      name: Open LLM Leaderboard
---
# ArliAI-RPMax-12B-v1.1
=====================================

## RPMax Series Overview

| [3.8B](https://huggingface.co/ArliAI/Phi-3.5-mini-3.8B-ArliAI-RPMax-v1.1) | 
[8B](https://huggingface.co/ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.1) | 
[12B](https://huggingface.co/ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.1) | 
[70B](https://huggingface.co/ArliAI/Llama-3.1-70B-ArliAI-RPMax-v1.1) | 

RPMax is a series of models that are trained on a diverse set of curated creative writing and RP datasets with a focus on variety and deduplication. This model is designed to be highly creative and non-repetitive by making sure no two entries in the dataset have repeated characters or situations, which makes sure the model does not latch on to a certain personality and be capable of understanding and acting appropriately to any characters or situations.

Early tests by users mentioned that these models does not feel like any other RP models, having a different style and generally doesn't feel in-bred.

You can access the model at https://arliai.com and ask questions at https://www.reddit.com/r/ArliAI/

We also have a models ranking page at https://www.arliai.com/models-ranking

## Model Description

ArliAI-RPMax-12B-v1.1 is a variant based on Mistral Nemo 12B Instruct 2407.

This is arguably the most successful RPMax model due to how Mistral is already very uncensored in the first place.

### Training Details

* **Sequence Length**: 8192
* **Training Duration**: Approximately 2 days on 2x3090Ti
* **Epochs**: 1 epoch training for minimized repetition sickness
* **QLORA**: 64-rank 128-alpha, resulting in ~2% trainable weights
* **Learning Rate**: 0.00001
* **Gradient accumulation**: Very low 32 for better learning.

## Quantization

The model is available in quantized formats:

* **FP16**: https://huggingface.co/ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.1
* **GPTQ_Q4**: https://huggingface.co/ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.1-GPTQ_Q4
* **GPTQ_Q8**: https://huggingface.co/ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.1-GPTQ_Q8
* **GGUF**: https://huggingface.co/ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.1-GGUF


## Suggested Prompt Format

Mistral Instruct Prompt Format

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ArliAI__ArliAI-RPMax-12B-v1.1)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |20.64|
|IFEval (0-Shot)    |53.49|
|BBH (3-Shot)       |24.81|
|MATH Lvl 5 (4-Shot)| 9.21|
|GPQA (0-shot)      | 4.25|
|MuSR (0-shot)      | 5.56|
|MMLU-PRO (5-shot)  |26.49|