File size: 5,971 Bytes
f186021 87e8f2f 9fa9c9d f186021 87e8f2f f186021 87e8f2f f186021 1d149f5 3e26f5f f186021 4b01eee f186021 1d149f5 4a78bcc f186021 5eb47d8 f186021 4a78bcc f186021 8ba539a 1bcb23c 8ba539a 1bcb23c f186021 9fa9c9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
---
license: llama3
model-index:
- name: Llama-3.1-8B-ArliAI-RPMax-v1.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 63.59
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 28.79
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 11.33
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 4.47
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.31
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 28.35
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.1
name: Open LLM Leaderboard
---
# Llama-3.1-8B-ArliAI-RPMax-v1.1
=====================================
## RPMax Series Overview
| [3.8B](https://huggingface.co/ArliAI/Phi-3.5-mini-3.8B-ArliAI-RPMax-v1.1) |
[8B](https://huggingface.co/ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.1) |
[12B](https://huggingface.co/ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.1) |
[70B](https://huggingface.co/ArliAI/Llama-3.1-70B-ArliAI-RPMax-v1.1) |
RPMax is a series of models that are trained on a diverse set of curated creative writing and RP datasets with a focus on variety and deduplication. This model is designed to be highly creative and non-repetitive by making sure no two entries in the dataset have repeated characters or situations, which makes sure the model does not latch on to a certain personality and be capable of understanding and acting appropriately to any characters or situations.
Early tests by users mentioned that these models does not feel like any other RP models, having a different style and generally doesn't feel in-bred.
You can access the model at https://arliai.com and ask questions at https://www.reddit.com/r/ArliAI/
We also have a models ranking page at https://www.arliai.com/models-ranking
Ask questions in our new Discord Server! https://discord.gg/aDVx6FZN
## Model Description
Llama-3.1-8B-ArliAI-RPMax-v1.1 is a variant of the Meta-Llama-3.1-8B model.
v1.1 is just a small fix to not train and save the embeddings layer and small changes to the dataset, since v1.0 had the lm_head unnecessarily trained on accident.
### Training Details
* **Sequence Length**: 8192
* **Training Duration**: Approximately 1 day on 2x3090Ti
* **Epochs**: 1 epoch training for minimized repetition sickness
* **LORA**: 64-rank 128-alpha, resulting in ~2% trainable weights
* **Learning Rate**: 0.00001
* **Gradient accumulation**: Very low 32 for better learning.
## Quantization
The model is available in quantized formats:
We recommend using full weights or GPTQ
* **FP16**: https://huggingface.co/ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.1
* **GPTQ_Q4**: https://huggingface.co/ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.1-GPTQ_Q4
* **GPTQ_Q8**: https://huggingface.co/ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.1-GPTQ_Q8
* **GGUF**: https://huggingface.co/ArliAI/Llama-3.1-8B-ArliAI-RPMax-v1.1-GGUF
## Suggested Prompt Format
Llama 3 Instruct Format
Example:
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are [character]. You have a personality of [personality description]. [Describe scenario]<|eot_id|><|start_header_id|>user<|end_header_id|>
{{ user_message_1 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
{{ model_answer_1 }}<|eot_id|><|start_header_id|>user<|end_header_id|>
{{ user_message_2 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ArliAI__Llama-3.1-8B-ArliAI-RPMax-v1.1)
| Metric |Value|
|-------------------|----:|
|Avg. |23.64|
|IFEval (0-Shot) |63.59|
|BBH (3-Shot) |28.79|
|MATH Lvl 5 (4-Shot)|11.33|
|GPQA (0-shot) | 4.47|
|MuSR (0-shot) | 5.31|
|MMLU-PRO (5-shot) |28.35|
|