Apel-sin commited on
Commit
fd271da
·
1 Parent(s): 7eee940

add measurement.json

Browse files
Files changed (2) hide show
  1. README.md +70 -0
  2. measurement.json +0 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: bespokelabs/Bespoke-Stratos-32B
5
+ tags:
6
+ - llama-factory
7
+ - full
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: original
11
+ results: []
12
+ language:
13
+ - en
14
+ datasets:
15
+ - bespokelabs/Bespoke-Stratos-17k
16
+ ---
17
+
18
+ <p align="center">
19
+ <img src="https://huggingface.co/bespokelabs/Bespoke-MiniCheck-7B/resolve/main/Bespoke-Labs-Logo.png" width="550">
20
+ </p>
21
+
22
+ ## Model description
23
+ This model is a fine-tuned version of [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) on the [Bespoke-Stratos-17k dataset](https://huggingface.co/datasets/bespokelabs/Bespoke-Stratos-17k).
24
+ The dataset is derived by distilling DeepSeek-R1 using the data pipeline of Berkeley NovaSky’s Sky-T1 with some modifications. More info in the dataset card at [Bespoke-Stratos-17k](https://huggingface.co/datasets/bespokelabs/Bespoke-Stratos-17k).
25
+ It outperforms Qwen-2.5-32B-Instruct on reasoning benchmarks:
26
+
27
+ | Metric | Bespoke-Stratos-32B | Sky-T1-32B | o1-preview | DeepSeek-R1 | DeepSeek-R1-Distill-Qwen-32B (Ours // Reported)|
28
+ |---|---|---|---|---|---|
29
+ | AIME2024 | 63.3 | 43.3 | 40.0 | 79.8 | 66.7 // 72.6 |
30
+ | MATH500 | 93.0 | 82.4 | 81.4 | 97.3 | 89.8 // 94.3 |
31
+ | GPQA-Diamond | 58.1 | 56.8 | 75.2 | 71.5 | 61.1 // 62.1 |
32
+ | LCB v2 Easy | 96.7 | 86.3 | 92.9 | - | 91.2 // - |
33
+ | LCB v2 Medium | 75.2 | 56.8 | 54.9 | - | 75.7 // - |
34
+ | LCB v2 Hard | 26.2 | 17.9 | 16.3 | - | 38.2 // - |
35
+ | LCB v2 All | 71.1 | 57.9 | 59.1 | - | 72.2 // - |
36
+
37
+ ## Intended uses & limitations
38
+ Apache 2.0 License
39
+
40
+
41
+ ## Training procedure
42
+ We used 8xH100 to train the model for 27 hours.
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 1e-05
48
+ - train_batch_size: 1
49
+ - eval_batch_size: 8
50
+ - seed: 42
51
+ - distributed_type: multi-GPU
52
+ - num_devices: 8
53
+ - gradient_accumulation_steps: 12
54
+ - total_train_batch_size: 96
55
+ - total_eval_batch_size: 64
56
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
57
+ - lr_scheduler_type: cosine
58
+ - lr_scheduler_warmup_ratio: 0.1
59
+ - num_epochs: 3.0
60
+
61
+ ### Training results
62
+
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.46.1
68
+ - Pytorch 2.5.1+cu124
69
+ - Datasets 3.1.0
70
+ - Tokenizers 0.20.3
measurement.json ADDED
The diff for this file is too large to render. See raw diff