--- license: mit base_model: prajjwal1/bert-tiny tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: Merged-Int-praj results: [] --- # Merged-Int-praj This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1460 - Accuracy: 0.96 - F1: 0.9600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 0.0 | 50 | 0.6933 | 0.5 | 0.3333 | | No log | 0.01 | 100 | 0.6929 | 0.58 | 0.4900 | | No log | 0.01 | 150 | 0.6937 | 0.5 | 0.3333 | | No log | 0.01 | 200 | 0.6951 | 0.5 | 0.3333 | | No log | 0.02 | 250 | 0.6902 | 0.52 | 0.5130 | | No log | 0.02 | 300 | 0.6909 | 0.5 | 0.3333 | | No log | 0.02 | 350 | 0.6795 | 0.56 | 0.4762 | | No log | 0.03 | 400 | 0.6524 | 0.61 | 0.6010 | | No log | 0.03 | 450 | 0.6139 | 0.71 | 0.7100 | | 0.6779 | 0.03 | 500 | 0.5827 | 0.71 | 0.7033 | | 0.6779 | 0.04 | 550 | 0.5732 | 0.71 | 0.7033 | | 0.6779 | 0.04 | 600 | 0.5467 | 0.74 | 0.7396 | | 0.6779 | 0.04 | 650 | 0.5174 | 0.8 | 0.7980 | | 0.6779 | 0.05 | 700 | 0.5193 | 0.74 | 0.7399 | | 0.6779 | 0.05 | 750 | 0.4905 | 0.8 | 0.7980 | | 0.6779 | 0.05 | 800 | 0.4710 | 0.8 | 0.7980 | | 0.6779 | 0.06 | 850 | 0.4523 | 0.83 | 0.8271 | | 0.6779 | 0.06 | 900 | 0.4373 | 0.84 | 0.8368 | | 0.6779 | 0.06 | 950 | 0.4214 | 0.84 | 0.8368 | | 0.5615 | 0.07 | 1000 | 0.4086 | 0.84 | 0.8368 | | 0.5615 | 0.07 | 1050 | 0.3803 | 0.84 | 0.8368 | | 0.5615 | 0.07 | 1100 | 0.3476 | 0.9 | 0.8994 | | 0.5615 | 0.08 | 1150 | 0.3218 | 0.91 | 0.9096 | | 0.5615 | 0.08 | 1200 | 0.3028 | 0.91 | 0.9096 | | 0.5615 | 0.08 | 1250 | 0.2851 | 0.92 | 0.9195 | | 0.5615 | 0.09 | 1300 | 0.2737 | 0.92 | 0.9195 | | 0.5615 | 0.09 | 1350 | 0.2637 | 0.91 | 0.9096 | | 0.5615 | 0.09 | 1400 | 0.2560 | 0.92 | 0.9195 | | 0.5615 | 0.1 | 1450 | 0.2426 | 0.92 | 0.9199 | | 0.4267 | 0.1 | 1500 | 0.2390 | 0.89 | 0.8897 | | 0.4267 | 0.1 | 1550 | 0.2320 | 0.92 | 0.9199 | | 0.4267 | 0.11 | 1600 | 0.2239 | 0.93 | 0.9298 | | 0.4267 | 0.11 | 1650 | 0.2159 | 0.94 | 0.9398 | | 0.4267 | 0.11 | 1700 | 0.2156 | 0.93 | 0.9298 | | 0.4267 | 0.12 | 1750 | 0.2079 | 0.93 | 0.9298 | | 0.4267 | 0.12 | 1800 | 0.1938 | 0.93 | 0.9298 | | 0.4267 | 0.12 | 1850 | 0.1909 | 0.93 | 0.9298 | | 0.4267 | 0.13 | 1900 | 0.1923 | 0.93 | 0.9298 | | 0.4267 | 0.13 | 1950 | 0.1893 | 0.94 | 0.9398 | | 0.3491 | 0.13 | 2000 | 0.1633 | 0.96 | 0.9600 | | 0.3491 | 0.14 | 2050 | 0.1662 | 0.95 | 0.9500 | | 0.3491 | 0.14 | 2100 | 0.1494 | 0.96 | 0.9600 | | 0.3491 | 0.14 | 2150 | 0.1606 | 0.95 | 0.9499 | | 0.3491 | 0.15 | 2200 | 0.1595 | 0.96 | 0.9599 | | 0.3491 | 0.15 | 2250 | 0.1460 | 0.96 | 0.9600 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0