--- base_model: aubmindlab/bert-base-arabertv02-twitter tags: - generated_from_trainer metrics: - accuracy model-index: - name: Improved-Arabert-twitter-sentiment2 results: [] --- # Improved-Arabert-twitter-sentiment2 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02-twitter](https://huggingface.co/aubmindlab/bert-base-arabertv02-twitter) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4308 - Accuracy: 0.8759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.07 | 50 | 0.4102 | 0.8130 | | No log | 0.14 | 100 | 0.3141 | 0.8769 | | No log | 0.21 | 150 | 0.2981 | 0.8806 | | No log | 0.27 | 200 | 0.3297 | 0.8769 | | No log | 0.34 | 250 | 0.2998 | 0.8796 | | No log | 0.41 | 300 | 0.3312 | 0.8630 | | No log | 0.48 | 350 | 0.3615 | 0.8491 | | No log | 0.55 | 400 | 0.3695 | 0.8481 | | No log | 0.62 | 450 | 0.3094 | 0.8778 | | 0.316 | 0.68 | 500 | 0.2784 | 0.8907 | | 0.316 | 0.75 | 550 | 0.3404 | 0.8759 | | 0.316 | 0.82 | 600 | 0.3045 | 0.8806 | | 0.316 | 0.89 | 650 | 0.3435 | 0.8731 | | 0.316 | 0.96 | 700 | 0.2849 | 0.9 | | 0.316 | 1.03 | 750 | 0.2846 | 0.8963 | | 0.316 | 1.1 | 800 | 0.3034 | 0.8926 | | 0.316 | 1.16 | 850 | 0.3801 | 0.8787 | | 0.316 | 1.23 | 900 | 0.3525 | 0.8898 | | 0.316 | 1.3 | 950 | 0.3388 | 0.8889 | | 0.2119 | 1.37 | 1000 | 0.3823 | 0.8843 | | 0.2119 | 1.44 | 1050 | 0.3621 | 0.8935 | | 0.2119 | 1.51 | 1100 | 0.4106 | 0.8843 | | 0.2119 | 1.58 | 1150 | 0.3820 | 0.8870 | | 0.2119 | 1.64 | 1200 | 0.3770 | 0.8796 | | 0.2119 | 1.71 | 1250 | 0.4199 | 0.8824 | | 0.2119 | 1.78 | 1300 | 0.4308 | 0.8759 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.7 - Tokenizers 0.14.1