File size: 4,911 Bytes
7dd043f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
license: mit
base_model: camembert-base
tags:
- generated_from_trainer
model-index:
- name: camembert_question_answering_tools_qlora_fr
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# camembert_question_answering_tools_qlora_fr

This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3275
- Learning Rate: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 24
- eval_batch_size: 192
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rate   |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log        | 1.0   | 7    | 5.8555          | 0.0001 |
| No log        | 2.0   | 14   | 5.7277          | 0.0001 |
| No log        | 3.0   | 21   | 5.5916          | 0.0001 |
| No log        | 4.0   | 28   | 5.4433          | 0.0001 |
| No log        | 5.0   | 35   | 5.2833          | 0.0001 |
| No log        | 6.0   | 42   | 5.1312          | 9e-05  |
| No log        | 7.0   | 49   | 4.9815          | 0.0001 |
| No log        | 8.0   | 56   | 4.8317          | 0.0001 |
| No log        | 9.0   | 63   | 4.6800          | 0.0001 |
| No log        | 10.0  | 70   | 4.5265          | 0.0001 |
| No log        | 11.0  | 77   | 4.3673          | 0.0001 |
| No log        | 12.0  | 84   | 4.2002          | 8e-05  |
| No log        | 13.0  | 91   | 4.0344          | 0.0001 |
| No log        | 14.0  | 98   | 3.8807          | 0.0001 |
| No log        | 15.0  | 105  | 3.7267          | 0.0001 |
| No log        | 16.0  | 112  | 3.5812          | 0.0001 |
| No log        | 17.0  | 119  | 3.4528          | 0.0001 |
| No log        | 18.0  | 126  | 3.3323          | 7e-05  |
| No log        | 19.0  | 133  | 3.2173          | 0.0001 |
| No log        | 20.0  | 140  | 3.1382          | 0.0001 |
| No log        | 21.0  | 147  | 3.0190          | 0.0001 |
| No log        | 22.0  | 154  | 2.9614          | 0.0001 |
| No log        | 23.0  | 161  | 2.8867          | 0.0001 |
| No log        | 24.0  | 168  | 2.8360          | 6e-05  |
| No log        | 25.0  | 175  | 2.7882          | 0.0001 |
| No log        | 26.0  | 182  | 2.7450          | 0.0001 |
| No log        | 27.0  | 189  | 2.6969          | 0.0001 |
| No log        | 28.0  | 196  | 2.6651          | 0.0001 |
| No log        | 29.0  | 203  | 2.6440          | 0.0001 |
| No log        | 30.0  | 210  | 2.6032          | 5e-05  |
| No log        | 31.0  | 217  | 2.5762          | 0.0000 |
| No log        | 32.0  | 224  | 2.5473          | 0.0000 |
| No log        | 33.0  | 231  | 2.5338          | 0.0000 |
| No log        | 34.0  | 238  | 2.5056          | 0.0000 |
| No log        | 35.0  | 245  | 2.4919          | 0.0000 |
| No log        | 36.0  | 252  | 2.4773          | 4e-05  |
| No log        | 37.0  | 259  | 2.4594          | 0.0000 |
| No log        | 38.0  | 266  | 2.4429          | 0.0000 |
| No log        | 39.0  | 273  | 2.4275          | 0.0000 |
| No log        | 40.0  | 280  | 2.4184          | 0.0000 |
| No log        | 41.0  | 287  | 2.4123          | 0.0000 |
| No log        | 42.0  | 294  | 2.3951          | 3e-05  |
| No log        | 43.0  | 301  | 2.3963          | 0.0000 |
| No log        | 44.0  | 308  | 2.3848          | 0.0000 |
| No log        | 45.0  | 315  | 2.3714          | 0.0000 |
| No log        | 46.0  | 322  | 2.3696          | 0.0000 |
| No log        | 47.0  | 329  | 2.3626          | 0.0000 |
| No log        | 48.0  | 336  | 2.3545          | 2e-05  |
| No log        | 49.0  | 343  | 2.3523          | 0.0000 |
| No log        | 50.0  | 350  | 2.3492          | 0.0000 |
| No log        | 51.0  | 357  | 2.3429          | 0.0000 |
| No log        | 52.0  | 364  | 2.3364          | 0.0000 |
| No log        | 53.0  | 371  | 2.3371          | 0.0000 |
| No log        | 54.0  | 378  | 2.3360          | 1e-05  |
| No log        | 55.0  | 385  | 2.3329          | 0.0000 |
| No log        | 56.0  | 392  | 2.3316          | 0.0000 |
| No log        | 57.0  | 399  | 2.3292          | 5e-06  |
| No log        | 58.0  | 406  | 2.3281          | 0.0000 |
| No log        | 59.0  | 413  | 2.3278          | 0.0000 |
| No log        | 60.0  | 420  | 2.3275          | 0.0    |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.1