--- base_model: camembert/camembert-base-ccnet tags: - generated_from_trainer metrics: - accuracy model-index: - name: camembert_ccnet_classification_tools_classifier-only_fr_V2 results: [] --- # camembert_ccnet_classification_tools_classifier-only_fr_V2 This model is a fine-tuned version of [camembert/camembert-base-ccnet](https://huggingface.co/camembert/camembert-base-ccnet) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8155 - Accuracy: 0.7396 - Learning Rate: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 24 - eval_batch_size: 192 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Rate | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 2.0589 | 1.0 | 15 | 2.0475 | 0.25 | 0.0001 | | 2.0002 | 2.0 | 30 | 1.9708 | 0.3958 | 0.0001 | | 1.9338 | 3.0 | 45 | 1.9353 | 0.3646 | 0.0001 | | 1.8829 | 4.0 | 60 | 1.8915 | 0.3958 | 0.0001 | | 1.8255 | 5.0 | 75 | 1.8285 | 0.4688 | 0.0001 | | 1.79 | 6.0 | 90 | 1.7780 | 0.5833 | 9e-05 | | 1.7391 | 7.0 | 105 | 1.7396 | 0.4688 | 0.0001 | | 1.6838 | 8.0 | 120 | 1.6781 | 0.5417 | 0.0001 | | 1.6385 | 9.0 | 135 | 1.6208 | 0.6042 | 0.0001 | | 1.6083 | 10.0 | 150 | 1.5847 | 0.5729 | 0.0001 | | 1.5543 | 11.0 | 165 | 1.5476 | 0.625 | 0.0001 | | 1.5171 | 12.0 | 180 | 1.5068 | 0.6042 | 8e-05 | | 1.4848 | 13.0 | 195 | 1.4651 | 0.6354 | 0.0001 | | 1.4068 | 14.0 | 210 | 1.4436 | 0.6354 | 0.0001 | | 1.4141 | 15.0 | 225 | 1.3965 | 0.6042 | 0.0001 | | 1.3678 | 16.0 | 240 | 1.3565 | 0.6562 | 0.0001 | | 1.309 | 17.0 | 255 | 1.3221 | 0.6875 | 0.0001 | | 1.2867 | 18.0 | 270 | 1.2940 | 0.6667 | 7e-05 | | 1.2667 | 19.0 | 285 | 1.2548 | 0.6667 | 0.0001 | | 1.2271 | 20.0 | 300 | 1.2286 | 0.6875 | 0.0001 | | 1.1865 | 21.0 | 315 | 1.1943 | 0.6875 | 0.0001 | | 1.1691 | 22.0 | 330 | 1.1705 | 0.6979 | 0.0001 | | 1.1502 | 23.0 | 345 | 1.1483 | 0.6875 | 0.0001 | | 1.1195 | 24.0 | 360 | 1.1250 | 0.6875 | 6e-05 | | 1.1148 | 25.0 | 375 | 1.1058 | 0.6979 | 0.0001 | | 1.0893 | 26.0 | 390 | 1.0787 | 0.7083 | 0.0001 | | 1.0736 | 27.0 | 405 | 1.0668 | 0.6979 | 0.0001 | | 1.0303 | 28.0 | 420 | 1.0466 | 0.6979 | 0.0001 | | 1.0475 | 29.0 | 435 | 1.0211 | 0.6979 | 0.0001 | | 1.0122 | 30.0 | 450 | 0.9995 | 0.7292 | 5e-05 | | 1.0014 | 31.0 | 465 | 0.9907 | 0.7292 | 0.0000 | | 0.973 | 32.0 | 480 | 0.9791 | 0.7292 | 0.0000 | | 0.9894 | 33.0 | 495 | 0.9643 | 0.7188 | 0.0000 | | 0.9503 | 34.0 | 510 | 0.9531 | 0.7292 | 0.0000 | | 0.9382 | 35.0 | 525 | 0.9386 | 0.7188 | 0.0000 | | 0.9371 | 36.0 | 540 | 0.9313 | 0.7188 | 4e-05 | | 0.9207 | 37.0 | 555 | 0.9192 | 0.7188 | 0.0000 | | 0.9422 | 38.0 | 570 | 0.9091 | 0.7292 | 0.0000 | | 0.9041 | 39.0 | 585 | 0.8975 | 0.7188 | 0.0000 | | 0.8966 | 40.0 | 600 | 0.8888 | 0.7188 | 0.0000 | | 0.8877 | 41.0 | 615 | 0.8800 | 0.75 | 0.0000 | | 0.8933 | 42.0 | 630 | 0.8748 | 0.7396 | 3e-05 | | 0.854 | 43.0 | 645 | 0.8629 | 0.75 | 0.0000 | | 0.8858 | 44.0 | 660 | 0.8580 | 0.7396 | 0.0000 | | 0.8407 | 45.0 | 675 | 0.8516 | 0.75 | 0.0000 | | 0.8413 | 46.0 | 690 | 0.8475 | 0.75 | 0.0000 | | 0.86 | 47.0 | 705 | 0.8416 | 0.7396 | 0.0000 | | 0.8282 | 48.0 | 720 | 0.8332 | 0.7396 | 2e-05 | | 0.835 | 49.0 | 735 | 0.8303 | 0.7396 | 0.0000 | | 0.8123 | 50.0 | 750 | 0.8267 | 0.7396 | 0.0000 | | 0.8175 | 51.0 | 765 | 0.8227 | 0.7396 | 0.0000 | | 0.8097 | 52.0 | 780 | 0.8177 | 0.75 | 0.0000 | | 0.806 | 53.0 | 795 | 0.8155 | 0.7396 | 0.0000 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.14.1