AnikiFan commited on
Commit
1f268a5
·
verified ·
1 Parent(s): 4e1a860

Upload running_log.txt with huggingface_hub

Browse files
Files changed (1) hide show
  1. running_log.txt +618 -0
running_log.txt ADDED
@@ -0,0 +1,618 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [INFO|2025-02-17 12:12:13] configuration_utils.py:696 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--Qwen--Qwen2.5-1.5B/snapshots/8faed761d45a263340a0528343f099c05c9a4323/config.json
2
+
3
+ [INFO|2025-02-17 12:12:13] configuration_utils.py:768 >> Model config Qwen2Config {
4
+ "_name_or_path": "Qwen/Qwen2.5-1.5B",
5
+ "architectures": [
6
+ "Qwen2ForCausalLM"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "bos_token_id": 151643,
10
+ "eos_token_id": 151643,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 1536,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 8960,
15
+ "max_position_embeddings": 131072,
16
+ "max_window_layers": 28,
17
+ "model_type": "qwen2",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 28,
20
+ "num_key_value_heads": 2,
21
+ "rms_norm_eps": 1e-06,
22
+ "rope_scaling": null,
23
+ "rope_theta": 1000000.0,
24
+ "sliding_window": null,
25
+ "tie_word_embeddings": true,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.48.2",
28
+ "use_cache": true,
29
+ "use_mrope": false,
30
+ "use_sliding_window": false,
31
+ "vocab_size": 151936
32
+ }
33
+
34
+
35
+ [INFO|2025-02-17 12:12:17] tokenization_utils_base.py:2034 >> loading file vocab.json from cache at /root/.cache/huggingface/hub/models--Qwen--Qwen2.5-1.5B/snapshots/8faed761d45a263340a0528343f099c05c9a4323/vocab.json
36
+
37
+ [INFO|2025-02-17 12:12:17] tokenization_utils_base.py:2034 >> loading file merges.txt from cache at /root/.cache/huggingface/hub/models--Qwen--Qwen2.5-1.5B/snapshots/8faed761d45a263340a0528343f099c05c9a4323/merges.txt
38
+
39
+ [INFO|2025-02-17 12:12:17] tokenization_utils_base.py:2034 >> loading file tokenizer.json from cache at /root/.cache/huggingface/hub/models--Qwen--Qwen2.5-1.5B/snapshots/8faed761d45a263340a0528343f099c05c9a4323/tokenizer.json
40
+
41
+ [INFO|2025-02-17 12:12:17] tokenization_utils_base.py:2034 >> loading file added_tokens.json from cache at None
42
+
43
+ [INFO|2025-02-17 12:12:17] tokenization_utils_base.py:2034 >> loading file special_tokens_map.json from cache at None
44
+
45
+ [INFO|2025-02-17 12:12:17] tokenization_utils_base.py:2034 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--Qwen--Qwen2.5-1.5B/snapshots/8faed761d45a263340a0528343f099c05c9a4323/tokenizer_config.json
46
+
47
+ [INFO|2025-02-17 12:12:17] tokenization_utils_base.py:2034 >> loading file chat_template.jinja from cache at None
48
+
49
+ [INFO|2025-02-17 12:12:18] tokenization_utils_base.py:2304 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
50
+
51
+ [INFO|2025-02-17 12:12:19] configuration_utils.py:696 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--Qwen--Qwen2.5-1.5B/snapshots/8faed761d45a263340a0528343f099c05c9a4323/config.json
52
+
53
+ [INFO|2025-02-17 12:12:19] configuration_utils.py:768 >> Model config Qwen2Config {
54
+ "_name_or_path": "Qwen/Qwen2.5-1.5B",
55
+ "architectures": [
56
+ "Qwen2ForCausalLM"
57
+ ],
58
+ "attention_dropout": 0.0,
59
+ "bos_token_id": 151643,
60
+ "eos_token_id": 151643,
61
+ "hidden_act": "silu",
62
+ "hidden_size": 1536,
63
+ "initializer_range": 0.02,
64
+ "intermediate_size": 8960,
65
+ "max_position_embeddings": 131072,
66
+ "max_window_layers": 28,
67
+ "model_type": "qwen2",
68
+ "num_attention_heads": 12,
69
+ "num_hidden_layers": 28,
70
+ "num_key_value_heads": 2,
71
+ "rms_norm_eps": 1e-06,
72
+ "rope_scaling": null,
73
+ "rope_theta": 1000000.0,
74
+ "sliding_window": null,
75
+ "tie_word_embeddings": true,
76
+ "torch_dtype": "bfloat16",
77
+ "transformers_version": "4.48.2",
78
+ "use_cache": true,
79
+ "use_mrope": false,
80
+ "use_sliding_window": false,
81
+ "vocab_size": 151936
82
+ }
83
+
84
+
85
+ [INFO|2025-02-17 12:12:19] tokenization_utils_base.py:2034 >> loading file vocab.json from cache at /root/.cache/huggingface/hub/models--Qwen--Qwen2.5-1.5B/snapshots/8faed761d45a263340a0528343f099c05c9a4323/vocab.json
86
+
87
+ [INFO|2025-02-17 12:12:19] tokenization_utils_base.py:2034 >> loading file merges.txt from cache at /root/.cache/huggingface/hub/models--Qwen--Qwen2.5-1.5B/snapshots/8faed761d45a263340a0528343f099c05c9a4323/merges.txt
88
+
89
+ [INFO|2025-02-17 12:12:19] tokenization_utils_base.py:2034 >> loading file tokenizer.json from cache at /root/.cache/huggingface/hub/models--Qwen--Qwen2.5-1.5B/snapshots/8faed761d45a263340a0528343f099c05c9a4323/tokenizer.json
90
+
91
+ [INFO|2025-02-17 12:12:19] tokenization_utils_base.py:2034 >> loading file added_tokens.json from cache at None
92
+
93
+ [INFO|2025-02-17 12:12:19] tokenization_utils_base.py:2034 >> loading file special_tokens_map.json from cache at None
94
+
95
+ [INFO|2025-02-17 12:12:19] tokenization_utils_base.py:2034 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--Qwen--Qwen2.5-1.5B/snapshots/8faed761d45a263340a0528343f099c05c9a4323/tokenizer_config.json
96
+
97
+ [INFO|2025-02-17 12:12:19] tokenization_utils_base.py:2034 >> loading file chat_template.jinja from cache at None
98
+
99
+ [INFO|2025-02-17 12:12:19] tokenization_utils_base.py:2304 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
100
+
101
+ [INFO|2025-02-17 12:12:19] logging.py:157 >> Loading dataset limo.json...
102
+
103
+ [INFO|2025-02-17 12:12:27] configuration_utils.py:696 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--Qwen--Qwen2.5-1.5B/snapshots/8faed761d45a263340a0528343f099c05c9a4323/config.json
104
+
105
+ [INFO|2025-02-17 12:12:27] configuration_utils.py:768 >> Model config Qwen2Config {
106
+ "_name_or_path": "Qwen/Qwen2.5-1.5B",
107
+ "architectures": [
108
+ "Qwen2ForCausalLM"
109
+ ],
110
+ "attention_dropout": 0.0,
111
+ "bos_token_id": 151643,
112
+ "eos_token_id": 151643,
113
+ "hidden_act": "silu",
114
+ "hidden_size": 1536,
115
+ "initializer_range": 0.02,
116
+ "intermediate_size": 8960,
117
+ "max_position_embeddings": 131072,
118
+ "max_window_layers": 28,
119
+ "model_type": "qwen2",
120
+ "num_attention_heads": 12,
121
+ "num_hidden_layers": 28,
122
+ "num_key_value_heads": 2,
123
+ "rms_norm_eps": 1e-06,
124
+ "rope_scaling": null,
125
+ "rope_theta": 1000000.0,
126
+ "sliding_window": null,
127
+ "tie_word_embeddings": true,
128
+ "torch_dtype": "bfloat16",
129
+ "transformers_version": "4.48.2",
130
+ "use_cache": true,
131
+ "use_mrope": false,
132
+ "use_sliding_window": false,
133
+ "vocab_size": 151936
134
+ }
135
+
136
+
137
+ [INFO|2025-02-17 12:13:41] modeling_utils.py:3904 >> loading weights file model.safetensors from cache at /root/.cache/huggingface/hub/models--Qwen--Qwen2.5-1.5B/snapshots/8faed761d45a263340a0528343f099c05c9a4323/model.safetensors
138
+
139
+ [INFO|2025-02-17 12:13:41] modeling_utils.py:1582 >> Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16.
140
+
141
+ [INFO|2025-02-17 12:13:41] configuration_utils.py:1140 >> Generate config GenerationConfig {
142
+ "bos_token_id": 151643,
143
+ "eos_token_id": 151643
144
+ }
145
+
146
+
147
+ [INFO|2025-02-17 12:13:43] modeling_utils.py:4888 >> All model checkpoint weights were used when initializing Qwen2ForCausalLM.
148
+
149
+
150
+ [INFO|2025-02-17 12:13:43] modeling_utils.py:4896 >> All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-1.5B.
151
+ If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training.
152
+
153
+ [INFO|2025-02-17 12:13:43] configuration_utils.py:1095 >> loading configuration file generation_config.json from cache at /root/.cache/huggingface/hub/models--Qwen--Qwen2.5-1.5B/snapshots/8faed761d45a263340a0528343f099c05c9a4323/generation_config.json
154
+
155
+ [INFO|2025-02-17 12:13:43] configuration_utils.py:1140 >> Generate config GenerationConfig {
156
+ "bos_token_id": 151643,
157
+ "eos_token_id": 151643,
158
+ "max_new_tokens": 2048
159
+ }
160
+
161
+
162
+ [INFO|2025-02-17 12:13:43] logging.py:157 >> Gradient checkpointing enabled.
163
+
164
+ [INFO|2025-02-17 12:13:43] logging.py:157 >> Using torch SDPA for faster training and inference.
165
+
166
+ [INFO|2025-02-17 12:13:43] logging.py:157 >> Upcasting trainable params to float32.
167
+
168
+ [INFO|2025-02-17 12:13:43] logging.py:157 >> Fine-tuning method: Full
169
+
170
+ [INFO|2025-02-17 12:13:43] logging.py:157 >> trainable params: 1,543,714,304 || all params: 1,543,714,304 || trainable%: 100.0000
171
+
172
+ [INFO|2025-02-17 12:13:43] trainer.py:741 >> Using auto half precision backend
173
+
174
+ [INFO|2025-02-17 12:13:44] trainer.py:2369 >> ***** Running training *****
175
+
176
+ [INFO|2025-02-17 12:13:44] trainer.py:2370 >> Num examples = 817
177
+
178
+ [INFO|2025-02-17 12:13:44] trainer.py:2371 >> Num Epochs = 15
179
+
180
+ [INFO|2025-02-17 12:13:44] trainer.py:2372 >> Instantaneous batch size per device = 2
181
+
182
+ [INFO|2025-02-17 12:13:44] trainer.py:2375 >> Total train batch size (w. parallel, distributed & accumulation) = 16
183
+
184
+ [INFO|2025-02-17 12:13:44] trainer.py:2376 >> Gradient Accumulation steps = 8
185
+
186
+ [INFO|2025-02-17 12:13:44] trainer.py:2377 >> Total optimization steps = 765
187
+
188
+ [INFO|2025-02-17 12:13:44] trainer.py:2378 >> Number of trainable parameters = 1,543,714,304
189
+
190
+ [INFO|2025-02-17 12:13:44] integration_utils.py:817 >> Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"
191
+
192
+ [INFO|2025-02-17 12:14:20] logging.py:157 >> {'loss': 0.8739, 'learning_rate': 1.9998e-05, 'epoch': 0.10, 'throughput': 8024.43}
193
+
194
+ [INFO|2025-02-17 12:14:40] logging.py:157 >> {'loss': 0.7957, 'learning_rate': 1.9992e-05, 'epoch': 0.20, 'throughput': 8106.29}
195
+
196
+ [INFO|2025-02-17 12:14:59] logging.py:157 >> {'loss': 0.7822, 'learning_rate': 1.9981e-05, 'epoch': 0.29, 'throughput': 8219.61}
197
+
198
+ [INFO|2025-02-17 12:15:19] logging.py:157 >> {'loss': 0.7815, 'learning_rate': 1.9966e-05, 'epoch': 0.39, 'throughput': 8260.20}
199
+
200
+ [INFO|2025-02-17 12:15:38] logging.py:157 >> {'loss': 0.7432, 'learning_rate': 1.9947e-05, 'epoch': 0.49, 'throughput': 8269.83}
201
+
202
+ [INFO|2025-02-17 12:15:58] logging.py:157 >> {'loss': 0.7389, 'learning_rate': 1.9924e-05, 'epoch': 0.59, 'throughput': 8282.10}
203
+
204
+ [INFO|2025-02-17 12:16:17] logging.py:157 >> {'loss': 0.7654, 'learning_rate': 1.9897e-05, 'epoch': 0.68, 'throughput': 8305.86}
205
+
206
+ [INFO|2025-02-17 12:16:37] logging.py:157 >> {'loss': 0.7753, 'learning_rate': 1.9865e-05, 'epoch': 0.78, 'throughput': 8319.21}
207
+
208
+ [INFO|2025-02-17 12:16:56] logging.py:157 >> {'loss': 0.7256, 'learning_rate': 1.9830e-05, 'epoch': 0.88, 'throughput': 8321.93}
209
+
210
+ [INFO|2025-02-17 12:17:16] logging.py:157 >> {'loss': 0.7270, 'learning_rate': 1.9790e-05, 'epoch': 0.98, 'throughput': 8320.84}
211
+
212
+ [INFO|2025-02-17 12:17:32] logging.py:157 >> {'loss': 0.5820, 'learning_rate': 1.9746e-05, 'epoch': 1.06, 'throughput': 8319.31}
213
+
214
+ [INFO|2025-02-17 12:17:52] logging.py:157 >> {'loss': 0.5628, 'learning_rate': 1.9698e-05, 'epoch': 1.16, 'throughput': 8321.68}
215
+
216
+ [INFO|2025-02-17 12:18:11] logging.py:157 >> {'loss': 0.5561, 'learning_rate': 1.9646e-05, 'epoch': 1.25, 'throughput': 8326.47}
217
+
218
+ [INFO|2025-02-17 12:18:31] logging.py:157 >> {'loss': 0.5778, 'learning_rate': 1.9590e-05, 'epoch': 1.35, 'throughput': 8327.91}
219
+
220
+ [INFO|2025-02-17 12:18:51] logging.py:157 >> {'loss': 0.5207, 'learning_rate': 1.9529e-05, 'epoch': 1.45, 'throughput': 8328.77}
221
+
222
+ [INFO|2025-02-17 12:19:10] logging.py:157 >> {'loss': 0.5452, 'learning_rate': 1.9465e-05, 'epoch': 1.55, 'throughput': 8334.34}
223
+
224
+ [INFO|2025-02-17 12:19:29] logging.py:157 >> {'loss': 0.5379, 'learning_rate': 1.9397e-05, 'epoch': 1.65, 'throughput': 8341.18}
225
+
226
+ [INFO|2025-02-17 12:19:49] logging.py:157 >> {'loss': 0.5116, 'learning_rate': 1.9325e-05, 'epoch': 1.74, 'throughput': 8337.37}
227
+
228
+ [INFO|2025-02-17 12:20:09] logging.py:157 >> {'loss': 0.5532, 'learning_rate': 1.9249e-05, 'epoch': 1.84, 'throughput': 8339.42}
229
+
230
+ [INFO|2025-02-17 12:20:28] logging.py:157 >> {'loss': 0.5659, 'learning_rate': 1.9169e-05, 'epoch': 1.94, 'throughput': 8344.96}
231
+
232
+ [INFO|2025-02-17 12:20:28] trainer.py:3910 >> Saving model checkpoint to saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-100
233
+
234
+ [INFO|2025-02-17 12:20:28] configuration_utils.py:420 >> Configuration saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-100/config.json
235
+
236
+ [INFO|2025-02-17 12:20:28] configuration_utils.py:909 >> Configuration saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-100/generation_config.json
237
+
238
+ [INFO|2025-02-17 12:20:48] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 2 checkpoint shards. You can find where each parameters has been saved in the index located at saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-100/model.safetensors.index.json.
239
+
240
+ [INFO|2025-02-17 12:20:48] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-100/tokenizer_config.json
241
+
242
+ [INFO|2025-02-17 12:20:48] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-100/special_tokens_map.json
243
+
244
+ [INFO|2025-02-17 12:21:37] logging.py:157 >> {'loss': 0.6028, 'learning_rate': 1.9085e-05, 'epoch': 2.02, 'throughput': 7373.76}
245
+
246
+ [INFO|2025-02-17 12:21:57] logging.py:157 >> {'loss': 0.4228, 'learning_rate': 1.8997e-05, 'epoch': 2.12, 'throughput': 7412.32}
247
+
248
+ [INFO|2025-02-17 12:22:17] logging.py:157 >> {'loss': 0.3648, 'learning_rate': 1.8905e-05, 'epoch': 2.22, 'throughput': 7448.87}
249
+
250
+ [INFO|2025-02-17 12:22:36] logging.py:157 >> {'loss': 0.3822, 'learning_rate': 1.8810e-05, 'epoch': 2.31, 'throughput': 7486.42}
251
+
252
+ [INFO|2025-02-17 12:22:56] logging.py:157 >> {'loss': 0.3907, 'learning_rate': 1.8711e-05, 'epoch': 2.41, 'throughput': 7521.14}
253
+
254
+ [INFO|2025-02-17 12:23:15] logging.py:157 >> {'loss': 0.3936, 'learning_rate': 1.8608e-05, 'epoch': 2.51, 'throughput': 7551.36}
255
+
256
+ [INFO|2025-02-17 12:23:35] logging.py:157 >> {'loss': 0.3760, 'learning_rate': 1.8502e-05, 'epoch': 2.61, 'throughput': 7577.31}
257
+
258
+ [INFO|2025-02-17 12:23:55] logging.py:157 >> {'loss': 0.3735, 'learning_rate': 1.8392e-05, 'epoch': 2.70, 'throughput': 7602.53}
259
+
260
+ [INFO|2025-02-17 12:24:14] logging.py:157 >> {'loss': 0.4114, 'learning_rate': 1.8279e-05, 'epoch': 2.80, 'throughput': 7628.26}
261
+
262
+ [INFO|2025-02-17 12:24:33] logging.py:157 >> {'loss': 0.3696, 'learning_rate': 1.8162e-05, 'epoch': 2.90, 'throughput': 7652.37}
263
+
264
+ [INFO|2025-02-17 12:24:53] logging.py:157 >> {'loss': 0.3888, 'learning_rate': 1.8042e-05, 'epoch': 3.00, 'throughput': 7671.13}
265
+
266
+ [INFO|2025-02-17 12:25:09] logging.py:157 >> {'loss': 0.2605, 'learning_rate': 1.7918e-05, 'epoch': 3.08, 'throughput': 7688.94}
267
+
268
+ [INFO|2025-02-17 12:25:28] logging.py:157 >> {'loss': 0.2475, 'learning_rate': 1.7791e-05, 'epoch': 3.18, 'throughput': 7710.27}
269
+
270
+ [INFO|2025-02-17 12:25:48] logging.py:157 >> {'loss': 0.2344, 'learning_rate': 1.7660e-05, 'epoch': 3.27, 'throughput': 7726.87}
271
+
272
+ [INFO|2025-02-17 12:26:08] logging.py:157 >> {'loss': 0.2665, 'learning_rate': 1.7527e-05, 'epoch': 3.37, 'throughput': 7743.40}
273
+
274
+ [INFO|2025-02-17 12:26:27] logging.py:157 >> {'loss': 0.2477, 'learning_rate': 1.7390e-05, 'epoch': 3.47, 'throughput': 7760.52}
275
+
276
+ [INFO|2025-02-17 12:26:47] logging.py:157 >> {'loss': 0.2679, 'learning_rate': 1.7250e-05, 'epoch': 3.57, 'throughput': 7776.01}
277
+
278
+ [INFO|2025-02-17 12:27:07] logging.py:157 >> {'loss': 0.2340, 'learning_rate': 1.7107e-05, 'epoch': 3.67, 'throughput': 7790.11}
279
+
280
+ [INFO|2025-02-17 12:27:26] logging.py:157 >> {'loss': 0.2587, 'learning_rate': 1.6961e-05, 'epoch': 3.76, 'throughput': 7801.88}
281
+
282
+ [INFO|2025-02-17 12:27:46] logging.py:157 >> {'loss': 0.2606, 'learning_rate': 1.6812e-05, 'epoch': 3.86, 'throughput': 7815.59}
283
+
284
+ [INFO|2025-02-17 12:27:46] trainer.py:3910 >> Saving model checkpoint to saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-200
285
+
286
+ [INFO|2025-02-17 12:27:46] configuration_utils.py:420 >> Configuration saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-200/config.json
287
+
288
+ [INFO|2025-02-17 12:27:46] configuration_utils.py:909 >> Configuration saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-200/generation_config.json
289
+
290
+ [INFO|2025-02-17 12:28:07] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 2 checkpoint shards. You can find where each parameters has been saved in the index located at saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-200/model.safetensors.index.json.
291
+
292
+ [INFO|2025-02-17 12:28:07] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-200/tokenizer_config.json
293
+
294
+ [INFO|2025-02-17 12:28:07] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-200/special_tokens_map.json
295
+
296
+ [INFO|2025-02-17 12:29:01] logging.py:157 >> {'loss': 0.2543, 'learning_rate': 1.6661e-05, 'epoch': 3.96, 'throughput': 7347.53}
297
+
298
+ [INFO|2025-02-17 12:29:17] logging.py:157 >> {'loss': 0.1856, 'learning_rate': 1.6506e-05, 'epoch': 4.04, 'throughput': 7365.09}
299
+
300
+ [INFO|2025-02-17 12:29:36] logging.py:157 >> {'loss': 0.1462, 'learning_rate': 1.6349e-05, 'epoch': 4.14, 'throughput': 7387.60}
301
+
302
+ [INFO|2025-02-17 12:29:56] logging.py:157 >> {'loss': 0.1700, 'learning_rate': 1.6189e-05, 'epoch': 4.23, 'throughput': 7407.89}
303
+
304
+ [INFO|2025-02-17 12:30:15] logging.py:157 >> {'loss': 0.1427, 'learning_rate': 1.6026e-05, 'epoch': 4.33, 'throughput': 7426.73}
305
+
306
+ [INFO|2025-02-17 12:30:35] logging.py:157 >> {'loss': 0.1500, 'learning_rate': 1.5861e-05, 'epoch': 4.43, 'throughput': 7444.87}
307
+
308
+ [INFO|2025-02-17 12:30:54] logging.py:157 >> {'loss': 0.1603, 'learning_rate': 1.5694e-05, 'epoch': 4.53, 'throughput': 7464.06}
309
+
310
+ [INFO|2025-02-17 12:31:14] logging.py:157 >> {'loss': 0.1536, 'learning_rate': 1.5524e-05, 'epoch': 4.63, 'throughput': 7479.59}
311
+
312
+ [INFO|2025-02-17 12:31:34] logging.py:157 >> {'loss': 0.1415, 'learning_rate': 1.5351e-05, 'epoch': 4.72, 'throughput': 7495.78}
313
+
314
+ [INFO|2025-02-17 12:31:53] logging.py:157 >> {'loss': 0.1590, 'learning_rate': 1.5177e-05, 'epoch': 4.82, 'throughput': 7511.92}
315
+
316
+ [INFO|2025-02-17 12:32:13] logging.py:157 >> {'loss': 0.1699, 'learning_rate': 1.5000e-05, 'epoch': 4.92, 'throughput': 7526.38}
317
+
318
+ [INFO|2025-02-17 12:32:29] logging.py:157 >> {'loss': 0.1295, 'learning_rate': 1.4821e-05, 'epoch': 5.00, 'throughput': 7538.13}
319
+
320
+ [INFO|2025-02-17 12:32:48] logging.py:157 >> {'loss': 0.1019, 'learning_rate': 1.4640e-05, 'epoch': 5.10, 'throughput': 7553.80}
321
+
322
+ [INFO|2025-02-17 12:33:08] logging.py:157 >> {'loss': 0.0916, 'learning_rate': 1.4457e-05, 'epoch': 5.20, 'throughput': 7567.93}
323
+
324
+ [INFO|2025-02-17 12:33:27] logging.py:157 >> {'loss': 0.0935, 'learning_rate': 1.4273e-05, 'epoch': 5.29, 'throughput': 7583.13}
325
+
326
+ [INFO|2025-02-17 12:33:47] logging.py:157 >> {'loss': 0.0679, 'learning_rate': 1.4086e-05, 'epoch': 5.39, 'throughput': 7596.23}
327
+
328
+ [INFO|2025-02-17 12:34:06] logging.py:157 >> {'loss': 0.1010, 'learning_rate': 1.3898e-05, 'epoch': 5.49, 'throughput': 7607.87}
329
+
330
+ [INFO|2025-02-17 12:34:26] logging.py:157 >> {'loss': 0.0802, 'learning_rate': 1.3708e-05, 'epoch': 5.59, 'throughput': 7621.15}
331
+
332
+ [INFO|2025-02-17 12:34:46] logging.py:157 >> {'loss': 0.0812, 'learning_rate': 1.3516e-05, 'epoch': 5.68, 'throughput': 7631.54}
333
+
334
+ [INFO|2025-02-17 12:35:05] logging.py:157 >> {'loss': 0.0812, 'learning_rate': 1.3324e-05, 'epoch': 5.78, 'throughput': 7643.59}
335
+
336
+ [INFO|2025-02-17 12:35:05] trainer.py:3910 >> Saving model checkpoint to saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-300
337
+
338
+ [INFO|2025-02-17 12:35:05] configuration_utils.py:420 >> Configuration saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-300/config.json
339
+
340
+ [INFO|2025-02-17 12:35:05] configuration_utils.py:909 >> Configuration saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-300/generation_config.json
341
+
342
+ [INFO|2025-02-17 12:35:25] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 2 checkpoint shards. You can find where each parameters has been saved in the index located at saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-300/model.safetensors.index.json.
343
+
344
+ [INFO|2025-02-17 12:35:25] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-300/tokenizer_config.json
345
+
346
+ [INFO|2025-02-17 12:35:25] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-300/special_tokens_map.json
347
+
348
+ [INFO|2025-02-17 12:36:24] logging.py:157 >> {'loss': 0.0884, 'learning_rate': 1.3129e-05, 'epoch': 5.88, 'throughput': 7317.78}
349
+
350
+ [INFO|2025-02-17 12:36:44] logging.py:157 >> {'loss': 0.0906, 'learning_rate': 1.2934e-05, 'epoch': 5.98, 'throughput': 7332.20}
351
+
352
+ [INFO|2025-02-17 12:37:00] logging.py:157 >> {'loss': 0.0616, 'learning_rate': 1.2737e-05, 'epoch': 6.06, 'throughput': 7343.00}
353
+
354
+ [INFO|2025-02-17 12:37:19] logging.py:157 >> {'loss': 0.0447, 'learning_rate': 1.2539e-05, 'epoch': 6.16, 'throughput': 7357.50}
355
+
356
+ [INFO|2025-02-17 12:37:39] logging.py:157 >> {'loss': 0.0528, 'learning_rate': 1.2339e-05, 'epoch': 6.25, 'throughput': 7372.88}
357
+
358
+ [INFO|2025-02-17 12:37:58] logging.py:157 >> {'loss': 0.0429, 'learning_rate': 1.2139e-05, 'epoch': 6.35, 'throughput': 7387.40}
359
+
360
+ [INFO|2025-02-17 12:38:18] logging.py:157 >> {'loss': 0.0442, 'learning_rate': 1.1938e-05, 'epoch': 6.45, 'throughput': 7398.63}
361
+
362
+ [INFO|2025-02-17 12:38:37] logging.py:157 >> {'loss': 0.0470, 'learning_rate': 1.1736e-05, 'epoch': 6.55, 'throughput': 7411.53}
363
+
364
+ [INFO|2025-02-17 12:38:57] logging.py:157 >> {'loss': 0.0437, 'learning_rate': 1.1534e-05, 'epoch': 6.65, 'throughput': 7424.59}
365
+
366
+ [INFO|2025-02-17 12:39:17] logging.py:157 >> {'loss': 0.0466, 'learning_rate': 1.1331e-05, 'epoch': 6.74, 'throughput': 7436.34}
367
+
368
+ [INFO|2025-02-17 12:39:36] logging.py:157 >> {'loss': 0.0498, 'learning_rate': 1.1127e-05, 'epoch': 6.84, 'throughput': 7447.16}
369
+
370
+ [INFO|2025-02-17 12:39:56] logging.py:157 >> {'loss': 0.0409, 'learning_rate': 1.0923e-05, 'epoch': 6.94, 'throughput': 7459.25}
371
+
372
+ [INFO|2025-02-17 12:40:12] logging.py:157 >> {'loss': 0.0444, 'learning_rate': 1.0718e-05, 'epoch': 7.02, 'throughput': 7468.55}
373
+
374
+ [INFO|2025-02-17 12:40:31] logging.py:157 >> {'loss': 0.0212, 'learning_rate': 1.0513e-05, 'epoch': 7.12, 'throughput': 7479.66}
375
+
376
+ [INFO|2025-02-17 12:40:51] logging.py:157 >> {'loss': 0.0275, 'learning_rate': 1.0308e-05, 'epoch': 7.22, 'throughput': 7489.44}
377
+
378
+ [INFO|2025-02-17 12:41:10] logging.py:157 >> {'loss': 0.0234, 'learning_rate': 1.0103e-05, 'epoch': 7.31, 'throughput': 7500.49}
379
+
380
+ [INFO|2025-02-17 12:41:30] logging.py:157 >> {'loss': 0.0227, 'learning_rate': 9.8973e-06, 'epoch': 7.41, 'throughput': 7510.51}
381
+
382
+ [INFO|2025-02-17 12:41:50] logging.py:157 >> {'loss': 0.0264, 'learning_rate': 9.6920e-06, 'epoch': 7.51, 'throughput': 7520.71}
383
+
384
+ [INFO|2025-02-17 12:42:09] logging.py:157 >> {'loss': 0.0251, 'learning_rate': 9.4869e-06, 'epoch': 7.61, 'throughput': 7530.64}
385
+
386
+ [INFO|2025-02-17 12:42:29] logging.py:157 >> {'loss': 0.0237, 'learning_rate': 9.2820e-06, 'epoch': 7.70, 'throughput': 7541.10}
387
+
388
+ [INFO|2025-02-17 12:42:29] trainer.py:3910 >> Saving model checkpoint to saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-400
389
+
390
+ [INFO|2025-02-17 12:42:29] configuration_utils.py:420 >> Configuration saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-400/config.json
391
+
392
+ [INFO|2025-02-17 12:42:29] configuration_utils.py:909 >> Configuration saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-400/generation_config.json
393
+
394
+ [INFO|2025-02-17 12:42:49] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 2 checkpoint shards. You can find where each parameters has been saved in the index located at saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-400/model.safetensors.index.json.
395
+
396
+ [INFO|2025-02-17 12:42:49] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-400/tokenizer_config.json
397
+
398
+ [INFO|2025-02-17 12:42:49] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-400/special_tokens_map.json
399
+
400
+ [INFO|2025-02-17 12:43:46] logging.py:157 >> {'loss': 0.0228, 'learning_rate': 9.0773e-06, 'epoch': 7.80, 'throughput': 7303.95}
401
+
402
+ [INFO|2025-02-17 12:44:06] logging.py:157 >> {'loss': 0.0238, 'learning_rate': 8.8731e-06, 'epoch': 7.90, 'throughput': 7315.29}
403
+
404
+ [INFO|2025-02-17 12:44:26] logging.py:157 >> {'loss': 0.0222, 'learning_rate': 8.6693e-06, 'epoch': 8.00, 'throughput': 7326.04}
405
+
406
+ [INFO|2025-02-17 12:44:42] logging.py:157 >> {'loss': 0.0109, 'learning_rate': 8.4661e-06, 'epoch': 8.08, 'throughput': 7334.51}
407
+
408
+ [INFO|2025-02-17 12:45:01] logging.py:157 >> {'loss': 0.0118, 'learning_rate': 8.2635e-06, 'epoch': 8.18, 'throughput': 7345.75}
409
+
410
+ [INFO|2025-02-17 12:45:21] logging.py:157 >> {'loss': 0.0100, 'learning_rate': 8.0617e-06, 'epoch': 8.27, 'throughput': 7356.49}
411
+
412
+ [INFO|2025-02-17 12:45:40] logging.py:157 >> {'loss': 0.0112, 'learning_rate': 7.8607e-06, 'epoch': 8.37, 'throughput': 7367.37}
413
+
414
+ [INFO|2025-02-17 12:46:00] logging.py:157 >> {'loss': 0.0133, 'learning_rate': 7.6606e-06, 'epoch': 8.47, 'throughput': 7377.67}
415
+
416
+ [INFO|2025-02-17 12:46:19] logging.py:157 >> {'loss': 0.0113, 'learning_rate': 7.4614e-06, 'epoch': 8.57, 'throughput': 7388.41}
417
+
418
+ [INFO|2025-02-17 12:46:39] logging.py:157 >> {'loss': 0.0102, 'learning_rate': 7.2634e-06, 'epoch': 8.67, 'throughput': 7397.72}
419
+
420
+ [INFO|2025-02-17 12:46:58] logging.py:157 >> {'loss': 0.0100, 'learning_rate': 7.0665e-06, 'epoch': 8.76, 'throughput': 7408.35}
421
+
422
+ [INFO|2025-02-17 12:47:18] logging.py:157 >> {'loss': 0.0116, 'learning_rate': 6.8708e-06, 'epoch': 8.86, 'throughput': 7417.24}
423
+
424
+ [INFO|2025-02-17 12:47:38] logging.py:157 >> {'loss': 0.0111, 'learning_rate': 6.6765e-06, 'epoch': 8.96, 'throughput': 7425.37}
425
+
426
+ [INFO|2025-02-17 12:47:54] logging.py:157 >> {'loss': 0.0071, 'learning_rate': 6.4835e-06, 'epoch': 9.04, 'throughput': 7432.24}
427
+
428
+ [INFO|2025-02-17 12:48:13] logging.py:157 >> {'loss': 0.0054, 'learning_rate': 6.2920e-06, 'epoch': 9.14, 'throughput': 7440.97}
429
+
430
+ [INFO|2025-02-17 12:48:33] logging.py:157 >> {'loss': 0.0059, 'learning_rate': 6.1021e-06, 'epoch': 9.23, 'throughput': 7450.14}
431
+
432
+ [INFO|2025-02-17 12:48:53] logging.py:157 >> {'loss': 0.0045, 'learning_rate': 5.9139e-06, 'epoch': 9.33, 'throughput': 7458.50}
433
+
434
+ [INFO|2025-02-17 12:49:12] logging.py:157 >> {'loss': 0.0040, 'learning_rate': 5.7273e-06, 'epoch': 9.43, 'throughput': 7466.39}
435
+
436
+ [INFO|2025-02-17 12:49:32] logging.py:157 >> {'loss': 0.0042, 'learning_rate': 5.5426e-06, 'epoch': 9.53, 'throughput': 7474.49}
437
+
438
+ [INFO|2025-02-17 12:49:51] logging.py:157 >> {'loss': 0.0049, 'learning_rate': 5.3598e-06, 'epoch': 9.63, 'throughput': 7483.27}
439
+
440
+ [INFO|2025-02-17 12:49:51] trainer.py:3910 >> Saving model checkpoint to saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-500
441
+
442
+ [INFO|2025-02-17 12:49:51] configuration_utils.py:420 >> Configuration saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-500/config.json
443
+
444
+ [INFO|2025-02-17 12:49:51] configuration_utils.py:909 >> Configuration saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-500/generation_config.json
445
+
446
+ [INFO|2025-02-17 12:50:12] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 2 checkpoint shards. You can find where each parameters has been saved in the index located at saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-500/model.safetensors.index.json.
447
+
448
+ [INFO|2025-02-17 12:50:12] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-500/tokenizer_config.json
449
+
450
+ [INFO|2025-02-17 12:50:12] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-500/special_tokens_map.json
451
+
452
+ [INFO|2025-02-17 12:51:10] logging.py:157 >> {'loss': 0.0045, 'learning_rate': 5.1789e-06, 'epoch': 9.72, 'throughput': 7292.37}
453
+
454
+ [INFO|2025-02-17 12:51:30] logging.py:157 >> {'loss': 0.0040, 'learning_rate': 5.0000e-06, 'epoch': 9.82, 'throughput': 7300.78}
455
+
456
+ [INFO|2025-02-17 12:51:49] logging.py:157 >> {'loss': 0.0042, 'learning_rate': 4.8232e-06, 'epoch': 9.92, 'throughput': 7310.63}
457
+
458
+ [INFO|2025-02-17 12:52:05] logging.py:157 >> {'loss': 0.0037, 'learning_rate': 4.6487e-06, 'epoch': 10.00, 'throughput': 7317.82}
459
+
460
+ [INFO|2025-02-17 12:52:25] logging.py:157 >> {'loss': 0.0021, 'learning_rate': 4.4764e-06, 'epoch': 10.10, 'throughput': 7327.07}
461
+
462
+ [INFO|2025-02-17 12:52:44] logging.py:157 >> {'loss': 0.0020, 'learning_rate': 4.3064e-06, 'epoch': 10.20, 'throughput': 7335.94}
463
+
464
+ [INFO|2025-02-17 12:53:04] logging.py:157 >> {'loss': 0.0023, 'learning_rate': 4.1388e-06, 'epoch': 10.29, 'throughput': 7344.64}
465
+
466
+ [INFO|2025-02-17 12:53:24] logging.py:157 >> {'loss': 0.0020, 'learning_rate': 3.9737e-06, 'epoch': 10.39, 'throughput': 7352.70}
467
+
468
+ [INFO|2025-02-17 12:53:43] logging.py:157 >> {'loss': 0.0021, 'learning_rate': 3.8111e-06, 'epoch': 10.49, 'throughput': 7360.36}
469
+
470
+ [INFO|2025-02-17 12:54:03] logging.py:157 >> {'loss': 0.0025, 'learning_rate': 3.6511e-06, 'epoch': 10.59, 'throughput': 7369.18}
471
+
472
+ [INFO|2025-02-17 12:54:22] logging.py:157 >> {'loss': 0.0021, 'learning_rate': 3.4938e-06, 'epoch': 10.68, 'throughput': 7377.11}
473
+
474
+ [INFO|2025-02-17 12:54:42] logging.py:157 >> {'loss': 0.0017, 'learning_rate': 3.3393e-06, 'epoch': 10.78, 'throughput': 7384.90}
475
+
476
+ [INFO|2025-02-17 12:55:02] logging.py:157 >> {'loss': 0.0018, 'learning_rate': 3.1875e-06, 'epoch': 10.88, 'throughput': 7392.59}
477
+
478
+ [INFO|2025-02-17 12:55:21] logging.py:157 >> {'loss': 0.0018, 'learning_rate': 3.0387e-06, 'epoch': 10.98, 'throughput': 7400.64}
479
+
480
+ [INFO|2025-02-17 12:55:37] logging.py:157 >> {'loss': 0.0014, 'learning_rate': 2.8927e-06, 'epoch': 11.06, 'throughput': 7406.36}
481
+
482
+ [INFO|2025-02-17 12:55:57] logging.py:157 >> {'loss': 0.0013, 'learning_rate': 2.7498e-06, 'epoch': 11.16, 'throughput': 7413.44}
483
+
484
+ [INFO|2025-02-17 12:56:16] logging.py:157 >> {'loss': 0.0014, 'learning_rate': 2.6099e-06, 'epoch': 11.25, 'throughput': 7420.91}
485
+
486
+ [INFO|2025-02-17 12:56:36] logging.py:157 >> {'loss': 0.0013, 'learning_rate': 2.4731e-06, 'epoch': 11.35, 'throughput': 7427.77}
487
+
488
+ [INFO|2025-02-17 12:56:56] logging.py:157 >> {'loss': 0.0013, 'learning_rate': 2.3396e-06, 'epoch': 11.45, 'throughput': 7434.56}
489
+
490
+ [INFO|2025-02-17 12:57:15] logging.py:157 >> {'loss': 0.0012, 'learning_rate': 2.2092e-06, 'epoch': 11.55, 'throughput': 7441.93}
491
+
492
+ [INFO|2025-02-17 12:57:15] trainer.py:3910 >> Saving model checkpoint to saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-600
493
+
494
+ [INFO|2025-02-17 12:57:15] configuration_utils.py:420 >> Configuration saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-600/config.json
495
+
496
+ [INFO|2025-02-17 12:57:15] configuration_utils.py:909 >> Configuration saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-600/generation_config.json
497
+
498
+ [INFO|2025-02-17 12:57:37] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 2 checkpoint shards. You can find where each parameters has been saved in the index located at saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-600/model.safetensors.index.json.
499
+
500
+ [INFO|2025-02-17 12:57:37] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-600/tokenizer_config.json
501
+
502
+ [INFO|2025-02-17 12:57:37] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-600/special_tokens_map.json
503
+
504
+ [INFO|2025-02-17 12:58:39] logging.py:157 >> {'loss': 0.0013, 'learning_rate': 2.0821e-06, 'epoch': 11.65, 'throughput': 7271.40}
505
+
506
+ [INFO|2025-02-17 12:58:58] logging.py:157 >> {'loss': 0.0013, 'learning_rate': 1.9584e-06, 'epoch': 11.74, 'throughput': 7279.67}
507
+
508
+ [INFO|2025-02-17 12:59:17] logging.py:157 >> {'loss': 0.0014, 'learning_rate': 1.8380e-06, 'epoch': 11.84, 'throughput': 7287.84}
509
+
510
+ [INFO|2025-02-17 12:59:37] logging.py:157 >> {'loss': 0.0012, 'learning_rate': 1.7211e-06, 'epoch': 11.94, 'throughput': 7295.63}
511
+
512
+ [INFO|2025-02-17 12:59:53] logging.py:157 >> {'loss': 0.0014, 'learning_rate': 1.6077e-06, 'epoch': 12.02, 'throughput': 7301.92}
513
+
514
+ [INFO|2025-02-17 13:00:13] logging.py:157 >> {'loss': 0.0011, 'learning_rate': 1.4978e-06, 'epoch': 12.12, 'throughput': 7308.89}
515
+
516
+ [INFO|2025-02-17 13:00:32] logging.py:157 >> {'loss': 0.0012, 'learning_rate': 1.3915e-06, 'epoch': 12.22, 'throughput': 7316.86}
517
+
518
+ [INFO|2025-02-17 13:00:52] logging.py:157 >> {'loss': 0.0011, 'learning_rate': 1.2889e-06, 'epoch': 12.31, 'throughput': 7324.06}
519
+
520
+ [INFO|2025-02-17 13:01:11] logging.py:157 >> {'loss': 0.0011, 'learning_rate': 1.1899e-06, 'epoch': 12.41, 'throughput': 7331.13}
521
+
522
+ [INFO|2025-02-17 13:01:31] logging.py:157 >> {'loss': 0.0012, 'learning_rate': 1.0946e-06, 'epoch': 12.51, 'throughput': 7338.53}
523
+
524
+ [INFO|2025-02-17 13:01:50] logging.py:157 >> {'loss': 0.0010, 'learning_rate': 1.0031e-06, 'epoch': 12.61, 'throughput': 7345.34}
525
+
526
+ [INFO|2025-02-17 13:02:10] logging.py:157 >> {'loss': 0.0010, 'learning_rate': 9.1535e-07, 'epoch': 12.70, 'throughput': 7352.25}
527
+
528
+ [INFO|2025-02-17 13:02:30] logging.py:157 >> {'loss': 0.0011, 'learning_rate': 8.3145e-07, 'epoch': 12.80, 'throughput': 7359.27}
529
+
530
+ [INFO|2025-02-17 13:02:49] logging.py:157 >> {'loss': 0.0011, 'learning_rate': 7.5141e-07, 'epoch': 12.90, 'throughput': 7365.77}
531
+
532
+ [INFO|2025-02-17 13:03:09] logging.py:157 >> {'loss': 0.0011, 'learning_rate': 6.7528e-07, 'epoch': 13.00, 'throughput': 7372.62}
533
+
534
+ [INFO|2025-02-17 13:03:25] logging.py:157 >> {'loss': 0.0011, 'learning_rate': 6.0307e-07, 'epoch': 13.08, 'throughput': 7377.30}
535
+
536
+ [INFO|2025-02-17 13:03:44] logging.py:157 >> {'loss': 0.0010, 'learning_rate': 5.3483e-07, 'epoch': 13.18, 'throughput': 7383.80}
537
+
538
+ [INFO|2025-02-17 13:04:04] logging.py:157 >> {'loss': 0.0010, 'learning_rate': 4.7058e-07, 'epoch': 13.27, 'throughput': 7390.60}
539
+
540
+ [INFO|2025-02-17 13:04:23] logging.py:157 >> {'loss': 0.0011, 'learning_rate': 4.1035e-07, 'epoch': 13.37, 'throughput': 7396.91}
541
+
542
+ [INFO|2025-02-17 13:04:43] logging.py:157 >> {'loss': 0.0011, 'learning_rate': 3.5415e-07, 'epoch': 13.47, 'throughput': 7402.92}
543
+
544
+ [INFO|2025-02-17 13:04:43] trainer.py:3910 >> Saving model checkpoint to saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-700
545
+
546
+ [INFO|2025-02-17 13:04:43] configuration_utils.py:420 >> Configuration saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-700/config.json
547
+
548
+ [INFO|2025-02-17 13:04:43] configuration_utils.py:909 >> Configuration saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-700/generation_config.json
549
+
550
+ [INFO|2025-02-17 13:05:09] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 2 checkpoint shards. You can find where each parameters has been saved in the index located at saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-700/model.safetensors.index.json.
551
+
552
+ [INFO|2025-02-17 13:05:09] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-700/tokenizer_config.json
553
+
554
+ [INFO|2025-02-17 13:05:09] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-700/special_tokens_map.json
555
+
556
+ [INFO|2025-02-17 13:06:06] logging.py:157 >> {'loss': 0.0009, 'learning_rate': 3.0203e-07, 'epoch': 13.57, 'throughput': 7259.08}
557
+
558
+ [INFO|2025-02-17 13:06:25] logging.py:157 >> {'loss': 0.0011, 'learning_rate': 2.5399e-07, 'epoch': 13.67, 'throughput': 7266.36}
559
+
560
+ [INFO|2025-02-17 13:06:45] logging.py:157 >> {'loss': 0.0010, 'learning_rate': 2.1007e-07, 'epoch': 13.76, 'throughput': 7273.17}
561
+
562
+ [INFO|2025-02-17 13:07:05] logging.py:157 >> {'loss': 0.0010, 'learning_rate': 1.7027e-07, 'epoch': 13.86, 'throughput': 7280.07}
563
+
564
+ [INFO|2025-02-17 13:07:24] logging.py:157 >> {'loss': 0.0010, 'learning_rate': 1.3461e-07, 'epoch': 13.96, 'throughput': 7286.52}
565
+
566
+ [INFO|2025-02-17 13:07:40] logging.py:157 >> {'loss': 0.0010, 'learning_rate': 1.0312e-07, 'epoch': 14.04, 'throughput': 7291.00}
567
+
568
+ [INFO|2025-02-17 13:08:00] logging.py:157 >> {'loss': 0.0010, 'learning_rate': 7.5795e-08, 'epoch': 14.14, 'throughput': 7297.68}
569
+
570
+ [INFO|2025-02-17 13:08:19] logging.py:157 >> {'loss': 0.0010, 'learning_rate': 5.2656e-08, 'epoch': 14.23, 'throughput': 7304.61}
571
+
572
+ [INFO|2025-02-17 13:08:39] logging.py:157 >> {'loss': 0.0009, 'learning_rate': 3.3710e-08, 'epoch': 14.33, 'throughput': 7311.13}
573
+
574
+ [INFO|2025-02-17 13:08:58] logging.py:157 >> {'loss': 0.0010, 'learning_rate': 1.8967e-08, 'epoch': 14.43, 'throughput': 7317.57}
575
+
576
+ [INFO|2025-02-17 13:09:18] logging.py:157 >> {'loss': 0.0010, 'learning_rate': 8.4311e-09, 'epoch': 14.53, 'throughput': 7322.85}
577
+
578
+ [INFO|2025-02-17 13:09:38] logging.py:157 >> {'loss': 0.0010, 'learning_rate': 2.1080e-09, 'epoch': 14.63, 'throughput': 7328.91}
579
+
580
+ [INFO|2025-02-17 13:09:57] logging.py:157 >> {'loss': 0.0010, 'learning_rate': 0.0000e+00, 'epoch': 14.72, 'throughput': 7335.46}
581
+
582
+ [INFO|2025-02-17 13:09:57] trainer.py:3910 >> Saving model checkpoint to saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-765
583
+
584
+ [INFO|2025-02-17 13:09:57] configuration_utils.py:420 >> Configuration saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-765/config.json
585
+
586
+ [INFO|2025-02-17 13:09:57] configuration_utils.py:909 >> Configuration saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-765/generation_config.json
587
+
588
+ [INFO|2025-02-17 13:10:18] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 2 checkpoint shards. You can find where each parameters has been saved in the index located at saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-765/model.safetensors.index.json.
589
+
590
+ [INFO|2025-02-17 13:10:18] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-765/tokenizer_config.json
591
+
592
+ [INFO|2025-02-17 13:10:18] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/checkpoint-765/special_tokens_map.json
593
+
594
+ [INFO|2025-02-17 13:10:50] trainer.py:2643 >>
595
+
596
+ Training completed. Do not forget to share your model on huggingface.co/models =)
597
+
598
+
599
+
600
+ [INFO|2025-02-17 13:10:50] trainer.py:3910 >> Saving model checkpoint to saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10
601
+
602
+ [INFO|2025-02-17 13:10:50] configuration_utils.py:420 >> Configuration saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/config.json
603
+
604
+ [INFO|2025-02-17 13:10:50] configuration_utils.py:909 >> Configuration saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/generation_config.json
605
+
606
+ [INFO|2025-02-17 13:11:12] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 2 checkpoint shards. You can find where each parameters has been saved in the index located at saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/model.safetensors.index.json.
607
+
608
+ [INFO|2025-02-17 13:11:12] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/tokenizer_config.json
609
+
610
+ [INFO|2025-02-17 13:11:12] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/Qwen2.5-1.5B/full/train_2025-02-17-12-11-10/special_tokens_map.json
611
+
612
+ [WARNING|2025-02-17 13:11:13] logging.py:162 >> No metric eval_loss to plot.
613
+
614
+ [WARNING|2025-02-17 13:11:13] logging.py:162 >> No metric eval_accuracy to plot.
615
+
616
+ [INFO|2025-02-17 13:11:13] modelcard.py:449 >> Dropping the following result as it does not have all the necessary fields:
617
+ {'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}
618
+