Delete PirateNet.py
Browse files- PirateNet.py +0 -85
PirateNet.py
DELETED
@@ -1,85 +0,0 @@
|
|
1 |
-
import jax
|
2 |
-
import jax.numpy as jnp
|
3 |
-
import flax.linen as nn
|
4 |
-
from .utils import Dense, FourierEmbs
|
5 |
-
from typing import Union, Dict, Callable
|
6 |
-
|
7 |
-
class PIModifiedBottleneck(nn.Module):
|
8 |
-
hidden_dim: int
|
9 |
-
output_dim: int
|
10 |
-
act: Callable
|
11 |
-
nonlinearity: float
|
12 |
-
reparam: Union[None, Dict]
|
13 |
-
dtype: jnp.dtype = jnp.float32
|
14 |
-
|
15 |
-
@nn.compact
|
16 |
-
def __call__(self, x, u, v):
|
17 |
-
identity = x
|
18 |
-
|
19 |
-
x = Dense(features=self.hidden_dim, reparam=self.reparam, dtype=self.dtype)(x)
|
20 |
-
x = self.act(x)
|
21 |
-
|
22 |
-
x = x * u + (1 - x) * v
|
23 |
-
|
24 |
-
x = Dense(features=self.hidden_dim, reparam=self.reparam, dtype=self.dtype)(x)
|
25 |
-
x = self.act(x)
|
26 |
-
|
27 |
-
x = x * u + (1 - x) * v
|
28 |
-
|
29 |
-
x = Dense(features=self.output_dim, reparam=self.reparam, dtype=self.dtype)(x)
|
30 |
-
x = self.act(x)
|
31 |
-
|
32 |
-
alpha = self.param("alpha", nn.initializers.constant(self.nonlinearity), (1,))
|
33 |
-
x = alpha * x + (1 - alpha) * identity
|
34 |
-
|
35 |
-
return x
|
36 |
-
|
37 |
-
class PirateNet(nn.Module):
|
38 |
-
num_layers: int
|
39 |
-
hidden_dim: int
|
40 |
-
output_dim: int
|
41 |
-
act: Callable = nn.silu
|
42 |
-
nonlinearity: float = 0.0
|
43 |
-
pi_init: Union[None, jnp.ndarray] = None
|
44 |
-
reparam : Union[None, Dict] = None
|
45 |
-
fourier_emb : Union[None, Dict] = None
|
46 |
-
dtype: jnp.dtype = jnp.float32
|
47 |
-
|
48 |
-
@nn.compact
|
49 |
-
def __call__(self, x):
|
50 |
-
embs = FourierEmbs(**self.fourier_emb)(x)
|
51 |
-
x = embs
|
52 |
-
|
53 |
-
u = Dense(features=self.hidden_dim, reparam=self.reparam, dtype=self.dtype)(x)
|
54 |
-
u = self.act(u)
|
55 |
-
|
56 |
-
v = Dense(features=self.hidden_dim, reparam=self.reparam, dtype=self.dtype)(x)
|
57 |
-
v = self.act(v)
|
58 |
-
|
59 |
-
for _ in range(self.num_layers):
|
60 |
-
x = PIModifiedBottleneck(
|
61 |
-
hidden_dim=self.hidden_dim,
|
62 |
-
output_dim=x.shape[-1],
|
63 |
-
act=self.act,
|
64 |
-
nonlinearity=self.nonlinearity,
|
65 |
-
reparam=self.reparam,
|
66 |
-
dtype=self.dtype
|
67 |
-
)(x, u, v)
|
68 |
-
|
69 |
-
if self.pi_init is not None:
|
70 |
-
kernel = self.param("pi_init", nn.initializers.constant(self.pi_init, dtype=self.dtype), self.pi_init.shape)
|
71 |
-
y = jnp.dot(x, kernel)
|
72 |
-
|
73 |
-
else:
|
74 |
-
y = Dense(features=self.output_dim, reparam=self.reparam, dtype=self.dtype)(x)
|
75 |
-
|
76 |
-
return x, y
|
77 |
-
|
78 |
-
if __name__ == "__main__":
|
79 |
-
# Example usage
|
80 |
-
from activations import cauchy
|
81 |
-
cauchy_mod = lambda x : cauchy()(x)
|
82 |
-
model = PirateNet(num_layers=3, hidden_dim=32, output_dim=16, act=cauchy_mod, reparam=None, fourier_emb={'embed_scale': 1.0, 'embed_dim': 64})
|
83 |
-
params = model.init(jax.random.PRNGKey(0), jnp.ones(3))
|
84 |
-
output = model.apply(params, jnp.ones(3))
|
85 |
-
print(params)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|