--- datasets: - AnasAlokla/multilingual_go_emotions language: - ar - en - fr - es - nl - tr metrics: - accuracy - f1 - recall base_model: - google-bert/bert-base-multilingual-cased pipeline_tag: text-classification --- #### Overview Model trained from [bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the [multilingual_go_emotions](https://huggingface.co/datasets/AnasAlokla/multilingual_go_emotions) dataset for multi-label classification. # Multilingual GoEmotions Chatbot Task Report **Author:** Anas Hamid Alokla This repository/space contains details about a multilingual emotion classification model and chatbot based on the GoEmotions dataset. ## Links * **Live Demo:** [https://huggingface.co/spaces/AnasAlokla/test_emotion_chatbot](https://huggingface.co/spaces/AnasAlokla/test_emotion_chatbot) * **Dataset (Supports 6 Languages):** [https://huggingface.co/datasets/AnasAlokla/multilingual_go_emotions](https://huggingface.co/datasets/AnasAlokla/multilingual_go_emotions) * **Model Used:** [https://huggingface.co/AnasAlokla/multilingual_go_emotions](https://huggingface.co/AnasAlokla/multilingual_go_emotions) * **GitHub Code:** [https://github.com/anasAloklah/emotion_chatbot](https://github.com/anasAloklah/emotion_chatbot) ## Test Set Performance The following table shows the performance metrics of the fine-tuned model on the test set, broken down by emotion category. | index | accuracy | precision | recall | f1 | mcc | support | threshold | |----------------|----------|-----------|--------|-------|-------|---------|-----------| | admiration | 0.942 | 0.652 | 0.684 | 0.667 | 0.636 | 2790 | 0.4 | | amusement | 0.973 | 0.735 | 0.817 | 0.774 | 0.76 | 1866 | 0.35 | | anger | 0.96 | 0.411 | 0.364 | 0.386 | 0.366 | 1128 | 0.35 | | annoyance | 0.896 | 0.246 | 0.481 | 0.325 | 0.293 | 1704 | 0.15 | | approval | 0.91 | 0.329 | 0.383 | 0.354 | 0.307 | 2094 | 0.2 | | caring | 0.958 | 0.285 | 0.46 | 0.352 | 0.341 | 816 | 0.15 | | confusion | 0.965 | 0.444 | 0.401 | 0.421 | 0.404 | 1020 | 0.25 | | curiosity | 0.935 | 0.433 | 0.74 | 0.546 | 0.535 | 1734 | 0.25 | | desire | 0.984 | 0.404 | 0.534 | 0.46 | 0.457 | 414 | 0.25 | | disappointment | 0.942 | 0.224 | 0.345 | 0.272 | 0.249 | 1014 | 0.15 | | disapproval | 0.935 | 0.306 | 0.413 | 0.352 | 0.322 | 1398 | 0.25 | | disgust | 0.975 | 0.343 | 0.418 | 0.377 | 0.366 | 600 | 0.15 | | embarrassment | 0.99 | 0.28 | 0.242 | 0.26 | 0.255 | 240 | 0.1 | | excitement | 0.973 | 0.344 | 0.425 | 0.38 | 0.369 | 624 | 0.15 | | fear | 0.987 | 0.599 | 0.522 | 0.558 | 0.553 | 498 | 0.35 | | gratitude | 0.989 | 0.924 | 0.902 | 0.913 | 0.907 | 2004 | 0.4 | | grief | 0.999 | 0 | 0 | 0 | 0 | 36 | 0.05 | | joy | 0.965 | 0.454 | 0.532 | 0.49 | 0.474 | 1032 | 0.25 | | love | 0.973 | 0.731 | 0.829 | 0.777 | 0.765 | 1812 | 0.35 | | nervousness | 0.996 | 0.385 | 0.25 | 0.303 | 0.308 | 120 | 0.1 | | optimism | 0.973 | 0.588 | 0.525 | 0.555 | 0.542 | 1062 | 0.25 | | pride | 0.997 | 0 | 0 | 0 | 0 | 84 | 0.05 | | realization | 0.962 | 0.202 | 0.189 | 0.195 | 0.176 | 792 | 0.15 | | relief | 0.996 | 0 | 0 | 0 | 0 | 138 | 0.05 | | remorse | 0.988 | 0.597 | 0.808 | 0.687 | 0.689 | 516 | 0.15 | | sadness | 0.97 | 0.548 | 0.434 | 0.484 | 0.473 | 1062 | 0.4 | | surprise | 0.974 | 0.487 | 0.569 | 0.524 | 0.513 | 828 | 0.3 | | neutral | 0.726 | 0.551 | 0.818 | 0.658 | 0.468 | 10524 | 0.2 | ## Fine-tuning Performance The following plots visualize the model's performance during the fine-tuning process across epochs. **Loss Curves (Training vs. Validation)** ![Loss Curves](https://raw.githubusercontent.com/anasAloklah/emotion_chatbot/main/loss_curves.png) **Accuracy Curves (Training vs. Validation)** ![Accuracy Curves](https://raw.githubusercontent.com/anasAloklah/emotion_chatbot/main/accuracy_curves.png) **F1 Score Curves (Training vs. Validation)** ![F1 Score Curves](https://raw.githubusercontent.com/anasAloklah/emotion_chatbot/main/f1_score_curves.png)