File size: 2,243 Bytes
11653af a93858d 11653af a93858d 7bbf93e a93858d 9a00c38 a93858d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: mit
language:
- en
library_name: transformers
tags:
- esm
- esm-2
- protein
- binding-site
- biology
---
# ESM-2 for RNA Binding Site Prediction
A small RNA binding site predictor trained on dataset "S1" from [Data of protein-RNA binding sites](https://www.sciencedirect.com/science/article/pii/S2352340916308022#s0035)
using [facebook/esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D).
The dataset can also be found on Hugging Face [here](https://huggingface.co/datasets/AmelieSchreiber/data_of_protein-rna_binding_sites).
The model only has a validation loss of `0.12358924768426839`.
To use, try running:
```python3
import torch
from transformers import AutoTokenizer, EsmForTokenClassification
# Define the class mapping
class_mapping = {
0: 'Not Binding Site',
1: 'Binding Site',
}
# Load the trained model and tokenizer
model = EsmForTokenClassification.from_pretrained("AmelieSchreiber/esm2_t12_35M_UR50D_rna_binding_site_predictor")
tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t12_35M_UR50D")
# Define the new sequences
new_sequences = [
'VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTK',
'SQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWF',
# ... add more sequences here ...
]
# Iterate over the new sequences
for seq in new_sequences:
# Convert sequence to input IDs
inputs = tokenizer(seq, truncation=True, padding='max_length', max_length=1290, return_tensors="pt")["input_ids"]
# Apply the model to get the logits
with torch.no_grad():
outputs = model(inputs)
# Get the predictions by picking the label (class) with the highest logit
predictions = torch.argmax(outputs.logits, dim=-1)
# Convert the tensor to a list of integers
prediction_list = predictions.tolist()[0]
# Convert the predicted class indices to class names
predicted_labels = [class_mapping[pred] for pred in prediction_list]
# Create a list that matches each amino acid in the sequence to its predicted class label
residue_to_label = list(zip(list(seq), predicted_labels))
# Print out the list
for i, (residue, predicted_label) in enumerate(residue_to_label):
print(f"Position {i+1} - {residue}: {predicted_label}")
```
|