AmberYifan commited on
Commit
95978a1
·
verified ·
1 Parent(s): 6e58132

Training in progress, epoch 1, checkpoint

Browse files
last-checkpoint/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
last-checkpoint/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "AmberYifan/Qwen2.5-7B-sft-ultrachat",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 131072,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.46.3",
26
+ "use_cache": false,
27
+ "use_mrope": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 152064
30
+ }
last-checkpoint/generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.46.3"
6
+ }
last-checkpoint/global_step1248/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f706b8b8d2ef938d527bdfdd1e809df7664a988790df7a44016d40cd274fcc1
3
+ size 30462473157
last-checkpoint/global_step1248/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcb6eec804d87f5e2cbead4ebc0ff43b0c3f0b3334c8db672000346ef6c141b8
3
+ size 30462473157
last-checkpoint/global_step1248/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74c46e935ed23b3a4991b84486dc9efa4a0e8d6fa10e431bdc9fc7e2c23e96d1
3
+ size 168021
last-checkpoint/global_step1248/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9cd8d9974d472a550c066ee24cb79efd902c31ced12d96f1839c84ecd5a43c1
3
+ size 168021
last-checkpoint/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1248
last-checkpoint/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
last-checkpoint/model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02a87a068580e17b63efa87796e3cc03c3c80312c9971d47fd2fd4f6d5582a43
3
+ size 4877660776
last-checkpoint/model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c475f356780c768e46eacf970415ab7cc46714ef3732edce1110907dd8f21a3
3
+ size 4932751008
last-checkpoint/model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a82ea2f8d60eb99e2c2e7b52258f8ad9af5e81e7251a460b3067da29fd499b58
3
+ size 4330865200
last-checkpoint/model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f1f53ced200b2511a937c79d9d4878ea6c7d89792cc4144436543f708ee49f1
3
+ size 1089994880
last-checkpoint/model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00003-of-00004.safetensors"
345
+ }
346
+ }
last-checkpoint/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b580656286e8a6f334aced7bdb46499a54f3bb95644a0167405da037afbd894d
3
+ size 14768
last-checkpoint/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a763d1d109f11374f3725ac97283433a5c2264a51fd11d55a5af0441e79bbe2c
3
+ size 14768
last-checkpoint/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f509e07aeb2d18a9542d77802086a220c855eaadfa7372ba3c450b3c079e1739
3
+ size 1064
last-checkpoint/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
last-checkpoint/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
last-checkpoint/tokenizer_config.json ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "max_length": 1024,
203
+ "model_max_length": 2048,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "stride": 0,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "truncation_side": "left",
209
+ "truncation_strategy": "longest_first",
210
+ "unk_token": null
211
+ }
last-checkpoint/trainer_state.json ADDED
@@ -0,0 +1,1924 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 1248,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0008012820512820513,
13
+ "grad_norm": 64.04028419295403,
14
+ "learning_rate": 1.3333333333333333e-09,
15
+ "logits/chosen": 0.12353515625,
16
+ "logits/rejected": 0.224609375,
17
+ "logps/chosen": -66.0,
18
+ "logps/rejected": -100.0,
19
+ "loss": 0.6914,
20
+ "rewards/accuracies": 0.0,
21
+ "rewards/chosen": 0.0,
22
+ "rewards/margins": 0.0,
23
+ "rewards/rejected": 0.0,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.008012820512820512,
28
+ "grad_norm": 86.24089113539306,
29
+ "learning_rate": 1.3333333333333334e-08,
30
+ "logits/chosen": 0.1748046875,
31
+ "logits/rejected": 0.1181640625,
32
+ "logps/chosen": -189.0,
33
+ "logps/rejected": -129.0,
34
+ "loss": 0.6925,
35
+ "rewards/accuracies": 0.3333333432674408,
36
+ "rewards/chosen": 0.006256103515625,
37
+ "rewards/margins": 0.009033203125,
38
+ "rewards/rejected": -0.0027923583984375,
39
+ "step": 10
40
+ },
41
+ {
42
+ "epoch": 0.016025641025641024,
43
+ "grad_norm": 89.22477084650417,
44
+ "learning_rate": 2.6666666666666667e-08,
45
+ "logits/chosen": 0.052490234375,
46
+ "logits/rejected": 0.1142578125,
47
+ "logps/chosen": -206.0,
48
+ "logps/rejected": -130.0,
49
+ "loss": 0.6951,
50
+ "rewards/accuracies": 0.22499999403953552,
51
+ "rewards/chosen": -0.014404296875,
52
+ "rewards/margins": -0.0194091796875,
53
+ "rewards/rejected": 0.0050048828125,
54
+ "step": 20
55
+ },
56
+ {
57
+ "epoch": 0.02403846153846154,
58
+ "grad_norm": 93.71269866728797,
59
+ "learning_rate": 4e-08,
60
+ "logits/chosen": 0.0869140625,
61
+ "logits/rejected": 0.0299072265625,
62
+ "logps/chosen": -183.0,
63
+ "logps/rejected": -135.0,
64
+ "loss": 0.6887,
65
+ "rewards/accuracies": 0.4000000059604645,
66
+ "rewards/chosen": 0.0087890625,
67
+ "rewards/margins": 0.0181884765625,
68
+ "rewards/rejected": -0.0093994140625,
69
+ "step": 30
70
+ },
71
+ {
72
+ "epoch": 0.03205128205128205,
73
+ "grad_norm": 89.05552052917865,
74
+ "learning_rate": 5.3333333333333334e-08,
75
+ "logits/chosen": 0.2392578125,
76
+ "logits/rejected": 0.13671875,
77
+ "logps/chosen": -205.0,
78
+ "logps/rejected": -138.0,
79
+ "loss": 0.6902,
80
+ "rewards/accuracies": 0.32499998807907104,
81
+ "rewards/chosen": 0.005615234375,
82
+ "rewards/margins": 0.00311279296875,
83
+ "rewards/rejected": 0.0025177001953125,
84
+ "step": 40
85
+ },
86
+ {
87
+ "epoch": 0.04006410256410257,
88
+ "grad_norm": 87.83482919892937,
89
+ "learning_rate": 6.666666666666667e-08,
90
+ "logits/chosen": 0.1875,
91
+ "logits/rejected": 0.0576171875,
92
+ "logps/chosen": -158.0,
93
+ "logps/rejected": -119.5,
94
+ "loss": 0.6711,
95
+ "rewards/accuracies": 0.4749999940395355,
96
+ "rewards/chosen": 0.022216796875,
97
+ "rewards/margins": 0.035888671875,
98
+ "rewards/rejected": -0.0137939453125,
99
+ "step": 50
100
+ },
101
+ {
102
+ "epoch": 0.04807692307692308,
103
+ "grad_norm": 82.90814662285723,
104
+ "learning_rate": 8e-08,
105
+ "logits/chosen": 0.36328125,
106
+ "logits/rejected": 0.166015625,
107
+ "logps/chosen": -224.0,
108
+ "logps/rejected": -134.0,
109
+ "loss": 0.6447,
110
+ "rewards/accuracies": 0.800000011920929,
111
+ "rewards/chosen": 0.0634765625,
112
+ "rewards/margins": 0.11279296875,
113
+ "rewards/rejected": -0.04931640625,
114
+ "step": 60
115
+ },
116
+ {
117
+ "epoch": 0.05608974358974359,
118
+ "grad_norm": 83.47212098678433,
119
+ "learning_rate": 9.333333333333334e-08,
120
+ "logits/chosen": 0.306640625,
121
+ "logits/rejected": 0.298828125,
122
+ "logps/chosen": -196.0,
123
+ "logps/rejected": -132.0,
124
+ "loss": 0.6162,
125
+ "rewards/accuracies": 0.8999999761581421,
126
+ "rewards/chosen": 0.07177734375,
127
+ "rewards/margins": 0.154296875,
128
+ "rewards/rejected": -0.08203125,
129
+ "step": 70
130
+ },
131
+ {
132
+ "epoch": 0.0641025641025641,
133
+ "grad_norm": 72.70460499175852,
134
+ "learning_rate": 1.0666666666666667e-07,
135
+ "logits/chosen": 0.248046875,
136
+ "logits/rejected": 0.201171875,
137
+ "logps/chosen": -202.0,
138
+ "logps/rejected": -136.0,
139
+ "loss": 0.5689,
140
+ "rewards/accuracies": 1.0,
141
+ "rewards/chosen": 0.140625,
142
+ "rewards/margins": 0.294921875,
143
+ "rewards/rejected": -0.154296875,
144
+ "step": 80
145
+ },
146
+ {
147
+ "epoch": 0.07211538461538461,
148
+ "grad_norm": 65.1729310926141,
149
+ "learning_rate": 1.2e-07,
150
+ "logits/chosen": 0.2255859375,
151
+ "logits/rejected": 0.064453125,
152
+ "logps/chosen": -182.0,
153
+ "logps/rejected": -130.0,
154
+ "loss": 0.5326,
155
+ "rewards/accuracies": 1.0,
156
+ "rewards/chosen": 0.1494140625,
157
+ "rewards/margins": 0.34765625,
158
+ "rewards/rejected": -0.197265625,
159
+ "step": 90
160
+ },
161
+ {
162
+ "epoch": 0.08012820512820513,
163
+ "grad_norm": 52.76168152275494,
164
+ "learning_rate": 1.3333333333333334e-07,
165
+ "logits/chosen": 0.38671875,
166
+ "logits/rejected": 0.11474609375,
167
+ "logps/chosen": -209.0,
168
+ "logps/rejected": -153.0,
169
+ "loss": 0.4703,
170
+ "rewards/accuracies": 1.0,
171
+ "rewards/chosen": 0.2578125,
172
+ "rewards/margins": 0.51953125,
173
+ "rewards/rejected": -0.259765625,
174
+ "step": 100
175
+ },
176
+ {
177
+ "epoch": 0.08814102564102565,
178
+ "grad_norm": 47.501730286877184,
179
+ "learning_rate": 1.4666666666666666e-07,
180
+ "logits/chosen": 0.296875,
181
+ "logits/rejected": 0.3125,
182
+ "logps/chosen": -191.0,
183
+ "logps/rejected": -149.0,
184
+ "loss": 0.3988,
185
+ "rewards/accuracies": 1.0,
186
+ "rewards/chosen": 0.33203125,
187
+ "rewards/margins": 0.80078125,
188
+ "rewards/rejected": -0.466796875,
189
+ "step": 110
190
+ },
191
+ {
192
+ "epoch": 0.09615384615384616,
193
+ "grad_norm": 40.40573175478169,
194
+ "learning_rate": 1.6e-07,
195
+ "logits/chosen": 0.1884765625,
196
+ "logits/rejected": 0.283203125,
197
+ "logps/chosen": -212.0,
198
+ "logps/rejected": -145.0,
199
+ "loss": 0.3222,
200
+ "rewards/accuracies": 1.0,
201
+ "rewards/chosen": 0.421875,
202
+ "rewards/margins": 1.015625,
203
+ "rewards/rejected": -0.59375,
204
+ "step": 120
205
+ },
206
+ {
207
+ "epoch": 0.10416666666666667,
208
+ "grad_norm": 27.672418710748364,
209
+ "learning_rate": 1.7333333333333332e-07,
210
+ "logits/chosen": 0.359375,
211
+ "logits/rejected": 0.365234375,
212
+ "logps/chosen": -220.0,
213
+ "logps/rejected": -156.0,
214
+ "loss": 0.2564,
215
+ "rewards/accuracies": 1.0,
216
+ "rewards/chosen": 0.66015625,
217
+ "rewards/margins": 1.453125,
218
+ "rewards/rejected": -0.79296875,
219
+ "step": 130
220
+ },
221
+ {
222
+ "epoch": 0.11217948717948718,
223
+ "grad_norm": 30.919301140228264,
224
+ "learning_rate": 1.8666666666666667e-07,
225
+ "logits/chosen": 0.1298828125,
226
+ "logits/rejected": 0.412109375,
227
+ "logps/chosen": -193.0,
228
+ "logps/rejected": -151.0,
229
+ "loss": 0.196,
230
+ "rewards/accuracies": 1.0,
231
+ "rewards/chosen": 0.6875,
232
+ "rewards/margins": 1.828125,
233
+ "rewards/rejected": -1.140625,
234
+ "step": 140
235
+ },
236
+ {
237
+ "epoch": 0.1201923076923077,
238
+ "grad_norm": 21.901759461519386,
239
+ "learning_rate": 2e-07,
240
+ "logits/chosen": 0.32421875,
241
+ "logits/rejected": 0.30859375,
242
+ "logps/chosen": -207.0,
243
+ "logps/rejected": -150.0,
244
+ "loss": 0.1502,
245
+ "rewards/accuracies": 1.0,
246
+ "rewards/chosen": 0.69921875,
247
+ "rewards/margins": 2.046875,
248
+ "rewards/rejected": -1.3515625,
249
+ "step": 150
250
+ },
251
+ {
252
+ "epoch": 0.1282051282051282,
253
+ "grad_norm": 29.817507103981917,
254
+ "learning_rate": 2.1333333333333334e-07,
255
+ "logits/chosen": 0.216796875,
256
+ "logits/rejected": 0.384765625,
257
+ "logps/chosen": -209.0,
258
+ "logps/rejected": -143.0,
259
+ "loss": 0.1123,
260
+ "rewards/accuracies": 1.0,
261
+ "rewards/chosen": 0.84765625,
262
+ "rewards/margins": 2.359375,
263
+ "rewards/rejected": -1.5078125,
264
+ "step": 160
265
+ },
266
+ {
267
+ "epoch": 0.1362179487179487,
268
+ "grad_norm": 8.498490051434544,
269
+ "learning_rate": 2.2666666666666663e-07,
270
+ "logits/chosen": 0.51171875,
271
+ "logits/rejected": 0.46875,
272
+ "logps/chosen": -182.0,
273
+ "logps/rejected": -146.0,
274
+ "loss": 0.0913,
275
+ "rewards/accuracies": 1.0,
276
+ "rewards/chosen": 1.046875,
277
+ "rewards/margins": 3.0,
278
+ "rewards/rejected": -1.9453125,
279
+ "step": 170
280
+ },
281
+ {
282
+ "epoch": 0.14423076923076922,
283
+ "grad_norm": 7.296587918545859,
284
+ "learning_rate": 2.4e-07,
285
+ "logits/chosen": 0.234375,
286
+ "logits/rejected": 0.2216796875,
287
+ "logps/chosen": -224.0,
288
+ "logps/rejected": -172.0,
289
+ "loss": 0.0551,
290
+ "rewards/accuracies": 1.0,
291
+ "rewards/chosen": 1.4296875,
292
+ "rewards/margins": 3.734375,
293
+ "rewards/rejected": -2.296875,
294
+ "step": 180
295
+ },
296
+ {
297
+ "epoch": 0.15224358974358973,
298
+ "grad_norm": 6.034643267260365,
299
+ "learning_rate": 2.533333333333333e-07,
300
+ "logits/chosen": 0.443359375,
301
+ "logits/rejected": 0.333984375,
302
+ "logps/chosen": -198.0,
303
+ "logps/rejected": -168.0,
304
+ "loss": 0.0434,
305
+ "rewards/accuracies": 1.0,
306
+ "rewards/chosen": 1.515625,
307
+ "rewards/margins": 4.1875,
308
+ "rewards/rejected": -2.671875,
309
+ "step": 190
310
+ },
311
+ {
312
+ "epoch": 0.16025641025641027,
313
+ "grad_norm": 3.782776063442764,
314
+ "learning_rate": 2.6666666666666667e-07,
315
+ "logits/chosen": 0.451171875,
316
+ "logits/rejected": 0.5390625,
317
+ "logps/chosen": -174.0,
318
+ "logps/rejected": -156.0,
319
+ "loss": 0.042,
320
+ "rewards/accuracies": 1.0,
321
+ "rewards/chosen": 1.75,
322
+ "rewards/margins": 4.6875,
323
+ "rewards/rejected": -2.9375,
324
+ "step": 200
325
+ },
326
+ {
327
+ "epoch": 0.16826923076923078,
328
+ "grad_norm": 2.101068154945795,
329
+ "learning_rate": 2.8e-07,
330
+ "logits/chosen": 0.57421875,
331
+ "logits/rejected": 0.578125,
332
+ "logps/chosen": -171.0,
333
+ "logps/rejected": -160.0,
334
+ "loss": 0.0221,
335
+ "rewards/accuracies": 1.0,
336
+ "rewards/chosen": 1.609375,
337
+ "rewards/margins": 4.9375,
338
+ "rewards/rejected": -3.328125,
339
+ "step": 210
340
+ },
341
+ {
342
+ "epoch": 0.1762820512820513,
343
+ "grad_norm": 2.1370635684042583,
344
+ "learning_rate": 2.933333333333333e-07,
345
+ "logits/chosen": 0.39453125,
346
+ "logits/rejected": 0.388671875,
347
+ "logps/chosen": -145.0,
348
+ "logps/rejected": -164.0,
349
+ "loss": 0.0218,
350
+ "rewards/accuracies": 0.9750000238418579,
351
+ "rewards/chosen": 1.5625,
352
+ "rewards/margins": 5.375,
353
+ "rewards/rejected": -3.828125,
354
+ "step": 220
355
+ },
356
+ {
357
+ "epoch": 0.1842948717948718,
358
+ "grad_norm": 6.202641598231744,
359
+ "learning_rate": 3.066666666666666e-07,
360
+ "logits/chosen": 0.5546875,
361
+ "logits/rejected": 0.78125,
362
+ "logps/chosen": -143.0,
363
+ "logps/rejected": -166.0,
364
+ "loss": 0.0142,
365
+ "rewards/accuracies": 1.0,
366
+ "rewards/chosen": 2.0625,
367
+ "rewards/margins": 6.09375,
368
+ "rewards/rejected": -4.03125,
369
+ "step": 230
370
+ },
371
+ {
372
+ "epoch": 0.19230769230769232,
373
+ "grad_norm": 3.408195034795853,
374
+ "learning_rate": 3.2e-07,
375
+ "logits/chosen": 0.416015625,
376
+ "logits/rejected": 0.640625,
377
+ "logps/chosen": -172.0,
378
+ "logps/rejected": -169.0,
379
+ "loss": 0.0257,
380
+ "rewards/accuracies": 0.9750000238418579,
381
+ "rewards/chosen": 1.75,
382
+ "rewards/margins": 5.9375,
383
+ "rewards/rejected": -4.1875,
384
+ "step": 240
385
+ },
386
+ {
387
+ "epoch": 0.20032051282051283,
388
+ "grad_norm": 0.7951516189038192,
389
+ "learning_rate": 3.333333333333333e-07,
390
+ "logits/chosen": 0.443359375,
391
+ "logits/rejected": 0.439453125,
392
+ "logps/chosen": -180.0,
393
+ "logps/rejected": -169.0,
394
+ "loss": 0.0042,
395
+ "rewards/accuracies": 1.0,
396
+ "rewards/chosen": 2.421875,
397
+ "rewards/margins": 7.15625,
398
+ "rewards/rejected": -4.71875,
399
+ "step": 250
400
+ },
401
+ {
402
+ "epoch": 0.20833333333333334,
403
+ "grad_norm": 0.6828867328882736,
404
+ "learning_rate": 3.4666666666666665e-07,
405
+ "logits/chosen": 0.671875,
406
+ "logits/rejected": 0.5859375,
407
+ "logps/chosen": -105.5,
408
+ "logps/rejected": -189.0,
409
+ "loss": 0.002,
410
+ "rewards/accuracies": 1.0,
411
+ "rewards/chosen": 2.421875,
412
+ "rewards/margins": 8.1875,
413
+ "rewards/rejected": -5.75,
414
+ "step": 260
415
+ },
416
+ {
417
+ "epoch": 0.21634615384615385,
418
+ "grad_norm": 2.181808594179521,
419
+ "learning_rate": 3.6e-07,
420
+ "logits/chosen": 0.7109375,
421
+ "logits/rejected": 0.5859375,
422
+ "logps/chosen": -148.0,
423
+ "logps/rejected": -187.0,
424
+ "loss": 0.0079,
425
+ "rewards/accuracies": 1.0,
426
+ "rewards/chosen": 2.5,
427
+ "rewards/margins": 7.09375,
428
+ "rewards/rejected": -4.59375,
429
+ "step": 270
430
+ },
431
+ {
432
+ "epoch": 0.22435897435897437,
433
+ "grad_norm": 0.38268137385988604,
434
+ "learning_rate": 3.7333333333333334e-07,
435
+ "logits/chosen": 0.5234375,
436
+ "logits/rejected": 0.59765625,
437
+ "logps/chosen": -188.0,
438
+ "logps/rejected": -190.0,
439
+ "loss": 0.0051,
440
+ "rewards/accuracies": 1.0,
441
+ "rewards/chosen": 2.625,
442
+ "rewards/margins": 8.3125,
443
+ "rewards/rejected": -5.6875,
444
+ "step": 280
445
+ },
446
+ {
447
+ "epoch": 0.23237179487179488,
448
+ "grad_norm": 0.4512252150149582,
449
+ "learning_rate": 3.8666666666666664e-07,
450
+ "logits/chosen": 0.5546875,
451
+ "logits/rejected": 0.55078125,
452
+ "logps/chosen": -151.0,
453
+ "logps/rejected": -190.0,
454
+ "loss": 0.0025,
455
+ "rewards/accuracies": 1.0,
456
+ "rewards/chosen": 2.65625,
457
+ "rewards/margins": 8.625,
458
+ "rewards/rejected": -6.0,
459
+ "step": 290
460
+ },
461
+ {
462
+ "epoch": 0.2403846153846154,
463
+ "grad_norm": 0.584501118833293,
464
+ "learning_rate": 4e-07,
465
+ "logits/chosen": 0.287109375,
466
+ "logits/rejected": 0.5703125,
467
+ "logps/chosen": -160.0,
468
+ "logps/rejected": -183.0,
469
+ "loss": 0.0222,
470
+ "rewards/accuracies": 0.9750000238418579,
471
+ "rewards/chosen": 2.71875,
472
+ "rewards/margins": 8.4375,
473
+ "rewards/rejected": -5.75,
474
+ "step": 300
475
+ },
476
+ {
477
+ "epoch": 0.2483974358974359,
478
+ "grad_norm": 1.2282710731271989,
479
+ "learning_rate": 4.1333333333333333e-07,
480
+ "logits/chosen": 0.5234375,
481
+ "logits/rejected": 0.5703125,
482
+ "logps/chosen": -162.0,
483
+ "logps/rejected": -217.0,
484
+ "loss": 0.0014,
485
+ "rewards/accuracies": 1.0,
486
+ "rewards/chosen": 2.90625,
487
+ "rewards/margins": 9.5625,
488
+ "rewards/rejected": -6.65625,
489
+ "step": 310
490
+ },
491
+ {
492
+ "epoch": 0.2564102564102564,
493
+ "grad_norm": 0.22314938141969023,
494
+ "learning_rate": 4.266666666666667e-07,
495
+ "logits/chosen": 0.36328125,
496
+ "logits/rejected": 0.6796875,
497
+ "logps/chosen": -147.0,
498
+ "logps/rejected": -208.0,
499
+ "loss": 0.0025,
500
+ "rewards/accuracies": 1.0,
501
+ "rewards/chosen": 2.625,
502
+ "rewards/margins": 9.625,
503
+ "rewards/rejected": -6.96875,
504
+ "step": 320
505
+ },
506
+ {
507
+ "epoch": 0.2644230769230769,
508
+ "grad_norm": 4.201699473979923,
509
+ "learning_rate": 4.3999999999999997e-07,
510
+ "logits/chosen": 0.4375,
511
+ "logits/rejected": 0.52734375,
512
+ "logps/chosen": -203.0,
513
+ "logps/rejected": -194.0,
514
+ "loss": 0.0057,
515
+ "rewards/accuracies": 1.0,
516
+ "rewards/chosen": 3.046875,
517
+ "rewards/margins": 9.6875,
518
+ "rewards/rejected": -6.65625,
519
+ "step": 330
520
+ },
521
+ {
522
+ "epoch": 0.2724358974358974,
523
+ "grad_norm": 0.024959093936575825,
524
+ "learning_rate": 4.5333333333333326e-07,
525
+ "logits/chosen": 0.5234375,
526
+ "logits/rejected": 0.73828125,
527
+ "logps/chosen": -148.0,
528
+ "logps/rejected": -197.0,
529
+ "loss": 0.0016,
530
+ "rewards/accuracies": 1.0,
531
+ "rewards/chosen": 2.8125,
532
+ "rewards/margins": 9.5625,
533
+ "rewards/rejected": -6.75,
534
+ "step": 340
535
+ },
536
+ {
537
+ "epoch": 0.28044871794871795,
538
+ "grad_norm": 0.5323887354832039,
539
+ "learning_rate": 4.6666666666666666e-07,
540
+ "logits/chosen": 0.59765625,
541
+ "logits/rejected": 0.64453125,
542
+ "logps/chosen": -171.0,
543
+ "logps/rejected": -211.0,
544
+ "loss": 0.0008,
545
+ "rewards/accuracies": 1.0,
546
+ "rewards/chosen": 3.140625,
547
+ "rewards/margins": 10.4375,
548
+ "rewards/rejected": -7.3125,
549
+ "step": 350
550
+ },
551
+ {
552
+ "epoch": 0.28846153846153844,
553
+ "grad_norm": 1.2240810840279064,
554
+ "learning_rate": 4.8e-07,
555
+ "logits/chosen": 0.458984375,
556
+ "logits/rejected": 0.59375,
557
+ "logps/chosen": -157.0,
558
+ "logps/rejected": -223.0,
559
+ "loss": 0.0018,
560
+ "rewards/accuracies": 1.0,
561
+ "rewards/chosen": 3.109375,
562
+ "rewards/margins": 10.9375,
563
+ "rewards/rejected": -7.8125,
564
+ "step": 360
565
+ },
566
+ {
567
+ "epoch": 0.296474358974359,
568
+ "grad_norm": 0.04698426123066838,
569
+ "learning_rate": 4.933333333333333e-07,
570
+ "logits/chosen": 0.5625,
571
+ "logits/rejected": 0.75,
572
+ "logps/chosen": -144.0,
573
+ "logps/rejected": -225.0,
574
+ "loss": 0.0081,
575
+ "rewards/accuracies": 1.0,
576
+ "rewards/chosen": 3.34375,
577
+ "rewards/margins": 11.375,
578
+ "rewards/rejected": -8.0625,
579
+ "step": 370
580
+ },
581
+ {
582
+ "epoch": 0.30448717948717946,
583
+ "grad_norm": 0.14652045043202064,
584
+ "learning_rate": 4.992579400415554e-07,
585
+ "logits/chosen": 0.451171875,
586
+ "logits/rejected": 0.796875,
587
+ "logps/chosen": -155.0,
588
+ "logps/rejected": -226.0,
589
+ "loss": 0.001,
590
+ "rewards/accuracies": 1.0,
591
+ "rewards/chosen": 3.21875,
592
+ "rewards/margins": 11.625,
593
+ "rewards/rejected": -8.375,
594
+ "step": 380
595
+ },
596
+ {
597
+ "epoch": 0.3125,
598
+ "grad_norm": 0.005895445560068654,
599
+ "learning_rate": 4.97773820124666e-07,
600
+ "logits/chosen": 0.248046875,
601
+ "logits/rejected": 0.7421875,
602
+ "logps/chosen": -182.0,
603
+ "logps/rejected": -225.0,
604
+ "loss": 0.002,
605
+ "rewards/accuracies": 1.0,
606
+ "rewards/chosen": 3.25,
607
+ "rewards/margins": 11.4375,
608
+ "rewards/rejected": -8.1875,
609
+ "step": 390
610
+ },
611
+ {
612
+ "epoch": 0.32051282051282054,
613
+ "grad_norm": 0.05299990848269769,
614
+ "learning_rate": 4.962897002077768e-07,
615
+ "logits/chosen": 0.46875,
616
+ "logits/rejected": 0.6015625,
617
+ "logps/chosen": -195.0,
618
+ "logps/rejected": -221.0,
619
+ "loss": 0.0013,
620
+ "rewards/accuracies": 1.0,
621
+ "rewards/chosen": 3.46875,
622
+ "rewards/margins": 11.3125,
623
+ "rewards/rejected": -7.8125,
624
+ "step": 400
625
+ },
626
+ {
627
+ "epoch": 0.328525641025641,
628
+ "grad_norm": 0.003060182358037053,
629
+ "learning_rate": 4.948055802908874e-07,
630
+ "logits/chosen": 0.609375,
631
+ "logits/rejected": 0.5546875,
632
+ "logps/chosen": -156.0,
633
+ "logps/rejected": -216.0,
634
+ "loss": 0.0071,
635
+ "rewards/accuracies": 1.0,
636
+ "rewards/chosen": 3.375,
637
+ "rewards/margins": 11.125,
638
+ "rewards/rejected": -7.78125,
639
+ "step": 410
640
+ },
641
+ {
642
+ "epoch": 0.33653846153846156,
643
+ "grad_norm": 5.391503234606234,
644
+ "learning_rate": 4.933214603739982e-07,
645
+ "logits/chosen": 0.458984375,
646
+ "logits/rejected": 0.68359375,
647
+ "logps/chosen": -194.0,
648
+ "logps/rejected": -225.0,
649
+ "loss": 0.0012,
650
+ "rewards/accuracies": 1.0,
651
+ "rewards/chosen": 3.34375,
652
+ "rewards/margins": 11.625,
653
+ "rewards/rejected": -8.25,
654
+ "step": 420
655
+ },
656
+ {
657
+ "epoch": 0.34455128205128205,
658
+ "grad_norm": 0.016009321940122195,
659
+ "learning_rate": 4.918373404571089e-07,
660
+ "logits/chosen": 0.58203125,
661
+ "logits/rejected": 0.7734375,
662
+ "logps/chosen": -178.0,
663
+ "logps/rejected": -230.0,
664
+ "loss": 0.0011,
665
+ "rewards/accuracies": 1.0,
666
+ "rewards/chosen": 3.1875,
667
+ "rewards/margins": 12.0,
668
+ "rewards/rejected": -8.8125,
669
+ "step": 430
670
+ },
671
+ {
672
+ "epoch": 0.3525641025641026,
673
+ "grad_norm": 0.04011636896023994,
674
+ "learning_rate": 4.903532205402196e-07,
675
+ "logits/chosen": 0.5625,
676
+ "logits/rejected": 0.57421875,
677
+ "logps/chosen": -172.0,
678
+ "logps/rejected": -211.0,
679
+ "loss": 0.0047,
680
+ "rewards/accuracies": 1.0,
681
+ "rewards/chosen": 3.125,
682
+ "rewards/margins": 11.125,
683
+ "rewards/rejected": -7.96875,
684
+ "step": 440
685
+ },
686
+ {
687
+ "epoch": 0.3605769230769231,
688
+ "grad_norm": 1.884252459181768,
689
+ "learning_rate": 4.888691006233304e-07,
690
+ "logits/chosen": 0.640625,
691
+ "logits/rejected": 0.7578125,
692
+ "logps/chosen": -144.0,
693
+ "logps/rejected": -220.0,
694
+ "loss": 0.0201,
695
+ "rewards/accuracies": 0.9750000238418579,
696
+ "rewards/chosen": 3.28125,
697
+ "rewards/margins": 12.125,
698
+ "rewards/rejected": -8.8125,
699
+ "step": 450
700
+ },
701
+ {
702
+ "epoch": 0.3685897435897436,
703
+ "grad_norm": 0.024673460286282534,
704
+ "learning_rate": 4.873849807064411e-07,
705
+ "logits/chosen": 0.78125,
706
+ "logits/rejected": 0.79296875,
707
+ "logps/chosen": -121.0,
708
+ "logps/rejected": -219.0,
709
+ "loss": 0.0003,
710
+ "rewards/accuracies": 1.0,
711
+ "rewards/chosen": 3.4375,
712
+ "rewards/margins": 12.3125,
713
+ "rewards/rejected": -8.875,
714
+ "step": 460
715
+ },
716
+ {
717
+ "epoch": 0.3766025641025641,
718
+ "grad_norm": 1.0653271799430997,
719
+ "learning_rate": 4.859008607895517e-07,
720
+ "logits/chosen": 0.8046875,
721
+ "logits/rejected": 0.8828125,
722
+ "logps/chosen": -141.0,
723
+ "logps/rejected": -223.0,
724
+ "loss": 0.0169,
725
+ "rewards/accuracies": 0.9750000238418579,
726
+ "rewards/chosen": 3.34375,
727
+ "rewards/margins": 12.1875,
728
+ "rewards/rejected": -8.8125,
729
+ "step": 470
730
+ },
731
+ {
732
+ "epoch": 0.38461538461538464,
733
+ "grad_norm": 0.5656275667559196,
734
+ "learning_rate": 4.844167408726625e-07,
735
+ "logits/chosen": 0.462890625,
736
+ "logits/rejected": 0.65625,
737
+ "logps/chosen": -128.0,
738
+ "logps/rejected": -209.0,
739
+ "loss": 0.0007,
740
+ "rewards/accuracies": 1.0,
741
+ "rewards/chosen": 3.015625,
742
+ "rewards/margins": 11.625,
743
+ "rewards/rejected": -8.625,
744
+ "step": 480
745
+ },
746
+ {
747
+ "epoch": 0.3926282051282051,
748
+ "grad_norm": 8.514426200575306,
749
+ "learning_rate": 4.829326209557732e-07,
750
+ "logits/chosen": 0.796875,
751
+ "logits/rejected": 0.91015625,
752
+ "logps/chosen": -170.0,
753
+ "logps/rejected": -224.0,
754
+ "loss": 0.0028,
755
+ "rewards/accuracies": 1.0,
756
+ "rewards/chosen": 3.28125,
757
+ "rewards/margins": 12.75,
758
+ "rewards/rejected": -9.4375,
759
+ "step": 490
760
+ },
761
+ {
762
+ "epoch": 0.40064102564102566,
763
+ "grad_norm": 0.03178905527763376,
764
+ "learning_rate": 4.814485010388839e-07,
765
+ "logits/chosen": 0.8359375,
766
+ "logits/rejected": 1.0546875,
767
+ "logps/chosen": -158.0,
768
+ "logps/rejected": -250.0,
769
+ "loss": 0.0004,
770
+ "rewards/accuracies": 1.0,
771
+ "rewards/chosen": 3.71875,
772
+ "rewards/margins": 14.0,
773
+ "rewards/rejected": -10.25,
774
+ "step": 500
775
+ },
776
+ {
777
+ "epoch": 0.40865384615384615,
778
+ "grad_norm": 1.4325610546983785,
779
+ "learning_rate": 4.799643811219946e-07,
780
+ "logits/chosen": 0.248046875,
781
+ "logits/rejected": 0.63671875,
782
+ "logps/chosen": -203.0,
783
+ "logps/rejected": -249.0,
784
+ "loss": 0.0016,
785
+ "rewards/accuracies": 1.0,
786
+ "rewards/chosen": 2.46875,
787
+ "rewards/margins": 12.1875,
788
+ "rewards/rejected": -9.6875,
789
+ "step": 510
790
+ },
791
+ {
792
+ "epoch": 0.4166666666666667,
793
+ "grad_norm": 0.12295978223631013,
794
+ "learning_rate": 4.784802612051053e-07,
795
+ "logits/chosen": 0.625,
796
+ "logits/rejected": 0.703125,
797
+ "logps/chosen": -177.0,
798
+ "logps/rejected": -226.0,
799
+ "loss": 0.0001,
800
+ "rewards/accuracies": 1.0,
801
+ "rewards/chosen": 3.625,
802
+ "rewards/margins": 13.4375,
803
+ "rewards/rejected": -9.75,
804
+ "step": 520
805
+ },
806
+ {
807
+ "epoch": 0.42467948717948717,
808
+ "grad_norm": 0.0028166962467554534,
809
+ "learning_rate": 4.769961412882161e-07,
810
+ "logits/chosen": 0.40625,
811
+ "logits/rejected": 0.64453125,
812
+ "logps/chosen": -203.0,
813
+ "logps/rejected": -247.0,
814
+ "loss": 0.0001,
815
+ "rewards/accuracies": 1.0,
816
+ "rewards/chosen": 3.6875,
817
+ "rewards/margins": 13.75,
818
+ "rewards/rejected": -10.0625,
819
+ "step": 530
820
+ },
821
+ {
822
+ "epoch": 0.4326923076923077,
823
+ "grad_norm": 0.010744699989711674,
824
+ "learning_rate": 4.755120213713268e-07,
825
+ "logits/chosen": 0.58984375,
826
+ "logits/rejected": 0.99609375,
827
+ "logps/chosen": -183.0,
828
+ "logps/rejected": -231.0,
829
+ "loss": 0.0008,
830
+ "rewards/accuracies": 1.0,
831
+ "rewards/chosen": 3.796875,
832
+ "rewards/margins": 13.3125,
833
+ "rewards/rejected": -9.5,
834
+ "step": 540
835
+ },
836
+ {
837
+ "epoch": 0.4407051282051282,
838
+ "grad_norm": 0.021039050905194416,
839
+ "learning_rate": 4.740279014544375e-07,
840
+ "logits/chosen": 0.25390625,
841
+ "logits/rejected": 0.69140625,
842
+ "logps/chosen": -195.0,
843
+ "logps/rejected": -236.0,
844
+ "loss": 0.0002,
845
+ "rewards/accuracies": 1.0,
846
+ "rewards/chosen": 3.25,
847
+ "rewards/margins": 13.1875,
848
+ "rewards/rejected": -9.9375,
849
+ "step": 550
850
+ },
851
+ {
852
+ "epoch": 0.44871794871794873,
853
+ "grad_norm": 0.000724403343700553,
854
+ "learning_rate": 4.725437815375482e-07,
855
+ "logits/chosen": 0.458984375,
856
+ "logits/rejected": 0.62109375,
857
+ "logps/chosen": -180.0,
858
+ "logps/rejected": -233.0,
859
+ "loss": 0.0002,
860
+ "rewards/accuracies": 1.0,
861
+ "rewards/chosen": 3.453125,
862
+ "rewards/margins": 13.625,
863
+ "rewards/rejected": -10.25,
864
+ "step": 560
865
+ },
866
+ {
867
+ "epoch": 0.4567307692307692,
868
+ "grad_norm": 0.3100975481455866,
869
+ "learning_rate": 4.710596616206589e-07,
870
+ "logits/chosen": 0.5546875,
871
+ "logits/rejected": 0.79296875,
872
+ "logps/chosen": -224.0,
873
+ "logps/rejected": -233.0,
874
+ "loss": 0.0008,
875
+ "rewards/accuracies": 1.0,
876
+ "rewards/chosen": 3.8125,
877
+ "rewards/margins": 13.3125,
878
+ "rewards/rejected": -9.5,
879
+ "step": 570
880
+ },
881
+ {
882
+ "epoch": 0.46474358974358976,
883
+ "grad_norm": 0.05039213843756819,
884
+ "learning_rate": 4.6957554170376963e-07,
885
+ "logits/chosen": 0.671875,
886
+ "logits/rejected": 0.734375,
887
+ "logps/chosen": -157.0,
888
+ "logps/rejected": -236.0,
889
+ "loss": 0.0002,
890
+ "rewards/accuracies": 1.0,
891
+ "rewards/chosen": 3.671875,
892
+ "rewards/margins": 13.875,
893
+ "rewards/rejected": -10.25,
894
+ "step": 580
895
+ },
896
+ {
897
+ "epoch": 0.47275641025641024,
898
+ "grad_norm": 0.008808070533990717,
899
+ "learning_rate": 4.680914217868804e-07,
900
+ "logits/chosen": 0.71484375,
901
+ "logits/rejected": 0.95703125,
902
+ "logps/chosen": -174.0,
903
+ "logps/rejected": -244.0,
904
+ "loss": 0.0068,
905
+ "rewards/accuracies": 1.0,
906
+ "rewards/chosen": 3.53125,
907
+ "rewards/margins": 13.6875,
908
+ "rewards/rejected": -10.125,
909
+ "step": 590
910
+ },
911
+ {
912
+ "epoch": 0.4807692307692308,
913
+ "grad_norm": 0.001963727046741742,
914
+ "learning_rate": 4.666073018699911e-07,
915
+ "logits/chosen": 0.5703125,
916
+ "logits/rejected": 1.046875,
917
+ "logps/chosen": -168.0,
918
+ "logps/rejected": -239.0,
919
+ "loss": 0.0001,
920
+ "rewards/accuracies": 1.0,
921
+ "rewards/chosen": 3.6875,
922
+ "rewards/margins": 13.5625,
923
+ "rewards/rejected": -9.875,
924
+ "step": 600
925
+ },
926
+ {
927
+ "epoch": 0.48878205128205127,
928
+ "grad_norm": 0.05259445682378445,
929
+ "learning_rate": 4.6512318195310177e-07,
930
+ "logits/chosen": 0.6484375,
931
+ "logits/rejected": 0.8515625,
932
+ "logps/chosen": -155.0,
933
+ "logps/rejected": -233.0,
934
+ "loss": 0.0003,
935
+ "rewards/accuracies": 1.0,
936
+ "rewards/chosen": 3.171875,
937
+ "rewards/margins": 13.625,
938
+ "rewards/rejected": -10.5,
939
+ "step": 610
940
+ },
941
+ {
942
+ "epoch": 0.4967948717948718,
943
+ "grad_norm": 0.016747218645922837,
944
+ "learning_rate": 4.636390620362125e-07,
945
+ "logits/chosen": 0.625,
946
+ "logits/rejected": 0.7890625,
947
+ "logps/chosen": -198.0,
948
+ "logps/rejected": -227.0,
949
+ "loss": 0.0006,
950
+ "rewards/accuracies": 1.0,
951
+ "rewards/chosen": 3.625,
952
+ "rewards/margins": 12.9375,
953
+ "rewards/rejected": -9.3125,
954
+ "step": 620
955
+ },
956
+ {
957
+ "epoch": 0.5048076923076923,
958
+ "grad_norm": 0.008135550511695944,
959
+ "learning_rate": 4.621549421193232e-07,
960
+ "logits/chosen": 0.373046875,
961
+ "logits/rejected": 0.609375,
962
+ "logps/chosen": -167.0,
963
+ "logps/rejected": -248.0,
964
+ "loss": 0.0002,
965
+ "rewards/accuracies": 1.0,
966
+ "rewards/chosen": 3.453125,
967
+ "rewards/margins": 14.625,
968
+ "rewards/rejected": -11.1875,
969
+ "step": 630
970
+ },
971
+ {
972
+ "epoch": 0.5128205128205128,
973
+ "grad_norm": 0.0014877380037952115,
974
+ "learning_rate": 4.606708222024339e-07,
975
+ "logits/chosen": 0.48046875,
976
+ "logits/rejected": 0.91015625,
977
+ "logps/chosen": -176.0,
978
+ "logps/rejected": -246.0,
979
+ "loss": 0.0012,
980
+ "rewards/accuracies": 1.0,
981
+ "rewards/chosen": 3.59375,
982
+ "rewards/margins": 13.8125,
983
+ "rewards/rejected": -10.1875,
984
+ "step": 640
985
+ },
986
+ {
987
+ "epoch": 0.5208333333333334,
988
+ "grad_norm": 0.03734119070490188,
989
+ "learning_rate": 4.591867022855446e-07,
990
+ "logits/chosen": 0.8203125,
991
+ "logits/rejected": 1.109375,
992
+ "logps/chosen": -140.0,
993
+ "logps/rejected": -248.0,
994
+ "loss": 0.0,
995
+ "rewards/accuracies": 1.0,
996
+ "rewards/chosen": 3.53125,
997
+ "rewards/margins": 15.25,
998
+ "rewards/rejected": -11.6875,
999
+ "step": 650
1000
+ },
1001
+ {
1002
+ "epoch": 0.5288461538461539,
1003
+ "grad_norm": 45.62168008765583,
1004
+ "learning_rate": 4.577025823686554e-07,
1005
+ "logits/chosen": 0.734375,
1006
+ "logits/rejected": 1.015625,
1007
+ "logps/chosen": -138.0,
1008
+ "logps/rejected": -244.0,
1009
+ "loss": 0.0068,
1010
+ "rewards/accuracies": 1.0,
1011
+ "rewards/chosen": 3.59375,
1012
+ "rewards/margins": 14.9375,
1013
+ "rewards/rejected": -11.3125,
1014
+ "step": 660
1015
+ },
1016
+ {
1017
+ "epoch": 0.5368589743589743,
1018
+ "grad_norm": 0.020868978181350698,
1019
+ "learning_rate": 4.562184624517661e-07,
1020
+ "logits/chosen": 0.66796875,
1021
+ "logits/rejected": 0.98828125,
1022
+ "logps/chosen": -168.0,
1023
+ "logps/rejected": -238.0,
1024
+ "loss": 0.0,
1025
+ "rewards/accuracies": 1.0,
1026
+ "rewards/chosen": 3.578125,
1027
+ "rewards/margins": 14.0625,
1028
+ "rewards/rejected": -10.5,
1029
+ "step": 670
1030
+ },
1031
+ {
1032
+ "epoch": 0.5448717948717948,
1033
+ "grad_norm": 0.0030554953116709673,
1034
+ "learning_rate": 4.547343425348768e-07,
1035
+ "logits/chosen": 0.92578125,
1036
+ "logits/rejected": 1.2890625,
1037
+ "logps/chosen": -162.0,
1038
+ "logps/rejected": -237.0,
1039
+ "loss": 0.0025,
1040
+ "rewards/accuracies": 1.0,
1041
+ "rewards/chosen": 3.28125,
1042
+ "rewards/margins": 14.3125,
1043
+ "rewards/rejected": -11.0,
1044
+ "step": 680
1045
+ },
1046
+ {
1047
+ "epoch": 0.5528846153846154,
1048
+ "grad_norm": 0.10267699602656194,
1049
+ "learning_rate": 4.5325022261798753e-07,
1050
+ "logits/chosen": 0.76171875,
1051
+ "logits/rejected": 0.703125,
1052
+ "logps/chosen": -161.0,
1053
+ "logps/rejected": -242.0,
1054
+ "loss": 0.0001,
1055
+ "rewards/accuracies": 1.0,
1056
+ "rewards/chosen": 3.140625,
1057
+ "rewards/margins": 14.5,
1058
+ "rewards/rejected": -11.375,
1059
+ "step": 690
1060
+ },
1061
+ {
1062
+ "epoch": 0.5608974358974359,
1063
+ "grad_norm": 1.060654904436611,
1064
+ "learning_rate": 4.517661027010982e-07,
1065
+ "logits/chosen": 0.5625,
1066
+ "logits/rejected": 0.7265625,
1067
+ "logps/chosen": -162.0,
1068
+ "logps/rejected": -247.0,
1069
+ "loss": 0.0057,
1070
+ "rewards/accuracies": 1.0,
1071
+ "rewards/chosen": 3.25,
1072
+ "rewards/margins": 14.375,
1073
+ "rewards/rejected": -11.125,
1074
+ "step": 700
1075
+ },
1076
+ {
1077
+ "epoch": 0.5689102564102564,
1078
+ "grad_norm": 0.01282600929322917,
1079
+ "learning_rate": 4.502819827842089e-07,
1080
+ "logits/chosen": 0.83984375,
1081
+ "logits/rejected": 1.1328125,
1082
+ "logps/chosen": -160.0,
1083
+ "logps/rejected": -258.0,
1084
+ "loss": 0.0001,
1085
+ "rewards/accuracies": 1.0,
1086
+ "rewards/chosen": 3.796875,
1087
+ "rewards/margins": 15.5625,
1088
+ "rewards/rejected": -11.75,
1089
+ "step": 710
1090
+ },
1091
+ {
1092
+ "epoch": 0.5769230769230769,
1093
+ "grad_norm": 0.000603232958011393,
1094
+ "learning_rate": 4.487978628673196e-07,
1095
+ "logits/chosen": 0.6953125,
1096
+ "logits/rejected": 0.8359375,
1097
+ "logps/chosen": -154.0,
1098
+ "logps/rejected": -246.0,
1099
+ "loss": 0.0021,
1100
+ "rewards/accuracies": 1.0,
1101
+ "rewards/chosen": 3.546875,
1102
+ "rewards/margins": 14.875,
1103
+ "rewards/rejected": -11.375,
1104
+ "step": 720
1105
+ },
1106
+ {
1107
+ "epoch": 0.5849358974358975,
1108
+ "grad_norm": 0.0035524082009581967,
1109
+ "learning_rate": 4.473137429504304e-07,
1110
+ "logits/chosen": 0.58203125,
1111
+ "logits/rejected": 0.765625,
1112
+ "logps/chosen": -185.0,
1113
+ "logps/rejected": -258.0,
1114
+ "loss": 0.0001,
1115
+ "rewards/accuracies": 1.0,
1116
+ "rewards/chosen": 3.71875,
1117
+ "rewards/margins": 15.875,
1118
+ "rewards/rejected": -12.1875,
1119
+ "step": 730
1120
+ },
1121
+ {
1122
+ "epoch": 0.592948717948718,
1123
+ "grad_norm": 0.001638664095401059,
1124
+ "learning_rate": 4.458296230335411e-07,
1125
+ "logits/chosen": 0.71875,
1126
+ "logits/rejected": 0.89453125,
1127
+ "logps/chosen": -172.0,
1128
+ "logps/rejected": -239.0,
1129
+ "loss": 0.0001,
1130
+ "rewards/accuracies": 1.0,
1131
+ "rewards/chosen": 3.609375,
1132
+ "rewards/margins": 14.625,
1133
+ "rewards/rejected": -11.0,
1134
+ "step": 740
1135
+ },
1136
+ {
1137
+ "epoch": 0.6009615384615384,
1138
+ "grad_norm": 0.00017829436826559875,
1139
+ "learning_rate": 4.443455031166518e-07,
1140
+ "logits/chosen": 0.67578125,
1141
+ "logits/rejected": 0.86328125,
1142
+ "logps/chosen": -189.0,
1143
+ "logps/rejected": -249.0,
1144
+ "loss": 0.0011,
1145
+ "rewards/accuracies": 1.0,
1146
+ "rewards/chosen": 3.671875,
1147
+ "rewards/margins": 15.3125,
1148
+ "rewards/rejected": -11.6875,
1149
+ "step": 750
1150
+ },
1151
+ {
1152
+ "epoch": 0.6089743589743589,
1153
+ "grad_norm": 0.007873615629627333,
1154
+ "learning_rate": 4.4286138319976253e-07,
1155
+ "logits/chosen": 0.71484375,
1156
+ "logits/rejected": 0.98828125,
1157
+ "logps/chosen": -164.0,
1158
+ "logps/rejected": -264.0,
1159
+ "loss": 0.0,
1160
+ "rewards/accuracies": 1.0,
1161
+ "rewards/chosen": 3.859375,
1162
+ "rewards/margins": 16.375,
1163
+ "rewards/rejected": -12.5,
1164
+ "step": 760
1165
+ },
1166
+ {
1167
+ "epoch": 0.6169871794871795,
1168
+ "grad_norm": 0.01393802348712383,
1169
+ "learning_rate": 4.4137726328287324e-07,
1170
+ "logits/chosen": 0.94140625,
1171
+ "logits/rejected": 1.0859375,
1172
+ "logps/chosen": -167.0,
1173
+ "logps/rejected": -256.0,
1174
+ "loss": 0.01,
1175
+ "rewards/accuracies": 1.0,
1176
+ "rewards/chosen": 3.515625,
1177
+ "rewards/margins": 16.25,
1178
+ "rewards/rejected": -12.75,
1179
+ "step": 770
1180
+ },
1181
+ {
1182
+ "epoch": 0.625,
1183
+ "grad_norm": 0.00011925426636780416,
1184
+ "learning_rate": 4.3989314336598395e-07,
1185
+ "logits/chosen": 0.890625,
1186
+ "logits/rejected": 0.8828125,
1187
+ "logps/chosen": -131.0,
1188
+ "logps/rejected": -266.0,
1189
+ "loss": 0.0004,
1190
+ "rewards/accuracies": 1.0,
1191
+ "rewards/chosen": 3.4375,
1192
+ "rewards/margins": 16.5,
1193
+ "rewards/rejected": -13.0625,
1194
+ "step": 780
1195
+ },
1196
+ {
1197
+ "epoch": 0.6330128205128205,
1198
+ "grad_norm": 0.0017273716901997926,
1199
+ "learning_rate": 4.384090234490946e-07,
1200
+ "logits/chosen": 0.7734375,
1201
+ "logits/rejected": 1.09375,
1202
+ "logps/chosen": -154.0,
1203
+ "logps/rejected": -250.0,
1204
+ "loss": 0.0001,
1205
+ "rewards/accuracies": 1.0,
1206
+ "rewards/chosen": 3.578125,
1207
+ "rewards/margins": 15.625,
1208
+ "rewards/rejected": -12.0,
1209
+ "step": 790
1210
+ },
1211
+ {
1212
+ "epoch": 0.6410256410256411,
1213
+ "grad_norm": 0.0024078267573534673,
1214
+ "learning_rate": 4.369249035322054e-07,
1215
+ "logits/chosen": 0.62109375,
1216
+ "logits/rejected": 0.76171875,
1217
+ "logps/chosen": -152.0,
1218
+ "logps/rejected": -274.0,
1219
+ "loss": 0.0002,
1220
+ "rewards/accuracies": 1.0,
1221
+ "rewards/chosen": 3.25,
1222
+ "rewards/margins": 15.75,
1223
+ "rewards/rejected": -12.5,
1224
+ "step": 800
1225
+ },
1226
+ {
1227
+ "epoch": 0.6490384615384616,
1228
+ "grad_norm": 0.0025633329633488206,
1229
+ "learning_rate": 4.354407836153161e-07,
1230
+ "logits/chosen": 0.7109375,
1231
+ "logits/rejected": 0.97265625,
1232
+ "logps/chosen": -172.0,
1233
+ "logps/rejected": -242.0,
1234
+ "loss": 0.0032,
1235
+ "rewards/accuracies": 1.0,
1236
+ "rewards/chosen": 3.265625,
1237
+ "rewards/margins": 15.5,
1238
+ "rewards/rejected": -12.1875,
1239
+ "step": 810
1240
+ },
1241
+ {
1242
+ "epoch": 0.657051282051282,
1243
+ "grad_norm": 7.62401527642808,
1244
+ "learning_rate": 4.339566636984268e-07,
1245
+ "logits/chosen": 0.765625,
1246
+ "logits/rejected": 0.91796875,
1247
+ "logps/chosen": -173.0,
1248
+ "logps/rejected": -264.0,
1249
+ "loss": 0.0031,
1250
+ "rewards/accuracies": 1.0,
1251
+ "rewards/chosen": 3.765625,
1252
+ "rewards/margins": 15.5,
1253
+ "rewards/rejected": -11.75,
1254
+ "step": 820
1255
+ },
1256
+ {
1257
+ "epoch": 0.6650641025641025,
1258
+ "grad_norm": 0.0018391316218238597,
1259
+ "learning_rate": 4.324725437815375e-07,
1260
+ "logits/chosen": 0.5390625,
1261
+ "logits/rejected": 0.69140625,
1262
+ "logps/chosen": -188.0,
1263
+ "logps/rejected": -266.0,
1264
+ "loss": 0.0,
1265
+ "rewards/accuracies": 1.0,
1266
+ "rewards/chosen": 3.515625,
1267
+ "rewards/margins": 16.25,
1268
+ "rewards/rejected": -12.75,
1269
+ "step": 830
1270
+ },
1271
+ {
1272
+ "epoch": 0.6730769230769231,
1273
+ "grad_norm": 0.0009646190758050507,
1274
+ "learning_rate": 4.3098842386464824e-07,
1275
+ "logits/chosen": 0.62890625,
1276
+ "logits/rejected": 1.078125,
1277
+ "logps/chosen": -183.0,
1278
+ "logps/rejected": -282.0,
1279
+ "loss": 0.0001,
1280
+ "rewards/accuracies": 1.0,
1281
+ "rewards/chosen": 3.1875,
1282
+ "rewards/margins": 17.25,
1283
+ "rewards/rejected": -14.125,
1284
+ "step": 840
1285
+ },
1286
+ {
1287
+ "epoch": 0.6810897435897436,
1288
+ "grad_norm": 0.0008610524729650137,
1289
+ "learning_rate": 4.2950430394775895e-07,
1290
+ "logits/chosen": 0.478515625,
1291
+ "logits/rejected": 0.98046875,
1292
+ "logps/chosen": -178.0,
1293
+ "logps/rejected": -274.0,
1294
+ "loss": 0.0,
1295
+ "rewards/accuracies": 1.0,
1296
+ "rewards/chosen": 3.625,
1297
+ "rewards/margins": 17.5,
1298
+ "rewards/rejected": -13.875,
1299
+ "step": 850
1300
+ },
1301
+ {
1302
+ "epoch": 0.6891025641025641,
1303
+ "grad_norm": 0.007096618898808949,
1304
+ "learning_rate": 4.280201840308697e-07,
1305
+ "logits/chosen": 0.828125,
1306
+ "logits/rejected": 1.1796875,
1307
+ "logps/chosen": -157.0,
1308
+ "logps/rejected": -280.0,
1309
+ "loss": 0.0006,
1310
+ "rewards/accuracies": 1.0,
1311
+ "rewards/chosen": 3.59375,
1312
+ "rewards/margins": 17.625,
1313
+ "rewards/rejected": -14.0625,
1314
+ "step": 860
1315
+ },
1316
+ {
1317
+ "epoch": 0.6971153846153846,
1318
+ "grad_norm": 0.14010136528237552,
1319
+ "learning_rate": 4.2653606411398043e-07,
1320
+ "logits/chosen": 0.59375,
1321
+ "logits/rejected": 1.140625,
1322
+ "logps/chosen": -190.0,
1323
+ "logps/rejected": -253.0,
1324
+ "loss": 0.0001,
1325
+ "rewards/accuracies": 1.0,
1326
+ "rewards/chosen": 4.0,
1327
+ "rewards/margins": 16.375,
1328
+ "rewards/rejected": -12.375,
1329
+ "step": 870
1330
+ },
1331
+ {
1332
+ "epoch": 0.7051282051282052,
1333
+ "grad_norm": 0.0023988494206444587,
1334
+ "learning_rate": 4.2505194419709114e-07,
1335
+ "logits/chosen": 0.55859375,
1336
+ "logits/rejected": 0.80859375,
1337
+ "logps/chosen": -156.0,
1338
+ "logps/rejected": -260.0,
1339
+ "loss": 0.0002,
1340
+ "rewards/accuracies": 1.0,
1341
+ "rewards/chosen": 3.4375,
1342
+ "rewards/margins": 16.25,
1343
+ "rewards/rejected": -12.875,
1344
+ "step": 880
1345
+ },
1346
+ {
1347
+ "epoch": 0.7131410256410257,
1348
+ "grad_norm": 6.087390791135428e-05,
1349
+ "learning_rate": 4.235678242802018e-07,
1350
+ "logits/chosen": 0.58203125,
1351
+ "logits/rejected": 0.984375,
1352
+ "logps/chosen": -164.0,
1353
+ "logps/rejected": -274.0,
1354
+ "loss": 0.0003,
1355
+ "rewards/accuracies": 1.0,
1356
+ "rewards/chosen": 3.609375,
1357
+ "rewards/margins": 17.75,
1358
+ "rewards/rejected": -14.1875,
1359
+ "step": 890
1360
+ },
1361
+ {
1362
+ "epoch": 0.7211538461538461,
1363
+ "grad_norm": 0.0008312749795051527,
1364
+ "learning_rate": 4.220837043633125e-07,
1365
+ "logits/chosen": 0.6875,
1366
+ "logits/rejected": 0.90234375,
1367
+ "logps/chosen": -154.0,
1368
+ "logps/rejected": -278.0,
1369
+ "loss": 0.0002,
1370
+ "rewards/accuracies": 1.0,
1371
+ "rewards/chosen": 3.3125,
1372
+ "rewards/margins": 16.625,
1373
+ "rewards/rejected": -13.3125,
1374
+ "step": 900
1375
+ },
1376
+ {
1377
+ "epoch": 0.7291666666666666,
1378
+ "grad_norm": 0.02956438917542033,
1379
+ "learning_rate": 4.2059958444642323e-07,
1380
+ "logits/chosen": 0.8671875,
1381
+ "logits/rejected": 1.046875,
1382
+ "logps/chosen": -163.0,
1383
+ "logps/rejected": -262.0,
1384
+ "loss": 0.0165,
1385
+ "rewards/accuracies": 0.9750000238418579,
1386
+ "rewards/chosen": 3.390625,
1387
+ "rewards/margins": 16.0,
1388
+ "rewards/rejected": -12.625,
1389
+ "step": 910
1390
+ },
1391
+ {
1392
+ "epoch": 0.7371794871794872,
1393
+ "grad_norm": 3.7536937637117935,
1394
+ "learning_rate": 4.1911546452953394e-07,
1395
+ "logits/chosen": 0.625,
1396
+ "logits/rejected": 0.89453125,
1397
+ "logps/chosen": -193.0,
1398
+ "logps/rejected": -272.0,
1399
+ "loss": 0.0025,
1400
+ "rewards/accuracies": 1.0,
1401
+ "rewards/chosen": 3.78125,
1402
+ "rewards/margins": 17.25,
1403
+ "rewards/rejected": -13.5,
1404
+ "step": 920
1405
+ },
1406
+ {
1407
+ "epoch": 0.7451923076923077,
1408
+ "grad_norm": 0.004851799456712299,
1409
+ "learning_rate": 4.176313446126447e-07,
1410
+ "logits/chosen": 0.439453125,
1411
+ "logits/rejected": 1.015625,
1412
+ "logps/chosen": -205.0,
1413
+ "logps/rejected": -264.0,
1414
+ "loss": 0.0,
1415
+ "rewards/accuracies": 1.0,
1416
+ "rewards/chosen": 3.75,
1417
+ "rewards/margins": 16.75,
1418
+ "rewards/rejected": -12.9375,
1419
+ "step": 930
1420
+ },
1421
+ {
1422
+ "epoch": 0.7532051282051282,
1423
+ "grad_norm": 0.00015565385815992762,
1424
+ "learning_rate": 4.161472246957554e-07,
1425
+ "logits/chosen": 0.65625,
1426
+ "logits/rejected": 0.9140625,
1427
+ "logps/chosen": -140.0,
1428
+ "logps/rejected": -262.0,
1429
+ "loss": 0.0,
1430
+ "rewards/accuracies": 1.0,
1431
+ "rewards/chosen": 3.375,
1432
+ "rewards/margins": 17.0,
1433
+ "rewards/rejected": -13.5625,
1434
+ "step": 940
1435
+ },
1436
+ {
1437
+ "epoch": 0.7612179487179487,
1438
+ "grad_norm": 4.411289254772126e-06,
1439
+ "learning_rate": 4.1466310477886614e-07,
1440
+ "logits/chosen": 0.765625,
1441
+ "logits/rejected": 1.0703125,
1442
+ "logps/chosen": -174.0,
1443
+ "logps/rejected": -276.0,
1444
+ "loss": 0.0022,
1445
+ "rewards/accuracies": 1.0,
1446
+ "rewards/chosen": 3.6875,
1447
+ "rewards/margins": 17.875,
1448
+ "rewards/rejected": -14.125,
1449
+ "step": 950
1450
+ },
1451
+ {
1452
+ "epoch": 0.7692307692307693,
1453
+ "grad_norm": 0.0012155773934020653,
1454
+ "learning_rate": 4.1317898486197685e-07,
1455
+ "logits/chosen": 0.50390625,
1456
+ "logits/rejected": 0.48046875,
1457
+ "logps/chosen": -198.0,
1458
+ "logps/rejected": -274.0,
1459
+ "loss": 0.0008,
1460
+ "rewards/accuracies": 1.0,
1461
+ "rewards/chosen": 3.5625,
1462
+ "rewards/margins": 16.75,
1463
+ "rewards/rejected": -13.125,
1464
+ "step": 960
1465
+ },
1466
+ {
1467
+ "epoch": 0.7772435897435898,
1468
+ "grad_norm": 0.00027944466244255936,
1469
+ "learning_rate": 4.1169486494508756e-07,
1470
+ "logits/chosen": 0.83984375,
1471
+ "logits/rejected": 1.40625,
1472
+ "logps/chosen": -145.0,
1473
+ "logps/rejected": -278.0,
1474
+ "loss": 0.0,
1475
+ "rewards/accuracies": 1.0,
1476
+ "rewards/chosen": 3.546875,
1477
+ "rewards/margins": 17.875,
1478
+ "rewards/rejected": -14.375,
1479
+ "step": 970
1480
+ },
1481
+ {
1482
+ "epoch": 0.7852564102564102,
1483
+ "grad_norm": 8.829716265401248e-05,
1484
+ "learning_rate": 4.102107450281982e-07,
1485
+ "logits/chosen": 0.88671875,
1486
+ "logits/rejected": 1.1328125,
1487
+ "logps/chosen": -126.5,
1488
+ "logps/rejected": -256.0,
1489
+ "loss": 0.0003,
1490
+ "rewards/accuracies": 1.0,
1491
+ "rewards/chosen": 3.625,
1492
+ "rewards/margins": 17.0,
1493
+ "rewards/rejected": -13.375,
1494
+ "step": 980
1495
+ },
1496
+ {
1497
+ "epoch": 0.7932692307692307,
1498
+ "grad_norm": 5.5344861594260826e-05,
1499
+ "learning_rate": 4.0872662511130894e-07,
1500
+ "logits/chosen": 0.515625,
1501
+ "logits/rejected": 1.0859375,
1502
+ "logps/chosen": -202.0,
1503
+ "logps/rejected": -286.0,
1504
+ "loss": 0.0005,
1505
+ "rewards/accuracies": 1.0,
1506
+ "rewards/chosen": 3.578125,
1507
+ "rewards/margins": 18.0,
1508
+ "rewards/rejected": -14.4375,
1509
+ "step": 990
1510
+ },
1511
+ {
1512
+ "epoch": 0.8012820512820513,
1513
+ "grad_norm": 0.00011381421860377532,
1514
+ "learning_rate": 4.072425051944197e-07,
1515
+ "logits/chosen": 0.80859375,
1516
+ "logits/rejected": 0.8515625,
1517
+ "logps/chosen": -145.0,
1518
+ "logps/rejected": -292.0,
1519
+ "loss": 0.0,
1520
+ "rewards/accuracies": 1.0,
1521
+ "rewards/chosen": 3.46875,
1522
+ "rewards/margins": 18.375,
1523
+ "rewards/rejected": -14.9375,
1524
+ "step": 1000
1525
+ },
1526
+ {
1527
+ "epoch": 0.8092948717948718,
1528
+ "grad_norm": 5.535336680872587,
1529
+ "learning_rate": 4.057583852775304e-07,
1530
+ "logits/chosen": 0.69921875,
1531
+ "logits/rejected": 0.828125,
1532
+ "logps/chosen": -173.0,
1533
+ "logps/rejected": -256.0,
1534
+ "loss": 0.001,
1535
+ "rewards/accuracies": 1.0,
1536
+ "rewards/chosen": 3.4375,
1537
+ "rewards/margins": 16.75,
1538
+ "rewards/rejected": -13.375,
1539
+ "step": 1010
1540
+ },
1541
+ {
1542
+ "epoch": 0.8173076923076923,
1543
+ "grad_norm": 0.0005514714398320138,
1544
+ "learning_rate": 4.0427426536064113e-07,
1545
+ "logits/chosen": 0.765625,
1546
+ "logits/rejected": 1.0703125,
1547
+ "logps/chosen": -125.0,
1548
+ "logps/rejected": -268.0,
1549
+ "loss": 0.0001,
1550
+ "rewards/accuracies": 1.0,
1551
+ "rewards/chosen": 3.5,
1552
+ "rewards/margins": 18.375,
1553
+ "rewards/rejected": -14.875,
1554
+ "step": 1020
1555
+ },
1556
+ {
1557
+ "epoch": 0.8253205128205128,
1558
+ "grad_norm": 0.0007561637659334397,
1559
+ "learning_rate": 4.0279014544375184e-07,
1560
+ "logits/chosen": 0.68359375,
1561
+ "logits/rejected": 0.984375,
1562
+ "logps/chosen": -186.0,
1563
+ "logps/rejected": -274.0,
1564
+ "loss": 0.0,
1565
+ "rewards/accuracies": 1.0,
1566
+ "rewards/chosen": 3.84375,
1567
+ "rewards/margins": 17.875,
1568
+ "rewards/rejected": -14.0,
1569
+ "step": 1030
1570
+ },
1571
+ {
1572
+ "epoch": 0.8333333333333334,
1573
+ "grad_norm": 0.01109823538677163,
1574
+ "learning_rate": 4.0130602552686256e-07,
1575
+ "logits/chosen": 0.486328125,
1576
+ "logits/rejected": 0.859375,
1577
+ "logps/chosen": -159.0,
1578
+ "logps/rejected": -276.0,
1579
+ "loss": 0.0,
1580
+ "rewards/accuracies": 1.0,
1581
+ "rewards/chosen": 3.53125,
1582
+ "rewards/margins": 18.875,
1583
+ "rewards/rejected": -15.375,
1584
+ "step": 1040
1585
+ },
1586
+ {
1587
+ "epoch": 0.8413461538461539,
1588
+ "grad_norm": 9.567710249044793e-05,
1589
+ "learning_rate": 3.9982190560997327e-07,
1590
+ "logits/chosen": 0.76953125,
1591
+ "logits/rejected": 1.1328125,
1592
+ "logps/chosen": -173.0,
1593
+ "logps/rejected": -288.0,
1594
+ "loss": 0.0,
1595
+ "rewards/accuracies": 1.0,
1596
+ "rewards/chosen": 3.40625,
1597
+ "rewards/margins": 18.0,
1598
+ "rewards/rejected": -14.5625,
1599
+ "step": 1050
1600
+ },
1601
+ {
1602
+ "epoch": 0.8493589743589743,
1603
+ "grad_norm": 0.004699002732439855,
1604
+ "learning_rate": 3.98337785693084e-07,
1605
+ "logits/chosen": 0.80078125,
1606
+ "logits/rejected": 0.8203125,
1607
+ "logps/chosen": -163.0,
1608
+ "logps/rejected": -284.0,
1609
+ "loss": 0.0,
1610
+ "rewards/accuracies": 1.0,
1611
+ "rewards/chosen": 3.46875,
1612
+ "rewards/margins": 18.5,
1613
+ "rewards/rejected": -15.0,
1614
+ "step": 1060
1615
+ },
1616
+ {
1617
+ "epoch": 0.8573717948717948,
1618
+ "grad_norm": 5.1388350064007634e-06,
1619
+ "learning_rate": 3.968536657761947e-07,
1620
+ "logits/chosen": 0.8046875,
1621
+ "logits/rejected": 0.78125,
1622
+ "logps/chosen": -167.0,
1623
+ "logps/rejected": -274.0,
1624
+ "loss": 0.0,
1625
+ "rewards/accuracies": 1.0,
1626
+ "rewards/chosen": 3.6875,
1627
+ "rewards/margins": 18.0,
1628
+ "rewards/rejected": -14.375,
1629
+ "step": 1070
1630
+ },
1631
+ {
1632
+ "epoch": 0.8653846153846154,
1633
+ "grad_norm": 0.029972344027948593,
1634
+ "learning_rate": 3.953695458593054e-07,
1635
+ "logits/chosen": 0.77734375,
1636
+ "logits/rejected": 1.15625,
1637
+ "logps/chosen": -184.0,
1638
+ "logps/rejected": -280.0,
1639
+ "loss": 0.0045,
1640
+ "rewards/accuracies": 1.0,
1641
+ "rewards/chosen": 3.078125,
1642
+ "rewards/margins": 17.375,
1643
+ "rewards/rejected": -14.25,
1644
+ "step": 1080
1645
+ },
1646
+ {
1647
+ "epoch": 0.8733974358974359,
1648
+ "grad_norm": 0.018098759436406774,
1649
+ "learning_rate": 3.938854259424161e-07,
1650
+ "logits/chosen": 0.75390625,
1651
+ "logits/rejected": 0.9296875,
1652
+ "logps/chosen": -126.0,
1653
+ "logps/rejected": -264.0,
1654
+ "loss": 0.0001,
1655
+ "rewards/accuracies": 1.0,
1656
+ "rewards/chosen": 2.90625,
1657
+ "rewards/margins": 17.0,
1658
+ "rewards/rejected": -14.0625,
1659
+ "step": 1090
1660
+ },
1661
+ {
1662
+ "epoch": 0.8814102564102564,
1663
+ "grad_norm": 8.008272391872532e-05,
1664
+ "learning_rate": 3.9240130602552684e-07,
1665
+ "logits/chosen": 0.80859375,
1666
+ "logits/rejected": 1.234375,
1667
+ "logps/chosen": -134.0,
1668
+ "logps/rejected": -282.0,
1669
+ "loss": 0.0,
1670
+ "rewards/accuracies": 1.0,
1671
+ "rewards/chosen": 3.125,
1672
+ "rewards/margins": 18.375,
1673
+ "rewards/rejected": -15.3125,
1674
+ "step": 1100
1675
+ },
1676
+ {
1677
+ "epoch": 0.8894230769230769,
1678
+ "grad_norm": 0.009049533722692323,
1679
+ "learning_rate": 3.9091718610863755e-07,
1680
+ "logits/chosen": 0.71484375,
1681
+ "logits/rejected": 1.203125,
1682
+ "logps/chosen": -180.0,
1683
+ "logps/rejected": -280.0,
1684
+ "loss": 0.0001,
1685
+ "rewards/accuracies": 1.0,
1686
+ "rewards/chosen": 3.265625,
1687
+ "rewards/margins": 17.5,
1688
+ "rewards/rejected": -14.1875,
1689
+ "step": 1110
1690
+ },
1691
+ {
1692
+ "epoch": 0.8974358974358975,
1693
+ "grad_norm": 8.244045878983639e-05,
1694
+ "learning_rate": 3.8943306619174827e-07,
1695
+ "logits/chosen": 0.609375,
1696
+ "logits/rejected": 0.984375,
1697
+ "logps/chosen": -146.0,
1698
+ "logps/rejected": -282.0,
1699
+ "loss": 0.0001,
1700
+ "rewards/accuracies": 1.0,
1701
+ "rewards/chosen": 3.4375,
1702
+ "rewards/margins": 18.375,
1703
+ "rewards/rejected": -15.0,
1704
+ "step": 1120
1705
+ },
1706
+ {
1707
+ "epoch": 0.905448717948718,
1708
+ "grad_norm": 0.00613655578170994,
1709
+ "learning_rate": 3.87948946274859e-07,
1710
+ "logits/chosen": 0.78515625,
1711
+ "logits/rejected": 1.0,
1712
+ "logps/chosen": -158.0,
1713
+ "logps/rejected": -272.0,
1714
+ "loss": 0.0,
1715
+ "rewards/accuracies": 1.0,
1716
+ "rewards/chosen": 3.59375,
1717
+ "rewards/margins": 18.0,
1718
+ "rewards/rejected": -14.4375,
1719
+ "step": 1130
1720
+ },
1721
+ {
1722
+ "epoch": 0.9134615384615384,
1723
+ "grad_norm": 8.217111266575298e-06,
1724
+ "learning_rate": 3.8646482635796975e-07,
1725
+ "logits/chosen": 0.7734375,
1726
+ "logits/rejected": 1.0859375,
1727
+ "logps/chosen": -178.0,
1728
+ "logps/rejected": -288.0,
1729
+ "loss": 0.0,
1730
+ "rewards/accuracies": 1.0,
1731
+ "rewards/chosen": 3.6875,
1732
+ "rewards/margins": 18.5,
1733
+ "rewards/rejected": -14.875,
1734
+ "step": 1140
1735
+ },
1736
+ {
1737
+ "epoch": 0.9214743589743589,
1738
+ "grad_norm": 0.7364035065807161,
1739
+ "learning_rate": 3.8498070644108046e-07,
1740
+ "logits/chosen": 0.890625,
1741
+ "logits/rejected": 1.15625,
1742
+ "logps/chosen": -165.0,
1743
+ "logps/rejected": -286.0,
1744
+ "loss": 0.0002,
1745
+ "rewards/accuracies": 1.0,
1746
+ "rewards/chosen": 3.53125,
1747
+ "rewards/margins": 18.5,
1748
+ "rewards/rejected": -15.0,
1749
+ "step": 1150
1750
+ },
1751
+ {
1752
+ "epoch": 0.9294871794871795,
1753
+ "grad_norm": 0.1496693561497382,
1754
+ "learning_rate": 3.834965865241911e-07,
1755
+ "logits/chosen": 0.9921875,
1756
+ "logits/rejected": 1.1875,
1757
+ "logps/chosen": -178.0,
1758
+ "logps/rejected": -282.0,
1759
+ "loss": 0.0004,
1760
+ "rewards/accuracies": 1.0,
1761
+ "rewards/chosen": 2.84375,
1762
+ "rewards/margins": 17.75,
1763
+ "rewards/rejected": -14.875,
1764
+ "step": 1160
1765
+ },
1766
+ {
1767
+ "epoch": 0.9375,
1768
+ "grad_norm": 0.00037493575561416294,
1769
+ "learning_rate": 3.8201246660730183e-07,
1770
+ "logits/chosen": 0.890625,
1771
+ "logits/rejected": 1.0703125,
1772
+ "logps/chosen": -136.0,
1773
+ "logps/rejected": -284.0,
1774
+ "loss": 0.0001,
1775
+ "rewards/accuracies": 1.0,
1776
+ "rewards/chosen": 3.421875,
1777
+ "rewards/margins": 18.75,
1778
+ "rewards/rejected": -15.3125,
1779
+ "step": 1170
1780
+ },
1781
+ {
1782
+ "epoch": 0.9455128205128205,
1783
+ "grad_norm": 0.004982903246651787,
1784
+ "learning_rate": 3.8052834669041255e-07,
1785
+ "logits/chosen": 0.921875,
1786
+ "logits/rejected": 1.28125,
1787
+ "logps/chosen": -167.0,
1788
+ "logps/rejected": -288.0,
1789
+ "loss": 0.0,
1790
+ "rewards/accuracies": 1.0,
1791
+ "rewards/chosen": 3.53125,
1792
+ "rewards/margins": 19.25,
1793
+ "rewards/rejected": -15.6875,
1794
+ "step": 1180
1795
+ },
1796
+ {
1797
+ "epoch": 0.9535256410256411,
1798
+ "grad_norm": 6.72396395145147e-05,
1799
+ "learning_rate": 3.7904422677352326e-07,
1800
+ "logits/chosen": 0.72265625,
1801
+ "logits/rejected": 1.15625,
1802
+ "logps/chosen": -181.0,
1803
+ "logps/rejected": -306.0,
1804
+ "loss": 0.0,
1805
+ "rewards/accuracies": 1.0,
1806
+ "rewards/chosen": 3.359375,
1807
+ "rewards/margins": 19.625,
1808
+ "rewards/rejected": -16.25,
1809
+ "step": 1190
1810
+ },
1811
+ {
1812
+ "epoch": 0.9615384615384616,
1813
+ "grad_norm": 0.000412374591287098,
1814
+ "learning_rate": 3.77560106856634e-07,
1815
+ "logits/chosen": 0.734375,
1816
+ "logits/rejected": 1.1953125,
1817
+ "logps/chosen": -168.0,
1818
+ "logps/rejected": -306.0,
1819
+ "loss": 0.0005,
1820
+ "rewards/accuracies": 1.0,
1821
+ "rewards/chosen": 3.71875,
1822
+ "rewards/margins": 18.875,
1823
+ "rewards/rejected": -15.125,
1824
+ "step": 1200
1825
+ },
1826
+ {
1827
+ "epoch": 0.969551282051282,
1828
+ "grad_norm": 0.0011780079032558514,
1829
+ "learning_rate": 3.7607598693974474e-07,
1830
+ "logits/chosen": 0.7890625,
1831
+ "logits/rejected": 1.1015625,
1832
+ "logps/chosen": -158.0,
1833
+ "logps/rejected": -304.0,
1834
+ "loss": 0.0,
1835
+ "rewards/accuracies": 1.0,
1836
+ "rewards/chosen": 3.34375,
1837
+ "rewards/margins": 19.625,
1838
+ "rewards/rejected": -16.25,
1839
+ "step": 1210
1840
+ },
1841
+ {
1842
+ "epoch": 0.9775641025641025,
1843
+ "grad_norm": 0.019042612389581243,
1844
+ "learning_rate": 3.7459186702285545e-07,
1845
+ "logits/chosen": 0.76171875,
1846
+ "logits/rejected": 0.71484375,
1847
+ "logps/chosen": -152.0,
1848
+ "logps/rejected": -294.0,
1849
+ "loss": 0.0,
1850
+ "rewards/accuracies": 1.0,
1851
+ "rewards/chosen": 3.625,
1852
+ "rewards/margins": 19.0,
1853
+ "rewards/rejected": -15.375,
1854
+ "step": 1220
1855
+ },
1856
+ {
1857
+ "epoch": 0.9855769230769231,
1858
+ "grad_norm": 0.001017013474787819,
1859
+ "learning_rate": 3.7310774710596617e-07,
1860
+ "logits/chosen": 0.9375,
1861
+ "logits/rejected": 1.4140625,
1862
+ "logps/chosen": -170.0,
1863
+ "logps/rejected": -286.0,
1864
+ "loss": 0.0,
1865
+ "rewards/accuracies": 1.0,
1866
+ "rewards/chosen": 3.5625,
1867
+ "rewards/margins": 19.25,
1868
+ "rewards/rejected": -15.6875,
1869
+ "step": 1230
1870
+ },
1871
+ {
1872
+ "epoch": 0.9935897435897436,
1873
+ "grad_norm": 0.0001296021532768441,
1874
+ "learning_rate": 3.716236271890769e-07,
1875
+ "logits/chosen": 1.2109375,
1876
+ "logits/rejected": 1.3984375,
1877
+ "logps/chosen": -127.0,
1878
+ "logps/rejected": -284.0,
1879
+ "loss": 0.0,
1880
+ "rewards/accuracies": 1.0,
1881
+ "rewards/chosen": 3.78125,
1882
+ "rewards/margins": 19.25,
1883
+ "rewards/rejected": -15.4375,
1884
+ "step": 1240
1885
+ },
1886
+ {
1887
+ "epoch": 1.0,
1888
+ "eval_logits/chosen": 0.76953125,
1889
+ "eval_logits/rejected": 1.2890625,
1890
+ "eval_logps/chosen": -168.0,
1891
+ "eval_logps/rejected": -296.0,
1892
+ "eval_loss": 6.842174479970708e-05,
1893
+ "eval_rewards/accuracies": 1.0,
1894
+ "eval_rewards/chosen": 3.453125,
1895
+ "eval_rewards/margins": 18.75,
1896
+ "eval_rewards/rejected": -15.3125,
1897
+ "eval_runtime": 25.3915,
1898
+ "eval_samples_per_second": 7.837,
1899
+ "eval_steps_per_second": 0.985,
1900
+ "step": 1248
1901
+ }
1902
+ ],
1903
+ "logging_steps": 10,
1904
+ "max_steps": 3744,
1905
+ "num_input_tokens_seen": 0,
1906
+ "num_train_epochs": 3,
1907
+ "save_steps": 500,
1908
+ "stateful_callbacks": {
1909
+ "TrainerControl": {
1910
+ "args": {
1911
+ "should_epoch_stop": false,
1912
+ "should_evaluate": false,
1913
+ "should_log": false,
1914
+ "should_save": true,
1915
+ "should_training_stop": false
1916
+ },
1917
+ "attributes": {}
1918
+ }
1919
+ },
1920
+ "total_flos": 0.0,
1921
+ "train_batch_size": 4,
1922
+ "trial_name": null,
1923
+ "trial_params": null
1924
+ }
last-checkpoint/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63fc8b4add8a43b2fa20cc9539c262162e6573c6f402afb81cccb0ad94ce8e9f
3
+ size 7864
last-checkpoint/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
last-checkpoint/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)