Training in progress, epoch 1, checkpoint
Browse files- last-checkpoint/added_tokens.json +24 -0
- last-checkpoint/config.json +30 -0
- last-checkpoint/generation_config.json +6 -0
- last-checkpoint/global_step1248/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- last-checkpoint/global_step1248/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- last-checkpoint/global_step1248/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- last-checkpoint/global_step1248/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- last-checkpoint/latest +1 -0
- last-checkpoint/merges.txt +0 -0
- last-checkpoint/model-00001-of-00004.safetensors +3 -0
- last-checkpoint/model-00002-of-00004.safetensors +3 -0
- last-checkpoint/model-00003-of-00004.safetensors +3 -0
- last-checkpoint/model-00004-of-00004.safetensors +3 -0
- last-checkpoint/model.safetensors.index.json +346 -0
- last-checkpoint/rng_state_0.pth +3 -0
- last-checkpoint/rng_state_1.pth +3 -0
- last-checkpoint/scheduler.pt +3 -0
- last-checkpoint/special_tokens_map.json +31 -0
- last-checkpoint/tokenizer.json +3 -0
- last-checkpoint/tokenizer_config.json +211 -0
- last-checkpoint/trainer_state.json +1924 -0
- last-checkpoint/training_args.bin +3 -0
- last-checkpoint/vocab.json +0 -0
- last-checkpoint/zero_to_fp32.py +760 -0
last-checkpoint/added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
last-checkpoint/config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "AmberYifan/Qwen2.5-7B-sft-ultrachat",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151643,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 3584,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 18944,
|
13 |
+
"max_position_embeddings": 131072,
|
14 |
+
"max_window_layers": 28,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 28,
|
17 |
+
"num_hidden_layers": 28,
|
18 |
+
"num_key_value_heads": 4,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": null,
|
23 |
+
"tie_word_embeddings": false,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.46.3",
|
26 |
+
"use_cache": false,
|
27 |
+
"use_mrope": false,
|
28 |
+
"use_sliding_window": false,
|
29 |
+
"vocab_size": 152064
|
30 |
+
}
|
last-checkpoint/generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"eos_token_id": 151643,
|
4 |
+
"max_new_tokens": 2048,
|
5 |
+
"transformers_version": "4.46.3"
|
6 |
+
}
|
last-checkpoint/global_step1248/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f706b8b8d2ef938d527bdfdd1e809df7664a988790df7a44016d40cd274fcc1
|
3 |
+
size 30462473157
|
last-checkpoint/global_step1248/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcb6eec804d87f5e2cbead4ebc0ff43b0c3f0b3334c8db672000346ef6c141b8
|
3 |
+
size 30462473157
|
last-checkpoint/global_step1248/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74c46e935ed23b3a4991b84486dc9efa4a0e8d6fa10e431bdc9fc7e2c23e96d1
|
3 |
+
size 168021
|
last-checkpoint/global_step1248/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9cd8d9974d472a550c066ee24cb79efd902c31ced12d96f1839c84ecd5a43c1
|
3 |
+
size 168021
|
last-checkpoint/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1248
|
last-checkpoint/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
last-checkpoint/model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02a87a068580e17b63efa87796e3cc03c3c80312c9971d47fd2fd4f6d5582a43
|
3 |
+
size 4877660776
|
last-checkpoint/model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c475f356780c768e46eacf970415ab7cc46714ef3732edce1110907dd8f21a3
|
3 |
+
size 4932751008
|
last-checkpoint/model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a82ea2f8d60eb99e2c2e7b52258f8ad9af5e81e7251a460b3067da29fd499b58
|
3 |
+
size 4330865200
|
last-checkpoint/model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f1f53ced200b2511a937c79d9d4878ea6c7d89792cc4144436543f708ee49f1
|
3 |
+
size 1089994880
|
last-checkpoint/model.safetensors.index.json
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15231233024
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
308 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
344 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
345 |
+
}
|
346 |
+
}
|
last-checkpoint/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b580656286e8a6f334aced7bdb46499a54f3bb95644a0167405da037afbd894d
|
3 |
+
size 14768
|
last-checkpoint/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a763d1d109f11374f3725ac97283433a5c2264a51fd11d55a5af0441e79bbe2c
|
3 |
+
size 14768
|
last-checkpoint/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f509e07aeb2d18a9542d77802086a220c855eaadfa7372ba3c450b3c079e1739
|
3 |
+
size 1064
|
last-checkpoint/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
last-checkpoint/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
last-checkpoint/tokenizer_config.json
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|endoftext|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"max_length": 1024,
|
203 |
+
"model_max_length": 2048,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"stride": 0,
|
207 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
208 |
+
"truncation_side": "left",
|
209 |
+
"truncation_strategy": "longest_first",
|
210 |
+
"unk_token": null
|
211 |
+
}
|
last-checkpoint/trainer_state.json
ADDED
@@ -0,0 +1,1924 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1248,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0008012820512820513,
|
13 |
+
"grad_norm": 64.04028419295403,
|
14 |
+
"learning_rate": 1.3333333333333333e-09,
|
15 |
+
"logits/chosen": 0.12353515625,
|
16 |
+
"logits/rejected": 0.224609375,
|
17 |
+
"logps/chosen": -66.0,
|
18 |
+
"logps/rejected": -100.0,
|
19 |
+
"loss": 0.6914,
|
20 |
+
"rewards/accuracies": 0.0,
|
21 |
+
"rewards/chosen": 0.0,
|
22 |
+
"rewards/margins": 0.0,
|
23 |
+
"rewards/rejected": 0.0,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.008012820512820512,
|
28 |
+
"grad_norm": 86.24089113539306,
|
29 |
+
"learning_rate": 1.3333333333333334e-08,
|
30 |
+
"logits/chosen": 0.1748046875,
|
31 |
+
"logits/rejected": 0.1181640625,
|
32 |
+
"logps/chosen": -189.0,
|
33 |
+
"logps/rejected": -129.0,
|
34 |
+
"loss": 0.6925,
|
35 |
+
"rewards/accuracies": 0.3333333432674408,
|
36 |
+
"rewards/chosen": 0.006256103515625,
|
37 |
+
"rewards/margins": 0.009033203125,
|
38 |
+
"rewards/rejected": -0.0027923583984375,
|
39 |
+
"step": 10
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.016025641025641024,
|
43 |
+
"grad_norm": 89.22477084650417,
|
44 |
+
"learning_rate": 2.6666666666666667e-08,
|
45 |
+
"logits/chosen": 0.052490234375,
|
46 |
+
"logits/rejected": 0.1142578125,
|
47 |
+
"logps/chosen": -206.0,
|
48 |
+
"logps/rejected": -130.0,
|
49 |
+
"loss": 0.6951,
|
50 |
+
"rewards/accuracies": 0.22499999403953552,
|
51 |
+
"rewards/chosen": -0.014404296875,
|
52 |
+
"rewards/margins": -0.0194091796875,
|
53 |
+
"rewards/rejected": 0.0050048828125,
|
54 |
+
"step": 20
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.02403846153846154,
|
58 |
+
"grad_norm": 93.71269866728797,
|
59 |
+
"learning_rate": 4e-08,
|
60 |
+
"logits/chosen": 0.0869140625,
|
61 |
+
"logits/rejected": 0.0299072265625,
|
62 |
+
"logps/chosen": -183.0,
|
63 |
+
"logps/rejected": -135.0,
|
64 |
+
"loss": 0.6887,
|
65 |
+
"rewards/accuracies": 0.4000000059604645,
|
66 |
+
"rewards/chosen": 0.0087890625,
|
67 |
+
"rewards/margins": 0.0181884765625,
|
68 |
+
"rewards/rejected": -0.0093994140625,
|
69 |
+
"step": 30
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.03205128205128205,
|
73 |
+
"grad_norm": 89.05552052917865,
|
74 |
+
"learning_rate": 5.3333333333333334e-08,
|
75 |
+
"logits/chosen": 0.2392578125,
|
76 |
+
"logits/rejected": 0.13671875,
|
77 |
+
"logps/chosen": -205.0,
|
78 |
+
"logps/rejected": -138.0,
|
79 |
+
"loss": 0.6902,
|
80 |
+
"rewards/accuracies": 0.32499998807907104,
|
81 |
+
"rewards/chosen": 0.005615234375,
|
82 |
+
"rewards/margins": 0.00311279296875,
|
83 |
+
"rewards/rejected": 0.0025177001953125,
|
84 |
+
"step": 40
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.04006410256410257,
|
88 |
+
"grad_norm": 87.83482919892937,
|
89 |
+
"learning_rate": 6.666666666666667e-08,
|
90 |
+
"logits/chosen": 0.1875,
|
91 |
+
"logits/rejected": 0.0576171875,
|
92 |
+
"logps/chosen": -158.0,
|
93 |
+
"logps/rejected": -119.5,
|
94 |
+
"loss": 0.6711,
|
95 |
+
"rewards/accuracies": 0.4749999940395355,
|
96 |
+
"rewards/chosen": 0.022216796875,
|
97 |
+
"rewards/margins": 0.035888671875,
|
98 |
+
"rewards/rejected": -0.0137939453125,
|
99 |
+
"step": 50
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.04807692307692308,
|
103 |
+
"grad_norm": 82.90814662285723,
|
104 |
+
"learning_rate": 8e-08,
|
105 |
+
"logits/chosen": 0.36328125,
|
106 |
+
"logits/rejected": 0.166015625,
|
107 |
+
"logps/chosen": -224.0,
|
108 |
+
"logps/rejected": -134.0,
|
109 |
+
"loss": 0.6447,
|
110 |
+
"rewards/accuracies": 0.800000011920929,
|
111 |
+
"rewards/chosen": 0.0634765625,
|
112 |
+
"rewards/margins": 0.11279296875,
|
113 |
+
"rewards/rejected": -0.04931640625,
|
114 |
+
"step": 60
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.05608974358974359,
|
118 |
+
"grad_norm": 83.47212098678433,
|
119 |
+
"learning_rate": 9.333333333333334e-08,
|
120 |
+
"logits/chosen": 0.306640625,
|
121 |
+
"logits/rejected": 0.298828125,
|
122 |
+
"logps/chosen": -196.0,
|
123 |
+
"logps/rejected": -132.0,
|
124 |
+
"loss": 0.6162,
|
125 |
+
"rewards/accuracies": 0.8999999761581421,
|
126 |
+
"rewards/chosen": 0.07177734375,
|
127 |
+
"rewards/margins": 0.154296875,
|
128 |
+
"rewards/rejected": -0.08203125,
|
129 |
+
"step": 70
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.0641025641025641,
|
133 |
+
"grad_norm": 72.70460499175852,
|
134 |
+
"learning_rate": 1.0666666666666667e-07,
|
135 |
+
"logits/chosen": 0.248046875,
|
136 |
+
"logits/rejected": 0.201171875,
|
137 |
+
"logps/chosen": -202.0,
|
138 |
+
"logps/rejected": -136.0,
|
139 |
+
"loss": 0.5689,
|
140 |
+
"rewards/accuracies": 1.0,
|
141 |
+
"rewards/chosen": 0.140625,
|
142 |
+
"rewards/margins": 0.294921875,
|
143 |
+
"rewards/rejected": -0.154296875,
|
144 |
+
"step": 80
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 0.07211538461538461,
|
148 |
+
"grad_norm": 65.1729310926141,
|
149 |
+
"learning_rate": 1.2e-07,
|
150 |
+
"logits/chosen": 0.2255859375,
|
151 |
+
"logits/rejected": 0.064453125,
|
152 |
+
"logps/chosen": -182.0,
|
153 |
+
"logps/rejected": -130.0,
|
154 |
+
"loss": 0.5326,
|
155 |
+
"rewards/accuracies": 1.0,
|
156 |
+
"rewards/chosen": 0.1494140625,
|
157 |
+
"rewards/margins": 0.34765625,
|
158 |
+
"rewards/rejected": -0.197265625,
|
159 |
+
"step": 90
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.08012820512820513,
|
163 |
+
"grad_norm": 52.76168152275494,
|
164 |
+
"learning_rate": 1.3333333333333334e-07,
|
165 |
+
"logits/chosen": 0.38671875,
|
166 |
+
"logits/rejected": 0.11474609375,
|
167 |
+
"logps/chosen": -209.0,
|
168 |
+
"logps/rejected": -153.0,
|
169 |
+
"loss": 0.4703,
|
170 |
+
"rewards/accuracies": 1.0,
|
171 |
+
"rewards/chosen": 0.2578125,
|
172 |
+
"rewards/margins": 0.51953125,
|
173 |
+
"rewards/rejected": -0.259765625,
|
174 |
+
"step": 100
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 0.08814102564102565,
|
178 |
+
"grad_norm": 47.501730286877184,
|
179 |
+
"learning_rate": 1.4666666666666666e-07,
|
180 |
+
"logits/chosen": 0.296875,
|
181 |
+
"logits/rejected": 0.3125,
|
182 |
+
"logps/chosen": -191.0,
|
183 |
+
"logps/rejected": -149.0,
|
184 |
+
"loss": 0.3988,
|
185 |
+
"rewards/accuracies": 1.0,
|
186 |
+
"rewards/chosen": 0.33203125,
|
187 |
+
"rewards/margins": 0.80078125,
|
188 |
+
"rewards/rejected": -0.466796875,
|
189 |
+
"step": 110
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.09615384615384616,
|
193 |
+
"grad_norm": 40.40573175478169,
|
194 |
+
"learning_rate": 1.6e-07,
|
195 |
+
"logits/chosen": 0.1884765625,
|
196 |
+
"logits/rejected": 0.283203125,
|
197 |
+
"logps/chosen": -212.0,
|
198 |
+
"logps/rejected": -145.0,
|
199 |
+
"loss": 0.3222,
|
200 |
+
"rewards/accuracies": 1.0,
|
201 |
+
"rewards/chosen": 0.421875,
|
202 |
+
"rewards/margins": 1.015625,
|
203 |
+
"rewards/rejected": -0.59375,
|
204 |
+
"step": 120
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 0.10416666666666667,
|
208 |
+
"grad_norm": 27.672418710748364,
|
209 |
+
"learning_rate": 1.7333333333333332e-07,
|
210 |
+
"logits/chosen": 0.359375,
|
211 |
+
"logits/rejected": 0.365234375,
|
212 |
+
"logps/chosen": -220.0,
|
213 |
+
"logps/rejected": -156.0,
|
214 |
+
"loss": 0.2564,
|
215 |
+
"rewards/accuracies": 1.0,
|
216 |
+
"rewards/chosen": 0.66015625,
|
217 |
+
"rewards/margins": 1.453125,
|
218 |
+
"rewards/rejected": -0.79296875,
|
219 |
+
"step": 130
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.11217948717948718,
|
223 |
+
"grad_norm": 30.919301140228264,
|
224 |
+
"learning_rate": 1.8666666666666667e-07,
|
225 |
+
"logits/chosen": 0.1298828125,
|
226 |
+
"logits/rejected": 0.412109375,
|
227 |
+
"logps/chosen": -193.0,
|
228 |
+
"logps/rejected": -151.0,
|
229 |
+
"loss": 0.196,
|
230 |
+
"rewards/accuracies": 1.0,
|
231 |
+
"rewards/chosen": 0.6875,
|
232 |
+
"rewards/margins": 1.828125,
|
233 |
+
"rewards/rejected": -1.140625,
|
234 |
+
"step": 140
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.1201923076923077,
|
238 |
+
"grad_norm": 21.901759461519386,
|
239 |
+
"learning_rate": 2e-07,
|
240 |
+
"logits/chosen": 0.32421875,
|
241 |
+
"logits/rejected": 0.30859375,
|
242 |
+
"logps/chosen": -207.0,
|
243 |
+
"logps/rejected": -150.0,
|
244 |
+
"loss": 0.1502,
|
245 |
+
"rewards/accuracies": 1.0,
|
246 |
+
"rewards/chosen": 0.69921875,
|
247 |
+
"rewards/margins": 2.046875,
|
248 |
+
"rewards/rejected": -1.3515625,
|
249 |
+
"step": 150
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.1282051282051282,
|
253 |
+
"grad_norm": 29.817507103981917,
|
254 |
+
"learning_rate": 2.1333333333333334e-07,
|
255 |
+
"logits/chosen": 0.216796875,
|
256 |
+
"logits/rejected": 0.384765625,
|
257 |
+
"logps/chosen": -209.0,
|
258 |
+
"logps/rejected": -143.0,
|
259 |
+
"loss": 0.1123,
|
260 |
+
"rewards/accuracies": 1.0,
|
261 |
+
"rewards/chosen": 0.84765625,
|
262 |
+
"rewards/margins": 2.359375,
|
263 |
+
"rewards/rejected": -1.5078125,
|
264 |
+
"step": 160
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 0.1362179487179487,
|
268 |
+
"grad_norm": 8.498490051434544,
|
269 |
+
"learning_rate": 2.2666666666666663e-07,
|
270 |
+
"logits/chosen": 0.51171875,
|
271 |
+
"logits/rejected": 0.46875,
|
272 |
+
"logps/chosen": -182.0,
|
273 |
+
"logps/rejected": -146.0,
|
274 |
+
"loss": 0.0913,
|
275 |
+
"rewards/accuracies": 1.0,
|
276 |
+
"rewards/chosen": 1.046875,
|
277 |
+
"rewards/margins": 3.0,
|
278 |
+
"rewards/rejected": -1.9453125,
|
279 |
+
"step": 170
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.14423076923076922,
|
283 |
+
"grad_norm": 7.296587918545859,
|
284 |
+
"learning_rate": 2.4e-07,
|
285 |
+
"logits/chosen": 0.234375,
|
286 |
+
"logits/rejected": 0.2216796875,
|
287 |
+
"logps/chosen": -224.0,
|
288 |
+
"logps/rejected": -172.0,
|
289 |
+
"loss": 0.0551,
|
290 |
+
"rewards/accuracies": 1.0,
|
291 |
+
"rewards/chosen": 1.4296875,
|
292 |
+
"rewards/margins": 3.734375,
|
293 |
+
"rewards/rejected": -2.296875,
|
294 |
+
"step": 180
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 0.15224358974358973,
|
298 |
+
"grad_norm": 6.034643267260365,
|
299 |
+
"learning_rate": 2.533333333333333e-07,
|
300 |
+
"logits/chosen": 0.443359375,
|
301 |
+
"logits/rejected": 0.333984375,
|
302 |
+
"logps/chosen": -198.0,
|
303 |
+
"logps/rejected": -168.0,
|
304 |
+
"loss": 0.0434,
|
305 |
+
"rewards/accuracies": 1.0,
|
306 |
+
"rewards/chosen": 1.515625,
|
307 |
+
"rewards/margins": 4.1875,
|
308 |
+
"rewards/rejected": -2.671875,
|
309 |
+
"step": 190
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.16025641025641027,
|
313 |
+
"grad_norm": 3.782776063442764,
|
314 |
+
"learning_rate": 2.6666666666666667e-07,
|
315 |
+
"logits/chosen": 0.451171875,
|
316 |
+
"logits/rejected": 0.5390625,
|
317 |
+
"logps/chosen": -174.0,
|
318 |
+
"logps/rejected": -156.0,
|
319 |
+
"loss": 0.042,
|
320 |
+
"rewards/accuracies": 1.0,
|
321 |
+
"rewards/chosen": 1.75,
|
322 |
+
"rewards/margins": 4.6875,
|
323 |
+
"rewards/rejected": -2.9375,
|
324 |
+
"step": 200
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.16826923076923078,
|
328 |
+
"grad_norm": 2.101068154945795,
|
329 |
+
"learning_rate": 2.8e-07,
|
330 |
+
"logits/chosen": 0.57421875,
|
331 |
+
"logits/rejected": 0.578125,
|
332 |
+
"logps/chosen": -171.0,
|
333 |
+
"logps/rejected": -160.0,
|
334 |
+
"loss": 0.0221,
|
335 |
+
"rewards/accuracies": 1.0,
|
336 |
+
"rewards/chosen": 1.609375,
|
337 |
+
"rewards/margins": 4.9375,
|
338 |
+
"rewards/rejected": -3.328125,
|
339 |
+
"step": 210
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.1762820512820513,
|
343 |
+
"grad_norm": 2.1370635684042583,
|
344 |
+
"learning_rate": 2.933333333333333e-07,
|
345 |
+
"logits/chosen": 0.39453125,
|
346 |
+
"logits/rejected": 0.388671875,
|
347 |
+
"logps/chosen": -145.0,
|
348 |
+
"logps/rejected": -164.0,
|
349 |
+
"loss": 0.0218,
|
350 |
+
"rewards/accuracies": 0.9750000238418579,
|
351 |
+
"rewards/chosen": 1.5625,
|
352 |
+
"rewards/margins": 5.375,
|
353 |
+
"rewards/rejected": -3.828125,
|
354 |
+
"step": 220
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 0.1842948717948718,
|
358 |
+
"grad_norm": 6.202641598231744,
|
359 |
+
"learning_rate": 3.066666666666666e-07,
|
360 |
+
"logits/chosen": 0.5546875,
|
361 |
+
"logits/rejected": 0.78125,
|
362 |
+
"logps/chosen": -143.0,
|
363 |
+
"logps/rejected": -166.0,
|
364 |
+
"loss": 0.0142,
|
365 |
+
"rewards/accuracies": 1.0,
|
366 |
+
"rewards/chosen": 2.0625,
|
367 |
+
"rewards/margins": 6.09375,
|
368 |
+
"rewards/rejected": -4.03125,
|
369 |
+
"step": 230
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.19230769230769232,
|
373 |
+
"grad_norm": 3.408195034795853,
|
374 |
+
"learning_rate": 3.2e-07,
|
375 |
+
"logits/chosen": 0.416015625,
|
376 |
+
"logits/rejected": 0.640625,
|
377 |
+
"logps/chosen": -172.0,
|
378 |
+
"logps/rejected": -169.0,
|
379 |
+
"loss": 0.0257,
|
380 |
+
"rewards/accuracies": 0.9750000238418579,
|
381 |
+
"rewards/chosen": 1.75,
|
382 |
+
"rewards/margins": 5.9375,
|
383 |
+
"rewards/rejected": -4.1875,
|
384 |
+
"step": 240
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 0.20032051282051283,
|
388 |
+
"grad_norm": 0.7951516189038192,
|
389 |
+
"learning_rate": 3.333333333333333e-07,
|
390 |
+
"logits/chosen": 0.443359375,
|
391 |
+
"logits/rejected": 0.439453125,
|
392 |
+
"logps/chosen": -180.0,
|
393 |
+
"logps/rejected": -169.0,
|
394 |
+
"loss": 0.0042,
|
395 |
+
"rewards/accuracies": 1.0,
|
396 |
+
"rewards/chosen": 2.421875,
|
397 |
+
"rewards/margins": 7.15625,
|
398 |
+
"rewards/rejected": -4.71875,
|
399 |
+
"step": 250
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.20833333333333334,
|
403 |
+
"grad_norm": 0.6828867328882736,
|
404 |
+
"learning_rate": 3.4666666666666665e-07,
|
405 |
+
"logits/chosen": 0.671875,
|
406 |
+
"logits/rejected": 0.5859375,
|
407 |
+
"logps/chosen": -105.5,
|
408 |
+
"logps/rejected": -189.0,
|
409 |
+
"loss": 0.002,
|
410 |
+
"rewards/accuracies": 1.0,
|
411 |
+
"rewards/chosen": 2.421875,
|
412 |
+
"rewards/margins": 8.1875,
|
413 |
+
"rewards/rejected": -5.75,
|
414 |
+
"step": 260
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 0.21634615384615385,
|
418 |
+
"grad_norm": 2.181808594179521,
|
419 |
+
"learning_rate": 3.6e-07,
|
420 |
+
"logits/chosen": 0.7109375,
|
421 |
+
"logits/rejected": 0.5859375,
|
422 |
+
"logps/chosen": -148.0,
|
423 |
+
"logps/rejected": -187.0,
|
424 |
+
"loss": 0.0079,
|
425 |
+
"rewards/accuracies": 1.0,
|
426 |
+
"rewards/chosen": 2.5,
|
427 |
+
"rewards/margins": 7.09375,
|
428 |
+
"rewards/rejected": -4.59375,
|
429 |
+
"step": 270
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.22435897435897437,
|
433 |
+
"grad_norm": 0.38268137385988604,
|
434 |
+
"learning_rate": 3.7333333333333334e-07,
|
435 |
+
"logits/chosen": 0.5234375,
|
436 |
+
"logits/rejected": 0.59765625,
|
437 |
+
"logps/chosen": -188.0,
|
438 |
+
"logps/rejected": -190.0,
|
439 |
+
"loss": 0.0051,
|
440 |
+
"rewards/accuracies": 1.0,
|
441 |
+
"rewards/chosen": 2.625,
|
442 |
+
"rewards/margins": 8.3125,
|
443 |
+
"rewards/rejected": -5.6875,
|
444 |
+
"step": 280
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.23237179487179488,
|
448 |
+
"grad_norm": 0.4512252150149582,
|
449 |
+
"learning_rate": 3.8666666666666664e-07,
|
450 |
+
"logits/chosen": 0.5546875,
|
451 |
+
"logits/rejected": 0.55078125,
|
452 |
+
"logps/chosen": -151.0,
|
453 |
+
"logps/rejected": -190.0,
|
454 |
+
"loss": 0.0025,
|
455 |
+
"rewards/accuracies": 1.0,
|
456 |
+
"rewards/chosen": 2.65625,
|
457 |
+
"rewards/margins": 8.625,
|
458 |
+
"rewards/rejected": -6.0,
|
459 |
+
"step": 290
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.2403846153846154,
|
463 |
+
"grad_norm": 0.584501118833293,
|
464 |
+
"learning_rate": 4e-07,
|
465 |
+
"logits/chosen": 0.287109375,
|
466 |
+
"logits/rejected": 0.5703125,
|
467 |
+
"logps/chosen": -160.0,
|
468 |
+
"logps/rejected": -183.0,
|
469 |
+
"loss": 0.0222,
|
470 |
+
"rewards/accuracies": 0.9750000238418579,
|
471 |
+
"rewards/chosen": 2.71875,
|
472 |
+
"rewards/margins": 8.4375,
|
473 |
+
"rewards/rejected": -5.75,
|
474 |
+
"step": 300
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 0.2483974358974359,
|
478 |
+
"grad_norm": 1.2282710731271989,
|
479 |
+
"learning_rate": 4.1333333333333333e-07,
|
480 |
+
"logits/chosen": 0.5234375,
|
481 |
+
"logits/rejected": 0.5703125,
|
482 |
+
"logps/chosen": -162.0,
|
483 |
+
"logps/rejected": -217.0,
|
484 |
+
"loss": 0.0014,
|
485 |
+
"rewards/accuracies": 1.0,
|
486 |
+
"rewards/chosen": 2.90625,
|
487 |
+
"rewards/margins": 9.5625,
|
488 |
+
"rewards/rejected": -6.65625,
|
489 |
+
"step": 310
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 0.2564102564102564,
|
493 |
+
"grad_norm": 0.22314938141969023,
|
494 |
+
"learning_rate": 4.266666666666667e-07,
|
495 |
+
"logits/chosen": 0.36328125,
|
496 |
+
"logits/rejected": 0.6796875,
|
497 |
+
"logps/chosen": -147.0,
|
498 |
+
"logps/rejected": -208.0,
|
499 |
+
"loss": 0.0025,
|
500 |
+
"rewards/accuracies": 1.0,
|
501 |
+
"rewards/chosen": 2.625,
|
502 |
+
"rewards/margins": 9.625,
|
503 |
+
"rewards/rejected": -6.96875,
|
504 |
+
"step": 320
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 0.2644230769230769,
|
508 |
+
"grad_norm": 4.201699473979923,
|
509 |
+
"learning_rate": 4.3999999999999997e-07,
|
510 |
+
"logits/chosen": 0.4375,
|
511 |
+
"logits/rejected": 0.52734375,
|
512 |
+
"logps/chosen": -203.0,
|
513 |
+
"logps/rejected": -194.0,
|
514 |
+
"loss": 0.0057,
|
515 |
+
"rewards/accuracies": 1.0,
|
516 |
+
"rewards/chosen": 3.046875,
|
517 |
+
"rewards/margins": 9.6875,
|
518 |
+
"rewards/rejected": -6.65625,
|
519 |
+
"step": 330
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 0.2724358974358974,
|
523 |
+
"grad_norm": 0.024959093936575825,
|
524 |
+
"learning_rate": 4.5333333333333326e-07,
|
525 |
+
"logits/chosen": 0.5234375,
|
526 |
+
"logits/rejected": 0.73828125,
|
527 |
+
"logps/chosen": -148.0,
|
528 |
+
"logps/rejected": -197.0,
|
529 |
+
"loss": 0.0016,
|
530 |
+
"rewards/accuracies": 1.0,
|
531 |
+
"rewards/chosen": 2.8125,
|
532 |
+
"rewards/margins": 9.5625,
|
533 |
+
"rewards/rejected": -6.75,
|
534 |
+
"step": 340
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.28044871794871795,
|
538 |
+
"grad_norm": 0.5323887354832039,
|
539 |
+
"learning_rate": 4.6666666666666666e-07,
|
540 |
+
"logits/chosen": 0.59765625,
|
541 |
+
"logits/rejected": 0.64453125,
|
542 |
+
"logps/chosen": -171.0,
|
543 |
+
"logps/rejected": -211.0,
|
544 |
+
"loss": 0.0008,
|
545 |
+
"rewards/accuracies": 1.0,
|
546 |
+
"rewards/chosen": 3.140625,
|
547 |
+
"rewards/margins": 10.4375,
|
548 |
+
"rewards/rejected": -7.3125,
|
549 |
+
"step": 350
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.28846153846153844,
|
553 |
+
"grad_norm": 1.2240810840279064,
|
554 |
+
"learning_rate": 4.8e-07,
|
555 |
+
"logits/chosen": 0.458984375,
|
556 |
+
"logits/rejected": 0.59375,
|
557 |
+
"logps/chosen": -157.0,
|
558 |
+
"logps/rejected": -223.0,
|
559 |
+
"loss": 0.0018,
|
560 |
+
"rewards/accuracies": 1.0,
|
561 |
+
"rewards/chosen": 3.109375,
|
562 |
+
"rewards/margins": 10.9375,
|
563 |
+
"rewards/rejected": -7.8125,
|
564 |
+
"step": 360
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 0.296474358974359,
|
568 |
+
"grad_norm": 0.04698426123066838,
|
569 |
+
"learning_rate": 4.933333333333333e-07,
|
570 |
+
"logits/chosen": 0.5625,
|
571 |
+
"logits/rejected": 0.75,
|
572 |
+
"logps/chosen": -144.0,
|
573 |
+
"logps/rejected": -225.0,
|
574 |
+
"loss": 0.0081,
|
575 |
+
"rewards/accuracies": 1.0,
|
576 |
+
"rewards/chosen": 3.34375,
|
577 |
+
"rewards/margins": 11.375,
|
578 |
+
"rewards/rejected": -8.0625,
|
579 |
+
"step": 370
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.30448717948717946,
|
583 |
+
"grad_norm": 0.14652045043202064,
|
584 |
+
"learning_rate": 4.992579400415554e-07,
|
585 |
+
"logits/chosen": 0.451171875,
|
586 |
+
"logits/rejected": 0.796875,
|
587 |
+
"logps/chosen": -155.0,
|
588 |
+
"logps/rejected": -226.0,
|
589 |
+
"loss": 0.001,
|
590 |
+
"rewards/accuracies": 1.0,
|
591 |
+
"rewards/chosen": 3.21875,
|
592 |
+
"rewards/margins": 11.625,
|
593 |
+
"rewards/rejected": -8.375,
|
594 |
+
"step": 380
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 0.3125,
|
598 |
+
"grad_norm": 0.005895445560068654,
|
599 |
+
"learning_rate": 4.97773820124666e-07,
|
600 |
+
"logits/chosen": 0.248046875,
|
601 |
+
"logits/rejected": 0.7421875,
|
602 |
+
"logps/chosen": -182.0,
|
603 |
+
"logps/rejected": -225.0,
|
604 |
+
"loss": 0.002,
|
605 |
+
"rewards/accuracies": 1.0,
|
606 |
+
"rewards/chosen": 3.25,
|
607 |
+
"rewards/margins": 11.4375,
|
608 |
+
"rewards/rejected": -8.1875,
|
609 |
+
"step": 390
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.32051282051282054,
|
613 |
+
"grad_norm": 0.05299990848269769,
|
614 |
+
"learning_rate": 4.962897002077768e-07,
|
615 |
+
"logits/chosen": 0.46875,
|
616 |
+
"logits/rejected": 0.6015625,
|
617 |
+
"logps/chosen": -195.0,
|
618 |
+
"logps/rejected": -221.0,
|
619 |
+
"loss": 0.0013,
|
620 |
+
"rewards/accuracies": 1.0,
|
621 |
+
"rewards/chosen": 3.46875,
|
622 |
+
"rewards/margins": 11.3125,
|
623 |
+
"rewards/rejected": -7.8125,
|
624 |
+
"step": 400
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 0.328525641025641,
|
628 |
+
"grad_norm": 0.003060182358037053,
|
629 |
+
"learning_rate": 4.948055802908874e-07,
|
630 |
+
"logits/chosen": 0.609375,
|
631 |
+
"logits/rejected": 0.5546875,
|
632 |
+
"logps/chosen": -156.0,
|
633 |
+
"logps/rejected": -216.0,
|
634 |
+
"loss": 0.0071,
|
635 |
+
"rewards/accuracies": 1.0,
|
636 |
+
"rewards/chosen": 3.375,
|
637 |
+
"rewards/margins": 11.125,
|
638 |
+
"rewards/rejected": -7.78125,
|
639 |
+
"step": 410
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.33653846153846156,
|
643 |
+
"grad_norm": 5.391503234606234,
|
644 |
+
"learning_rate": 4.933214603739982e-07,
|
645 |
+
"logits/chosen": 0.458984375,
|
646 |
+
"logits/rejected": 0.68359375,
|
647 |
+
"logps/chosen": -194.0,
|
648 |
+
"logps/rejected": -225.0,
|
649 |
+
"loss": 0.0012,
|
650 |
+
"rewards/accuracies": 1.0,
|
651 |
+
"rewards/chosen": 3.34375,
|
652 |
+
"rewards/margins": 11.625,
|
653 |
+
"rewards/rejected": -8.25,
|
654 |
+
"step": 420
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 0.34455128205128205,
|
658 |
+
"grad_norm": 0.016009321940122195,
|
659 |
+
"learning_rate": 4.918373404571089e-07,
|
660 |
+
"logits/chosen": 0.58203125,
|
661 |
+
"logits/rejected": 0.7734375,
|
662 |
+
"logps/chosen": -178.0,
|
663 |
+
"logps/rejected": -230.0,
|
664 |
+
"loss": 0.0011,
|
665 |
+
"rewards/accuracies": 1.0,
|
666 |
+
"rewards/chosen": 3.1875,
|
667 |
+
"rewards/margins": 12.0,
|
668 |
+
"rewards/rejected": -8.8125,
|
669 |
+
"step": 430
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.3525641025641026,
|
673 |
+
"grad_norm": 0.04011636896023994,
|
674 |
+
"learning_rate": 4.903532205402196e-07,
|
675 |
+
"logits/chosen": 0.5625,
|
676 |
+
"logits/rejected": 0.57421875,
|
677 |
+
"logps/chosen": -172.0,
|
678 |
+
"logps/rejected": -211.0,
|
679 |
+
"loss": 0.0047,
|
680 |
+
"rewards/accuracies": 1.0,
|
681 |
+
"rewards/chosen": 3.125,
|
682 |
+
"rewards/margins": 11.125,
|
683 |
+
"rewards/rejected": -7.96875,
|
684 |
+
"step": 440
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 0.3605769230769231,
|
688 |
+
"grad_norm": 1.884252459181768,
|
689 |
+
"learning_rate": 4.888691006233304e-07,
|
690 |
+
"logits/chosen": 0.640625,
|
691 |
+
"logits/rejected": 0.7578125,
|
692 |
+
"logps/chosen": -144.0,
|
693 |
+
"logps/rejected": -220.0,
|
694 |
+
"loss": 0.0201,
|
695 |
+
"rewards/accuracies": 0.9750000238418579,
|
696 |
+
"rewards/chosen": 3.28125,
|
697 |
+
"rewards/margins": 12.125,
|
698 |
+
"rewards/rejected": -8.8125,
|
699 |
+
"step": 450
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.3685897435897436,
|
703 |
+
"grad_norm": 0.024673460286282534,
|
704 |
+
"learning_rate": 4.873849807064411e-07,
|
705 |
+
"logits/chosen": 0.78125,
|
706 |
+
"logits/rejected": 0.79296875,
|
707 |
+
"logps/chosen": -121.0,
|
708 |
+
"logps/rejected": -219.0,
|
709 |
+
"loss": 0.0003,
|
710 |
+
"rewards/accuracies": 1.0,
|
711 |
+
"rewards/chosen": 3.4375,
|
712 |
+
"rewards/margins": 12.3125,
|
713 |
+
"rewards/rejected": -8.875,
|
714 |
+
"step": 460
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 0.3766025641025641,
|
718 |
+
"grad_norm": 1.0653271799430997,
|
719 |
+
"learning_rate": 4.859008607895517e-07,
|
720 |
+
"logits/chosen": 0.8046875,
|
721 |
+
"logits/rejected": 0.8828125,
|
722 |
+
"logps/chosen": -141.0,
|
723 |
+
"logps/rejected": -223.0,
|
724 |
+
"loss": 0.0169,
|
725 |
+
"rewards/accuracies": 0.9750000238418579,
|
726 |
+
"rewards/chosen": 3.34375,
|
727 |
+
"rewards/margins": 12.1875,
|
728 |
+
"rewards/rejected": -8.8125,
|
729 |
+
"step": 470
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.38461538461538464,
|
733 |
+
"grad_norm": 0.5656275667559196,
|
734 |
+
"learning_rate": 4.844167408726625e-07,
|
735 |
+
"logits/chosen": 0.462890625,
|
736 |
+
"logits/rejected": 0.65625,
|
737 |
+
"logps/chosen": -128.0,
|
738 |
+
"logps/rejected": -209.0,
|
739 |
+
"loss": 0.0007,
|
740 |
+
"rewards/accuracies": 1.0,
|
741 |
+
"rewards/chosen": 3.015625,
|
742 |
+
"rewards/margins": 11.625,
|
743 |
+
"rewards/rejected": -8.625,
|
744 |
+
"step": 480
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.3926282051282051,
|
748 |
+
"grad_norm": 8.514426200575306,
|
749 |
+
"learning_rate": 4.829326209557732e-07,
|
750 |
+
"logits/chosen": 0.796875,
|
751 |
+
"logits/rejected": 0.91015625,
|
752 |
+
"logps/chosen": -170.0,
|
753 |
+
"logps/rejected": -224.0,
|
754 |
+
"loss": 0.0028,
|
755 |
+
"rewards/accuracies": 1.0,
|
756 |
+
"rewards/chosen": 3.28125,
|
757 |
+
"rewards/margins": 12.75,
|
758 |
+
"rewards/rejected": -9.4375,
|
759 |
+
"step": 490
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.40064102564102566,
|
763 |
+
"grad_norm": 0.03178905527763376,
|
764 |
+
"learning_rate": 4.814485010388839e-07,
|
765 |
+
"logits/chosen": 0.8359375,
|
766 |
+
"logits/rejected": 1.0546875,
|
767 |
+
"logps/chosen": -158.0,
|
768 |
+
"logps/rejected": -250.0,
|
769 |
+
"loss": 0.0004,
|
770 |
+
"rewards/accuracies": 1.0,
|
771 |
+
"rewards/chosen": 3.71875,
|
772 |
+
"rewards/margins": 14.0,
|
773 |
+
"rewards/rejected": -10.25,
|
774 |
+
"step": 500
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 0.40865384615384615,
|
778 |
+
"grad_norm": 1.4325610546983785,
|
779 |
+
"learning_rate": 4.799643811219946e-07,
|
780 |
+
"logits/chosen": 0.248046875,
|
781 |
+
"logits/rejected": 0.63671875,
|
782 |
+
"logps/chosen": -203.0,
|
783 |
+
"logps/rejected": -249.0,
|
784 |
+
"loss": 0.0016,
|
785 |
+
"rewards/accuracies": 1.0,
|
786 |
+
"rewards/chosen": 2.46875,
|
787 |
+
"rewards/margins": 12.1875,
|
788 |
+
"rewards/rejected": -9.6875,
|
789 |
+
"step": 510
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 0.4166666666666667,
|
793 |
+
"grad_norm": 0.12295978223631013,
|
794 |
+
"learning_rate": 4.784802612051053e-07,
|
795 |
+
"logits/chosen": 0.625,
|
796 |
+
"logits/rejected": 0.703125,
|
797 |
+
"logps/chosen": -177.0,
|
798 |
+
"logps/rejected": -226.0,
|
799 |
+
"loss": 0.0001,
|
800 |
+
"rewards/accuracies": 1.0,
|
801 |
+
"rewards/chosen": 3.625,
|
802 |
+
"rewards/margins": 13.4375,
|
803 |
+
"rewards/rejected": -9.75,
|
804 |
+
"step": 520
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 0.42467948717948717,
|
808 |
+
"grad_norm": 0.0028166962467554534,
|
809 |
+
"learning_rate": 4.769961412882161e-07,
|
810 |
+
"logits/chosen": 0.40625,
|
811 |
+
"logits/rejected": 0.64453125,
|
812 |
+
"logps/chosen": -203.0,
|
813 |
+
"logps/rejected": -247.0,
|
814 |
+
"loss": 0.0001,
|
815 |
+
"rewards/accuracies": 1.0,
|
816 |
+
"rewards/chosen": 3.6875,
|
817 |
+
"rewards/margins": 13.75,
|
818 |
+
"rewards/rejected": -10.0625,
|
819 |
+
"step": 530
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 0.4326923076923077,
|
823 |
+
"grad_norm": 0.010744699989711674,
|
824 |
+
"learning_rate": 4.755120213713268e-07,
|
825 |
+
"logits/chosen": 0.58984375,
|
826 |
+
"logits/rejected": 0.99609375,
|
827 |
+
"logps/chosen": -183.0,
|
828 |
+
"logps/rejected": -231.0,
|
829 |
+
"loss": 0.0008,
|
830 |
+
"rewards/accuracies": 1.0,
|
831 |
+
"rewards/chosen": 3.796875,
|
832 |
+
"rewards/margins": 13.3125,
|
833 |
+
"rewards/rejected": -9.5,
|
834 |
+
"step": 540
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 0.4407051282051282,
|
838 |
+
"grad_norm": 0.021039050905194416,
|
839 |
+
"learning_rate": 4.740279014544375e-07,
|
840 |
+
"logits/chosen": 0.25390625,
|
841 |
+
"logits/rejected": 0.69140625,
|
842 |
+
"logps/chosen": -195.0,
|
843 |
+
"logps/rejected": -236.0,
|
844 |
+
"loss": 0.0002,
|
845 |
+
"rewards/accuracies": 1.0,
|
846 |
+
"rewards/chosen": 3.25,
|
847 |
+
"rewards/margins": 13.1875,
|
848 |
+
"rewards/rejected": -9.9375,
|
849 |
+
"step": 550
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.44871794871794873,
|
853 |
+
"grad_norm": 0.000724403343700553,
|
854 |
+
"learning_rate": 4.725437815375482e-07,
|
855 |
+
"logits/chosen": 0.458984375,
|
856 |
+
"logits/rejected": 0.62109375,
|
857 |
+
"logps/chosen": -180.0,
|
858 |
+
"logps/rejected": -233.0,
|
859 |
+
"loss": 0.0002,
|
860 |
+
"rewards/accuracies": 1.0,
|
861 |
+
"rewards/chosen": 3.453125,
|
862 |
+
"rewards/margins": 13.625,
|
863 |
+
"rewards/rejected": -10.25,
|
864 |
+
"step": 560
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 0.4567307692307692,
|
868 |
+
"grad_norm": 0.3100975481455866,
|
869 |
+
"learning_rate": 4.710596616206589e-07,
|
870 |
+
"logits/chosen": 0.5546875,
|
871 |
+
"logits/rejected": 0.79296875,
|
872 |
+
"logps/chosen": -224.0,
|
873 |
+
"logps/rejected": -233.0,
|
874 |
+
"loss": 0.0008,
|
875 |
+
"rewards/accuracies": 1.0,
|
876 |
+
"rewards/chosen": 3.8125,
|
877 |
+
"rewards/margins": 13.3125,
|
878 |
+
"rewards/rejected": -9.5,
|
879 |
+
"step": 570
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.46474358974358976,
|
883 |
+
"grad_norm": 0.05039213843756819,
|
884 |
+
"learning_rate": 4.6957554170376963e-07,
|
885 |
+
"logits/chosen": 0.671875,
|
886 |
+
"logits/rejected": 0.734375,
|
887 |
+
"logps/chosen": -157.0,
|
888 |
+
"logps/rejected": -236.0,
|
889 |
+
"loss": 0.0002,
|
890 |
+
"rewards/accuracies": 1.0,
|
891 |
+
"rewards/chosen": 3.671875,
|
892 |
+
"rewards/margins": 13.875,
|
893 |
+
"rewards/rejected": -10.25,
|
894 |
+
"step": 580
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 0.47275641025641024,
|
898 |
+
"grad_norm": 0.008808070533990717,
|
899 |
+
"learning_rate": 4.680914217868804e-07,
|
900 |
+
"logits/chosen": 0.71484375,
|
901 |
+
"logits/rejected": 0.95703125,
|
902 |
+
"logps/chosen": -174.0,
|
903 |
+
"logps/rejected": -244.0,
|
904 |
+
"loss": 0.0068,
|
905 |
+
"rewards/accuracies": 1.0,
|
906 |
+
"rewards/chosen": 3.53125,
|
907 |
+
"rewards/margins": 13.6875,
|
908 |
+
"rewards/rejected": -10.125,
|
909 |
+
"step": 590
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 0.4807692307692308,
|
913 |
+
"grad_norm": 0.001963727046741742,
|
914 |
+
"learning_rate": 4.666073018699911e-07,
|
915 |
+
"logits/chosen": 0.5703125,
|
916 |
+
"logits/rejected": 1.046875,
|
917 |
+
"logps/chosen": -168.0,
|
918 |
+
"logps/rejected": -239.0,
|
919 |
+
"loss": 0.0001,
|
920 |
+
"rewards/accuracies": 1.0,
|
921 |
+
"rewards/chosen": 3.6875,
|
922 |
+
"rewards/margins": 13.5625,
|
923 |
+
"rewards/rejected": -9.875,
|
924 |
+
"step": 600
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"epoch": 0.48878205128205127,
|
928 |
+
"grad_norm": 0.05259445682378445,
|
929 |
+
"learning_rate": 4.6512318195310177e-07,
|
930 |
+
"logits/chosen": 0.6484375,
|
931 |
+
"logits/rejected": 0.8515625,
|
932 |
+
"logps/chosen": -155.0,
|
933 |
+
"logps/rejected": -233.0,
|
934 |
+
"loss": 0.0003,
|
935 |
+
"rewards/accuracies": 1.0,
|
936 |
+
"rewards/chosen": 3.171875,
|
937 |
+
"rewards/margins": 13.625,
|
938 |
+
"rewards/rejected": -10.5,
|
939 |
+
"step": 610
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 0.4967948717948718,
|
943 |
+
"grad_norm": 0.016747218645922837,
|
944 |
+
"learning_rate": 4.636390620362125e-07,
|
945 |
+
"logits/chosen": 0.625,
|
946 |
+
"logits/rejected": 0.7890625,
|
947 |
+
"logps/chosen": -198.0,
|
948 |
+
"logps/rejected": -227.0,
|
949 |
+
"loss": 0.0006,
|
950 |
+
"rewards/accuracies": 1.0,
|
951 |
+
"rewards/chosen": 3.625,
|
952 |
+
"rewards/margins": 12.9375,
|
953 |
+
"rewards/rejected": -9.3125,
|
954 |
+
"step": 620
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.5048076923076923,
|
958 |
+
"grad_norm": 0.008135550511695944,
|
959 |
+
"learning_rate": 4.621549421193232e-07,
|
960 |
+
"logits/chosen": 0.373046875,
|
961 |
+
"logits/rejected": 0.609375,
|
962 |
+
"logps/chosen": -167.0,
|
963 |
+
"logps/rejected": -248.0,
|
964 |
+
"loss": 0.0002,
|
965 |
+
"rewards/accuracies": 1.0,
|
966 |
+
"rewards/chosen": 3.453125,
|
967 |
+
"rewards/margins": 14.625,
|
968 |
+
"rewards/rejected": -11.1875,
|
969 |
+
"step": 630
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.5128205128205128,
|
973 |
+
"grad_norm": 0.0014877380037952115,
|
974 |
+
"learning_rate": 4.606708222024339e-07,
|
975 |
+
"logits/chosen": 0.48046875,
|
976 |
+
"logits/rejected": 0.91015625,
|
977 |
+
"logps/chosen": -176.0,
|
978 |
+
"logps/rejected": -246.0,
|
979 |
+
"loss": 0.0012,
|
980 |
+
"rewards/accuracies": 1.0,
|
981 |
+
"rewards/chosen": 3.59375,
|
982 |
+
"rewards/margins": 13.8125,
|
983 |
+
"rewards/rejected": -10.1875,
|
984 |
+
"step": 640
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"epoch": 0.5208333333333334,
|
988 |
+
"grad_norm": 0.03734119070490188,
|
989 |
+
"learning_rate": 4.591867022855446e-07,
|
990 |
+
"logits/chosen": 0.8203125,
|
991 |
+
"logits/rejected": 1.109375,
|
992 |
+
"logps/chosen": -140.0,
|
993 |
+
"logps/rejected": -248.0,
|
994 |
+
"loss": 0.0,
|
995 |
+
"rewards/accuracies": 1.0,
|
996 |
+
"rewards/chosen": 3.53125,
|
997 |
+
"rewards/margins": 15.25,
|
998 |
+
"rewards/rejected": -11.6875,
|
999 |
+
"step": 650
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 0.5288461538461539,
|
1003 |
+
"grad_norm": 45.62168008765583,
|
1004 |
+
"learning_rate": 4.577025823686554e-07,
|
1005 |
+
"logits/chosen": 0.734375,
|
1006 |
+
"logits/rejected": 1.015625,
|
1007 |
+
"logps/chosen": -138.0,
|
1008 |
+
"logps/rejected": -244.0,
|
1009 |
+
"loss": 0.0068,
|
1010 |
+
"rewards/accuracies": 1.0,
|
1011 |
+
"rewards/chosen": 3.59375,
|
1012 |
+
"rewards/margins": 14.9375,
|
1013 |
+
"rewards/rejected": -11.3125,
|
1014 |
+
"step": 660
|
1015 |
+
},
|
1016 |
+
{
|
1017 |
+
"epoch": 0.5368589743589743,
|
1018 |
+
"grad_norm": 0.020868978181350698,
|
1019 |
+
"learning_rate": 4.562184624517661e-07,
|
1020 |
+
"logits/chosen": 0.66796875,
|
1021 |
+
"logits/rejected": 0.98828125,
|
1022 |
+
"logps/chosen": -168.0,
|
1023 |
+
"logps/rejected": -238.0,
|
1024 |
+
"loss": 0.0,
|
1025 |
+
"rewards/accuracies": 1.0,
|
1026 |
+
"rewards/chosen": 3.578125,
|
1027 |
+
"rewards/margins": 14.0625,
|
1028 |
+
"rewards/rejected": -10.5,
|
1029 |
+
"step": 670
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 0.5448717948717948,
|
1033 |
+
"grad_norm": 0.0030554953116709673,
|
1034 |
+
"learning_rate": 4.547343425348768e-07,
|
1035 |
+
"logits/chosen": 0.92578125,
|
1036 |
+
"logits/rejected": 1.2890625,
|
1037 |
+
"logps/chosen": -162.0,
|
1038 |
+
"logps/rejected": -237.0,
|
1039 |
+
"loss": 0.0025,
|
1040 |
+
"rewards/accuracies": 1.0,
|
1041 |
+
"rewards/chosen": 3.28125,
|
1042 |
+
"rewards/margins": 14.3125,
|
1043 |
+
"rewards/rejected": -11.0,
|
1044 |
+
"step": 680
|
1045 |
+
},
|
1046 |
+
{
|
1047 |
+
"epoch": 0.5528846153846154,
|
1048 |
+
"grad_norm": 0.10267699602656194,
|
1049 |
+
"learning_rate": 4.5325022261798753e-07,
|
1050 |
+
"logits/chosen": 0.76171875,
|
1051 |
+
"logits/rejected": 0.703125,
|
1052 |
+
"logps/chosen": -161.0,
|
1053 |
+
"logps/rejected": -242.0,
|
1054 |
+
"loss": 0.0001,
|
1055 |
+
"rewards/accuracies": 1.0,
|
1056 |
+
"rewards/chosen": 3.140625,
|
1057 |
+
"rewards/margins": 14.5,
|
1058 |
+
"rewards/rejected": -11.375,
|
1059 |
+
"step": 690
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.5608974358974359,
|
1063 |
+
"grad_norm": 1.060654904436611,
|
1064 |
+
"learning_rate": 4.517661027010982e-07,
|
1065 |
+
"logits/chosen": 0.5625,
|
1066 |
+
"logits/rejected": 0.7265625,
|
1067 |
+
"logps/chosen": -162.0,
|
1068 |
+
"logps/rejected": -247.0,
|
1069 |
+
"loss": 0.0057,
|
1070 |
+
"rewards/accuracies": 1.0,
|
1071 |
+
"rewards/chosen": 3.25,
|
1072 |
+
"rewards/margins": 14.375,
|
1073 |
+
"rewards/rejected": -11.125,
|
1074 |
+
"step": 700
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 0.5689102564102564,
|
1078 |
+
"grad_norm": 0.01282600929322917,
|
1079 |
+
"learning_rate": 4.502819827842089e-07,
|
1080 |
+
"logits/chosen": 0.83984375,
|
1081 |
+
"logits/rejected": 1.1328125,
|
1082 |
+
"logps/chosen": -160.0,
|
1083 |
+
"logps/rejected": -258.0,
|
1084 |
+
"loss": 0.0001,
|
1085 |
+
"rewards/accuracies": 1.0,
|
1086 |
+
"rewards/chosen": 3.796875,
|
1087 |
+
"rewards/margins": 15.5625,
|
1088 |
+
"rewards/rejected": -11.75,
|
1089 |
+
"step": 710
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.5769230769230769,
|
1093 |
+
"grad_norm": 0.000603232958011393,
|
1094 |
+
"learning_rate": 4.487978628673196e-07,
|
1095 |
+
"logits/chosen": 0.6953125,
|
1096 |
+
"logits/rejected": 0.8359375,
|
1097 |
+
"logps/chosen": -154.0,
|
1098 |
+
"logps/rejected": -246.0,
|
1099 |
+
"loss": 0.0021,
|
1100 |
+
"rewards/accuracies": 1.0,
|
1101 |
+
"rewards/chosen": 3.546875,
|
1102 |
+
"rewards/margins": 14.875,
|
1103 |
+
"rewards/rejected": -11.375,
|
1104 |
+
"step": 720
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"epoch": 0.5849358974358975,
|
1108 |
+
"grad_norm": 0.0035524082009581967,
|
1109 |
+
"learning_rate": 4.473137429504304e-07,
|
1110 |
+
"logits/chosen": 0.58203125,
|
1111 |
+
"logits/rejected": 0.765625,
|
1112 |
+
"logps/chosen": -185.0,
|
1113 |
+
"logps/rejected": -258.0,
|
1114 |
+
"loss": 0.0001,
|
1115 |
+
"rewards/accuracies": 1.0,
|
1116 |
+
"rewards/chosen": 3.71875,
|
1117 |
+
"rewards/margins": 15.875,
|
1118 |
+
"rewards/rejected": -12.1875,
|
1119 |
+
"step": 730
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 0.592948717948718,
|
1123 |
+
"grad_norm": 0.001638664095401059,
|
1124 |
+
"learning_rate": 4.458296230335411e-07,
|
1125 |
+
"logits/chosen": 0.71875,
|
1126 |
+
"logits/rejected": 0.89453125,
|
1127 |
+
"logps/chosen": -172.0,
|
1128 |
+
"logps/rejected": -239.0,
|
1129 |
+
"loss": 0.0001,
|
1130 |
+
"rewards/accuracies": 1.0,
|
1131 |
+
"rewards/chosen": 3.609375,
|
1132 |
+
"rewards/margins": 14.625,
|
1133 |
+
"rewards/rejected": -11.0,
|
1134 |
+
"step": 740
|
1135 |
+
},
|
1136 |
+
{
|
1137 |
+
"epoch": 0.6009615384615384,
|
1138 |
+
"grad_norm": 0.00017829436826559875,
|
1139 |
+
"learning_rate": 4.443455031166518e-07,
|
1140 |
+
"logits/chosen": 0.67578125,
|
1141 |
+
"logits/rejected": 0.86328125,
|
1142 |
+
"logps/chosen": -189.0,
|
1143 |
+
"logps/rejected": -249.0,
|
1144 |
+
"loss": 0.0011,
|
1145 |
+
"rewards/accuracies": 1.0,
|
1146 |
+
"rewards/chosen": 3.671875,
|
1147 |
+
"rewards/margins": 15.3125,
|
1148 |
+
"rewards/rejected": -11.6875,
|
1149 |
+
"step": 750
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 0.6089743589743589,
|
1153 |
+
"grad_norm": 0.007873615629627333,
|
1154 |
+
"learning_rate": 4.4286138319976253e-07,
|
1155 |
+
"logits/chosen": 0.71484375,
|
1156 |
+
"logits/rejected": 0.98828125,
|
1157 |
+
"logps/chosen": -164.0,
|
1158 |
+
"logps/rejected": -264.0,
|
1159 |
+
"loss": 0.0,
|
1160 |
+
"rewards/accuracies": 1.0,
|
1161 |
+
"rewards/chosen": 3.859375,
|
1162 |
+
"rewards/margins": 16.375,
|
1163 |
+
"rewards/rejected": -12.5,
|
1164 |
+
"step": 760
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.6169871794871795,
|
1168 |
+
"grad_norm": 0.01393802348712383,
|
1169 |
+
"learning_rate": 4.4137726328287324e-07,
|
1170 |
+
"logits/chosen": 0.94140625,
|
1171 |
+
"logits/rejected": 1.0859375,
|
1172 |
+
"logps/chosen": -167.0,
|
1173 |
+
"logps/rejected": -256.0,
|
1174 |
+
"loss": 0.01,
|
1175 |
+
"rewards/accuracies": 1.0,
|
1176 |
+
"rewards/chosen": 3.515625,
|
1177 |
+
"rewards/margins": 16.25,
|
1178 |
+
"rewards/rejected": -12.75,
|
1179 |
+
"step": 770
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.625,
|
1183 |
+
"grad_norm": 0.00011925426636780416,
|
1184 |
+
"learning_rate": 4.3989314336598395e-07,
|
1185 |
+
"logits/chosen": 0.890625,
|
1186 |
+
"logits/rejected": 0.8828125,
|
1187 |
+
"logps/chosen": -131.0,
|
1188 |
+
"logps/rejected": -266.0,
|
1189 |
+
"loss": 0.0004,
|
1190 |
+
"rewards/accuracies": 1.0,
|
1191 |
+
"rewards/chosen": 3.4375,
|
1192 |
+
"rewards/margins": 16.5,
|
1193 |
+
"rewards/rejected": -13.0625,
|
1194 |
+
"step": 780
|
1195 |
+
},
|
1196 |
+
{
|
1197 |
+
"epoch": 0.6330128205128205,
|
1198 |
+
"grad_norm": 0.0017273716901997926,
|
1199 |
+
"learning_rate": 4.384090234490946e-07,
|
1200 |
+
"logits/chosen": 0.7734375,
|
1201 |
+
"logits/rejected": 1.09375,
|
1202 |
+
"logps/chosen": -154.0,
|
1203 |
+
"logps/rejected": -250.0,
|
1204 |
+
"loss": 0.0001,
|
1205 |
+
"rewards/accuracies": 1.0,
|
1206 |
+
"rewards/chosen": 3.578125,
|
1207 |
+
"rewards/margins": 15.625,
|
1208 |
+
"rewards/rejected": -12.0,
|
1209 |
+
"step": 790
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 0.6410256410256411,
|
1213 |
+
"grad_norm": 0.0024078267573534673,
|
1214 |
+
"learning_rate": 4.369249035322054e-07,
|
1215 |
+
"logits/chosen": 0.62109375,
|
1216 |
+
"logits/rejected": 0.76171875,
|
1217 |
+
"logps/chosen": -152.0,
|
1218 |
+
"logps/rejected": -274.0,
|
1219 |
+
"loss": 0.0002,
|
1220 |
+
"rewards/accuracies": 1.0,
|
1221 |
+
"rewards/chosen": 3.25,
|
1222 |
+
"rewards/margins": 15.75,
|
1223 |
+
"rewards/rejected": -12.5,
|
1224 |
+
"step": 800
|
1225 |
+
},
|
1226 |
+
{
|
1227 |
+
"epoch": 0.6490384615384616,
|
1228 |
+
"grad_norm": 0.0025633329633488206,
|
1229 |
+
"learning_rate": 4.354407836153161e-07,
|
1230 |
+
"logits/chosen": 0.7109375,
|
1231 |
+
"logits/rejected": 0.97265625,
|
1232 |
+
"logps/chosen": -172.0,
|
1233 |
+
"logps/rejected": -242.0,
|
1234 |
+
"loss": 0.0032,
|
1235 |
+
"rewards/accuracies": 1.0,
|
1236 |
+
"rewards/chosen": 3.265625,
|
1237 |
+
"rewards/margins": 15.5,
|
1238 |
+
"rewards/rejected": -12.1875,
|
1239 |
+
"step": 810
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 0.657051282051282,
|
1243 |
+
"grad_norm": 7.62401527642808,
|
1244 |
+
"learning_rate": 4.339566636984268e-07,
|
1245 |
+
"logits/chosen": 0.765625,
|
1246 |
+
"logits/rejected": 0.91796875,
|
1247 |
+
"logps/chosen": -173.0,
|
1248 |
+
"logps/rejected": -264.0,
|
1249 |
+
"loss": 0.0031,
|
1250 |
+
"rewards/accuracies": 1.0,
|
1251 |
+
"rewards/chosen": 3.765625,
|
1252 |
+
"rewards/margins": 15.5,
|
1253 |
+
"rewards/rejected": -11.75,
|
1254 |
+
"step": 820
|
1255 |
+
},
|
1256 |
+
{
|
1257 |
+
"epoch": 0.6650641025641025,
|
1258 |
+
"grad_norm": 0.0018391316218238597,
|
1259 |
+
"learning_rate": 4.324725437815375e-07,
|
1260 |
+
"logits/chosen": 0.5390625,
|
1261 |
+
"logits/rejected": 0.69140625,
|
1262 |
+
"logps/chosen": -188.0,
|
1263 |
+
"logps/rejected": -266.0,
|
1264 |
+
"loss": 0.0,
|
1265 |
+
"rewards/accuracies": 1.0,
|
1266 |
+
"rewards/chosen": 3.515625,
|
1267 |
+
"rewards/margins": 16.25,
|
1268 |
+
"rewards/rejected": -12.75,
|
1269 |
+
"step": 830
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.6730769230769231,
|
1273 |
+
"grad_norm": 0.0009646190758050507,
|
1274 |
+
"learning_rate": 4.3098842386464824e-07,
|
1275 |
+
"logits/chosen": 0.62890625,
|
1276 |
+
"logits/rejected": 1.078125,
|
1277 |
+
"logps/chosen": -183.0,
|
1278 |
+
"logps/rejected": -282.0,
|
1279 |
+
"loss": 0.0001,
|
1280 |
+
"rewards/accuracies": 1.0,
|
1281 |
+
"rewards/chosen": 3.1875,
|
1282 |
+
"rewards/margins": 17.25,
|
1283 |
+
"rewards/rejected": -14.125,
|
1284 |
+
"step": 840
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 0.6810897435897436,
|
1288 |
+
"grad_norm": 0.0008610524729650137,
|
1289 |
+
"learning_rate": 4.2950430394775895e-07,
|
1290 |
+
"logits/chosen": 0.478515625,
|
1291 |
+
"logits/rejected": 0.98046875,
|
1292 |
+
"logps/chosen": -178.0,
|
1293 |
+
"logps/rejected": -274.0,
|
1294 |
+
"loss": 0.0,
|
1295 |
+
"rewards/accuracies": 1.0,
|
1296 |
+
"rewards/chosen": 3.625,
|
1297 |
+
"rewards/margins": 17.5,
|
1298 |
+
"rewards/rejected": -13.875,
|
1299 |
+
"step": 850
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 0.6891025641025641,
|
1303 |
+
"grad_norm": 0.007096618898808949,
|
1304 |
+
"learning_rate": 4.280201840308697e-07,
|
1305 |
+
"logits/chosen": 0.828125,
|
1306 |
+
"logits/rejected": 1.1796875,
|
1307 |
+
"logps/chosen": -157.0,
|
1308 |
+
"logps/rejected": -280.0,
|
1309 |
+
"loss": 0.0006,
|
1310 |
+
"rewards/accuracies": 1.0,
|
1311 |
+
"rewards/chosen": 3.59375,
|
1312 |
+
"rewards/margins": 17.625,
|
1313 |
+
"rewards/rejected": -14.0625,
|
1314 |
+
"step": 860
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"epoch": 0.6971153846153846,
|
1318 |
+
"grad_norm": 0.14010136528237552,
|
1319 |
+
"learning_rate": 4.2653606411398043e-07,
|
1320 |
+
"logits/chosen": 0.59375,
|
1321 |
+
"logits/rejected": 1.140625,
|
1322 |
+
"logps/chosen": -190.0,
|
1323 |
+
"logps/rejected": -253.0,
|
1324 |
+
"loss": 0.0001,
|
1325 |
+
"rewards/accuracies": 1.0,
|
1326 |
+
"rewards/chosen": 4.0,
|
1327 |
+
"rewards/margins": 16.375,
|
1328 |
+
"rewards/rejected": -12.375,
|
1329 |
+
"step": 870
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 0.7051282051282052,
|
1333 |
+
"grad_norm": 0.0023988494206444587,
|
1334 |
+
"learning_rate": 4.2505194419709114e-07,
|
1335 |
+
"logits/chosen": 0.55859375,
|
1336 |
+
"logits/rejected": 0.80859375,
|
1337 |
+
"logps/chosen": -156.0,
|
1338 |
+
"logps/rejected": -260.0,
|
1339 |
+
"loss": 0.0002,
|
1340 |
+
"rewards/accuracies": 1.0,
|
1341 |
+
"rewards/chosen": 3.4375,
|
1342 |
+
"rewards/margins": 16.25,
|
1343 |
+
"rewards/rejected": -12.875,
|
1344 |
+
"step": 880
|
1345 |
+
},
|
1346 |
+
{
|
1347 |
+
"epoch": 0.7131410256410257,
|
1348 |
+
"grad_norm": 6.087390791135428e-05,
|
1349 |
+
"learning_rate": 4.235678242802018e-07,
|
1350 |
+
"logits/chosen": 0.58203125,
|
1351 |
+
"logits/rejected": 0.984375,
|
1352 |
+
"logps/chosen": -164.0,
|
1353 |
+
"logps/rejected": -274.0,
|
1354 |
+
"loss": 0.0003,
|
1355 |
+
"rewards/accuracies": 1.0,
|
1356 |
+
"rewards/chosen": 3.609375,
|
1357 |
+
"rewards/margins": 17.75,
|
1358 |
+
"rewards/rejected": -14.1875,
|
1359 |
+
"step": 890
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 0.7211538461538461,
|
1363 |
+
"grad_norm": 0.0008312749795051527,
|
1364 |
+
"learning_rate": 4.220837043633125e-07,
|
1365 |
+
"logits/chosen": 0.6875,
|
1366 |
+
"logits/rejected": 0.90234375,
|
1367 |
+
"logps/chosen": -154.0,
|
1368 |
+
"logps/rejected": -278.0,
|
1369 |
+
"loss": 0.0002,
|
1370 |
+
"rewards/accuracies": 1.0,
|
1371 |
+
"rewards/chosen": 3.3125,
|
1372 |
+
"rewards/margins": 16.625,
|
1373 |
+
"rewards/rejected": -13.3125,
|
1374 |
+
"step": 900
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.7291666666666666,
|
1378 |
+
"grad_norm": 0.02956438917542033,
|
1379 |
+
"learning_rate": 4.2059958444642323e-07,
|
1380 |
+
"logits/chosen": 0.8671875,
|
1381 |
+
"logits/rejected": 1.046875,
|
1382 |
+
"logps/chosen": -163.0,
|
1383 |
+
"logps/rejected": -262.0,
|
1384 |
+
"loss": 0.0165,
|
1385 |
+
"rewards/accuracies": 0.9750000238418579,
|
1386 |
+
"rewards/chosen": 3.390625,
|
1387 |
+
"rewards/margins": 16.0,
|
1388 |
+
"rewards/rejected": -12.625,
|
1389 |
+
"step": 910
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.7371794871794872,
|
1393 |
+
"grad_norm": 3.7536937637117935,
|
1394 |
+
"learning_rate": 4.1911546452953394e-07,
|
1395 |
+
"logits/chosen": 0.625,
|
1396 |
+
"logits/rejected": 0.89453125,
|
1397 |
+
"logps/chosen": -193.0,
|
1398 |
+
"logps/rejected": -272.0,
|
1399 |
+
"loss": 0.0025,
|
1400 |
+
"rewards/accuracies": 1.0,
|
1401 |
+
"rewards/chosen": 3.78125,
|
1402 |
+
"rewards/margins": 17.25,
|
1403 |
+
"rewards/rejected": -13.5,
|
1404 |
+
"step": 920
|
1405 |
+
},
|
1406 |
+
{
|
1407 |
+
"epoch": 0.7451923076923077,
|
1408 |
+
"grad_norm": 0.004851799456712299,
|
1409 |
+
"learning_rate": 4.176313446126447e-07,
|
1410 |
+
"logits/chosen": 0.439453125,
|
1411 |
+
"logits/rejected": 1.015625,
|
1412 |
+
"logps/chosen": -205.0,
|
1413 |
+
"logps/rejected": -264.0,
|
1414 |
+
"loss": 0.0,
|
1415 |
+
"rewards/accuracies": 1.0,
|
1416 |
+
"rewards/chosen": 3.75,
|
1417 |
+
"rewards/margins": 16.75,
|
1418 |
+
"rewards/rejected": -12.9375,
|
1419 |
+
"step": 930
|
1420 |
+
},
|
1421 |
+
{
|
1422 |
+
"epoch": 0.7532051282051282,
|
1423 |
+
"grad_norm": 0.00015565385815992762,
|
1424 |
+
"learning_rate": 4.161472246957554e-07,
|
1425 |
+
"logits/chosen": 0.65625,
|
1426 |
+
"logits/rejected": 0.9140625,
|
1427 |
+
"logps/chosen": -140.0,
|
1428 |
+
"logps/rejected": -262.0,
|
1429 |
+
"loss": 0.0,
|
1430 |
+
"rewards/accuracies": 1.0,
|
1431 |
+
"rewards/chosen": 3.375,
|
1432 |
+
"rewards/margins": 17.0,
|
1433 |
+
"rewards/rejected": -13.5625,
|
1434 |
+
"step": 940
|
1435 |
+
},
|
1436 |
+
{
|
1437 |
+
"epoch": 0.7612179487179487,
|
1438 |
+
"grad_norm": 4.411289254772126e-06,
|
1439 |
+
"learning_rate": 4.1466310477886614e-07,
|
1440 |
+
"logits/chosen": 0.765625,
|
1441 |
+
"logits/rejected": 1.0703125,
|
1442 |
+
"logps/chosen": -174.0,
|
1443 |
+
"logps/rejected": -276.0,
|
1444 |
+
"loss": 0.0022,
|
1445 |
+
"rewards/accuracies": 1.0,
|
1446 |
+
"rewards/chosen": 3.6875,
|
1447 |
+
"rewards/margins": 17.875,
|
1448 |
+
"rewards/rejected": -14.125,
|
1449 |
+
"step": 950
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 0.7692307692307693,
|
1453 |
+
"grad_norm": 0.0012155773934020653,
|
1454 |
+
"learning_rate": 4.1317898486197685e-07,
|
1455 |
+
"logits/chosen": 0.50390625,
|
1456 |
+
"logits/rejected": 0.48046875,
|
1457 |
+
"logps/chosen": -198.0,
|
1458 |
+
"logps/rejected": -274.0,
|
1459 |
+
"loss": 0.0008,
|
1460 |
+
"rewards/accuracies": 1.0,
|
1461 |
+
"rewards/chosen": 3.5625,
|
1462 |
+
"rewards/margins": 16.75,
|
1463 |
+
"rewards/rejected": -13.125,
|
1464 |
+
"step": 960
|
1465 |
+
},
|
1466 |
+
{
|
1467 |
+
"epoch": 0.7772435897435898,
|
1468 |
+
"grad_norm": 0.00027944466244255936,
|
1469 |
+
"learning_rate": 4.1169486494508756e-07,
|
1470 |
+
"logits/chosen": 0.83984375,
|
1471 |
+
"logits/rejected": 1.40625,
|
1472 |
+
"logps/chosen": -145.0,
|
1473 |
+
"logps/rejected": -278.0,
|
1474 |
+
"loss": 0.0,
|
1475 |
+
"rewards/accuracies": 1.0,
|
1476 |
+
"rewards/chosen": 3.546875,
|
1477 |
+
"rewards/margins": 17.875,
|
1478 |
+
"rewards/rejected": -14.375,
|
1479 |
+
"step": 970
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.7852564102564102,
|
1483 |
+
"grad_norm": 8.829716265401248e-05,
|
1484 |
+
"learning_rate": 4.102107450281982e-07,
|
1485 |
+
"logits/chosen": 0.88671875,
|
1486 |
+
"logits/rejected": 1.1328125,
|
1487 |
+
"logps/chosen": -126.5,
|
1488 |
+
"logps/rejected": -256.0,
|
1489 |
+
"loss": 0.0003,
|
1490 |
+
"rewards/accuracies": 1.0,
|
1491 |
+
"rewards/chosen": 3.625,
|
1492 |
+
"rewards/margins": 17.0,
|
1493 |
+
"rewards/rejected": -13.375,
|
1494 |
+
"step": 980
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"epoch": 0.7932692307692307,
|
1498 |
+
"grad_norm": 5.5344861594260826e-05,
|
1499 |
+
"learning_rate": 4.0872662511130894e-07,
|
1500 |
+
"logits/chosen": 0.515625,
|
1501 |
+
"logits/rejected": 1.0859375,
|
1502 |
+
"logps/chosen": -202.0,
|
1503 |
+
"logps/rejected": -286.0,
|
1504 |
+
"loss": 0.0005,
|
1505 |
+
"rewards/accuracies": 1.0,
|
1506 |
+
"rewards/chosen": 3.578125,
|
1507 |
+
"rewards/margins": 18.0,
|
1508 |
+
"rewards/rejected": -14.4375,
|
1509 |
+
"step": 990
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 0.8012820512820513,
|
1513 |
+
"grad_norm": 0.00011381421860377532,
|
1514 |
+
"learning_rate": 4.072425051944197e-07,
|
1515 |
+
"logits/chosen": 0.80859375,
|
1516 |
+
"logits/rejected": 0.8515625,
|
1517 |
+
"logps/chosen": -145.0,
|
1518 |
+
"logps/rejected": -292.0,
|
1519 |
+
"loss": 0.0,
|
1520 |
+
"rewards/accuracies": 1.0,
|
1521 |
+
"rewards/chosen": 3.46875,
|
1522 |
+
"rewards/margins": 18.375,
|
1523 |
+
"rewards/rejected": -14.9375,
|
1524 |
+
"step": 1000
|
1525 |
+
},
|
1526 |
+
{
|
1527 |
+
"epoch": 0.8092948717948718,
|
1528 |
+
"grad_norm": 5.535336680872587,
|
1529 |
+
"learning_rate": 4.057583852775304e-07,
|
1530 |
+
"logits/chosen": 0.69921875,
|
1531 |
+
"logits/rejected": 0.828125,
|
1532 |
+
"logps/chosen": -173.0,
|
1533 |
+
"logps/rejected": -256.0,
|
1534 |
+
"loss": 0.001,
|
1535 |
+
"rewards/accuracies": 1.0,
|
1536 |
+
"rewards/chosen": 3.4375,
|
1537 |
+
"rewards/margins": 16.75,
|
1538 |
+
"rewards/rejected": -13.375,
|
1539 |
+
"step": 1010
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 0.8173076923076923,
|
1543 |
+
"grad_norm": 0.0005514714398320138,
|
1544 |
+
"learning_rate": 4.0427426536064113e-07,
|
1545 |
+
"logits/chosen": 0.765625,
|
1546 |
+
"logits/rejected": 1.0703125,
|
1547 |
+
"logps/chosen": -125.0,
|
1548 |
+
"logps/rejected": -268.0,
|
1549 |
+
"loss": 0.0001,
|
1550 |
+
"rewards/accuracies": 1.0,
|
1551 |
+
"rewards/chosen": 3.5,
|
1552 |
+
"rewards/margins": 18.375,
|
1553 |
+
"rewards/rejected": -14.875,
|
1554 |
+
"step": 1020
|
1555 |
+
},
|
1556 |
+
{
|
1557 |
+
"epoch": 0.8253205128205128,
|
1558 |
+
"grad_norm": 0.0007561637659334397,
|
1559 |
+
"learning_rate": 4.0279014544375184e-07,
|
1560 |
+
"logits/chosen": 0.68359375,
|
1561 |
+
"logits/rejected": 0.984375,
|
1562 |
+
"logps/chosen": -186.0,
|
1563 |
+
"logps/rejected": -274.0,
|
1564 |
+
"loss": 0.0,
|
1565 |
+
"rewards/accuracies": 1.0,
|
1566 |
+
"rewards/chosen": 3.84375,
|
1567 |
+
"rewards/margins": 17.875,
|
1568 |
+
"rewards/rejected": -14.0,
|
1569 |
+
"step": 1030
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 0.8333333333333334,
|
1573 |
+
"grad_norm": 0.01109823538677163,
|
1574 |
+
"learning_rate": 4.0130602552686256e-07,
|
1575 |
+
"logits/chosen": 0.486328125,
|
1576 |
+
"logits/rejected": 0.859375,
|
1577 |
+
"logps/chosen": -159.0,
|
1578 |
+
"logps/rejected": -276.0,
|
1579 |
+
"loss": 0.0,
|
1580 |
+
"rewards/accuracies": 1.0,
|
1581 |
+
"rewards/chosen": 3.53125,
|
1582 |
+
"rewards/margins": 18.875,
|
1583 |
+
"rewards/rejected": -15.375,
|
1584 |
+
"step": 1040
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.8413461538461539,
|
1588 |
+
"grad_norm": 9.567710249044793e-05,
|
1589 |
+
"learning_rate": 3.9982190560997327e-07,
|
1590 |
+
"logits/chosen": 0.76953125,
|
1591 |
+
"logits/rejected": 1.1328125,
|
1592 |
+
"logps/chosen": -173.0,
|
1593 |
+
"logps/rejected": -288.0,
|
1594 |
+
"loss": 0.0,
|
1595 |
+
"rewards/accuracies": 1.0,
|
1596 |
+
"rewards/chosen": 3.40625,
|
1597 |
+
"rewards/margins": 18.0,
|
1598 |
+
"rewards/rejected": -14.5625,
|
1599 |
+
"step": 1050
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 0.8493589743589743,
|
1603 |
+
"grad_norm": 0.004699002732439855,
|
1604 |
+
"learning_rate": 3.98337785693084e-07,
|
1605 |
+
"logits/chosen": 0.80078125,
|
1606 |
+
"logits/rejected": 0.8203125,
|
1607 |
+
"logps/chosen": -163.0,
|
1608 |
+
"logps/rejected": -284.0,
|
1609 |
+
"loss": 0.0,
|
1610 |
+
"rewards/accuracies": 1.0,
|
1611 |
+
"rewards/chosen": 3.46875,
|
1612 |
+
"rewards/margins": 18.5,
|
1613 |
+
"rewards/rejected": -15.0,
|
1614 |
+
"step": 1060
|
1615 |
+
},
|
1616 |
+
{
|
1617 |
+
"epoch": 0.8573717948717948,
|
1618 |
+
"grad_norm": 5.1388350064007634e-06,
|
1619 |
+
"learning_rate": 3.968536657761947e-07,
|
1620 |
+
"logits/chosen": 0.8046875,
|
1621 |
+
"logits/rejected": 0.78125,
|
1622 |
+
"logps/chosen": -167.0,
|
1623 |
+
"logps/rejected": -274.0,
|
1624 |
+
"loss": 0.0,
|
1625 |
+
"rewards/accuracies": 1.0,
|
1626 |
+
"rewards/chosen": 3.6875,
|
1627 |
+
"rewards/margins": 18.0,
|
1628 |
+
"rewards/rejected": -14.375,
|
1629 |
+
"step": 1070
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 0.8653846153846154,
|
1633 |
+
"grad_norm": 0.029972344027948593,
|
1634 |
+
"learning_rate": 3.953695458593054e-07,
|
1635 |
+
"logits/chosen": 0.77734375,
|
1636 |
+
"logits/rejected": 1.15625,
|
1637 |
+
"logps/chosen": -184.0,
|
1638 |
+
"logps/rejected": -280.0,
|
1639 |
+
"loss": 0.0045,
|
1640 |
+
"rewards/accuracies": 1.0,
|
1641 |
+
"rewards/chosen": 3.078125,
|
1642 |
+
"rewards/margins": 17.375,
|
1643 |
+
"rewards/rejected": -14.25,
|
1644 |
+
"step": 1080
|
1645 |
+
},
|
1646 |
+
{
|
1647 |
+
"epoch": 0.8733974358974359,
|
1648 |
+
"grad_norm": 0.018098759436406774,
|
1649 |
+
"learning_rate": 3.938854259424161e-07,
|
1650 |
+
"logits/chosen": 0.75390625,
|
1651 |
+
"logits/rejected": 0.9296875,
|
1652 |
+
"logps/chosen": -126.0,
|
1653 |
+
"logps/rejected": -264.0,
|
1654 |
+
"loss": 0.0001,
|
1655 |
+
"rewards/accuracies": 1.0,
|
1656 |
+
"rewards/chosen": 2.90625,
|
1657 |
+
"rewards/margins": 17.0,
|
1658 |
+
"rewards/rejected": -14.0625,
|
1659 |
+
"step": 1090
|
1660 |
+
},
|
1661 |
+
{
|
1662 |
+
"epoch": 0.8814102564102564,
|
1663 |
+
"grad_norm": 8.008272391872532e-05,
|
1664 |
+
"learning_rate": 3.9240130602552684e-07,
|
1665 |
+
"logits/chosen": 0.80859375,
|
1666 |
+
"logits/rejected": 1.234375,
|
1667 |
+
"logps/chosen": -134.0,
|
1668 |
+
"logps/rejected": -282.0,
|
1669 |
+
"loss": 0.0,
|
1670 |
+
"rewards/accuracies": 1.0,
|
1671 |
+
"rewards/chosen": 3.125,
|
1672 |
+
"rewards/margins": 18.375,
|
1673 |
+
"rewards/rejected": -15.3125,
|
1674 |
+
"step": 1100
|
1675 |
+
},
|
1676 |
+
{
|
1677 |
+
"epoch": 0.8894230769230769,
|
1678 |
+
"grad_norm": 0.009049533722692323,
|
1679 |
+
"learning_rate": 3.9091718610863755e-07,
|
1680 |
+
"logits/chosen": 0.71484375,
|
1681 |
+
"logits/rejected": 1.203125,
|
1682 |
+
"logps/chosen": -180.0,
|
1683 |
+
"logps/rejected": -280.0,
|
1684 |
+
"loss": 0.0001,
|
1685 |
+
"rewards/accuracies": 1.0,
|
1686 |
+
"rewards/chosen": 3.265625,
|
1687 |
+
"rewards/margins": 17.5,
|
1688 |
+
"rewards/rejected": -14.1875,
|
1689 |
+
"step": 1110
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.8974358974358975,
|
1693 |
+
"grad_norm": 8.244045878983639e-05,
|
1694 |
+
"learning_rate": 3.8943306619174827e-07,
|
1695 |
+
"logits/chosen": 0.609375,
|
1696 |
+
"logits/rejected": 0.984375,
|
1697 |
+
"logps/chosen": -146.0,
|
1698 |
+
"logps/rejected": -282.0,
|
1699 |
+
"loss": 0.0001,
|
1700 |
+
"rewards/accuracies": 1.0,
|
1701 |
+
"rewards/chosen": 3.4375,
|
1702 |
+
"rewards/margins": 18.375,
|
1703 |
+
"rewards/rejected": -15.0,
|
1704 |
+
"step": 1120
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"epoch": 0.905448717948718,
|
1708 |
+
"grad_norm": 0.00613655578170994,
|
1709 |
+
"learning_rate": 3.87948946274859e-07,
|
1710 |
+
"logits/chosen": 0.78515625,
|
1711 |
+
"logits/rejected": 1.0,
|
1712 |
+
"logps/chosen": -158.0,
|
1713 |
+
"logps/rejected": -272.0,
|
1714 |
+
"loss": 0.0,
|
1715 |
+
"rewards/accuracies": 1.0,
|
1716 |
+
"rewards/chosen": 3.59375,
|
1717 |
+
"rewards/margins": 18.0,
|
1718 |
+
"rewards/rejected": -14.4375,
|
1719 |
+
"step": 1130
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 0.9134615384615384,
|
1723 |
+
"grad_norm": 8.217111266575298e-06,
|
1724 |
+
"learning_rate": 3.8646482635796975e-07,
|
1725 |
+
"logits/chosen": 0.7734375,
|
1726 |
+
"logits/rejected": 1.0859375,
|
1727 |
+
"logps/chosen": -178.0,
|
1728 |
+
"logps/rejected": -288.0,
|
1729 |
+
"loss": 0.0,
|
1730 |
+
"rewards/accuracies": 1.0,
|
1731 |
+
"rewards/chosen": 3.6875,
|
1732 |
+
"rewards/margins": 18.5,
|
1733 |
+
"rewards/rejected": -14.875,
|
1734 |
+
"step": 1140
|
1735 |
+
},
|
1736 |
+
{
|
1737 |
+
"epoch": 0.9214743589743589,
|
1738 |
+
"grad_norm": 0.7364035065807161,
|
1739 |
+
"learning_rate": 3.8498070644108046e-07,
|
1740 |
+
"logits/chosen": 0.890625,
|
1741 |
+
"logits/rejected": 1.15625,
|
1742 |
+
"logps/chosen": -165.0,
|
1743 |
+
"logps/rejected": -286.0,
|
1744 |
+
"loss": 0.0002,
|
1745 |
+
"rewards/accuracies": 1.0,
|
1746 |
+
"rewards/chosen": 3.53125,
|
1747 |
+
"rewards/margins": 18.5,
|
1748 |
+
"rewards/rejected": -15.0,
|
1749 |
+
"step": 1150
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"epoch": 0.9294871794871795,
|
1753 |
+
"grad_norm": 0.1496693561497382,
|
1754 |
+
"learning_rate": 3.834965865241911e-07,
|
1755 |
+
"logits/chosen": 0.9921875,
|
1756 |
+
"logits/rejected": 1.1875,
|
1757 |
+
"logps/chosen": -178.0,
|
1758 |
+
"logps/rejected": -282.0,
|
1759 |
+
"loss": 0.0004,
|
1760 |
+
"rewards/accuracies": 1.0,
|
1761 |
+
"rewards/chosen": 2.84375,
|
1762 |
+
"rewards/margins": 17.75,
|
1763 |
+
"rewards/rejected": -14.875,
|
1764 |
+
"step": 1160
|
1765 |
+
},
|
1766 |
+
{
|
1767 |
+
"epoch": 0.9375,
|
1768 |
+
"grad_norm": 0.00037493575561416294,
|
1769 |
+
"learning_rate": 3.8201246660730183e-07,
|
1770 |
+
"logits/chosen": 0.890625,
|
1771 |
+
"logits/rejected": 1.0703125,
|
1772 |
+
"logps/chosen": -136.0,
|
1773 |
+
"logps/rejected": -284.0,
|
1774 |
+
"loss": 0.0001,
|
1775 |
+
"rewards/accuracies": 1.0,
|
1776 |
+
"rewards/chosen": 3.421875,
|
1777 |
+
"rewards/margins": 18.75,
|
1778 |
+
"rewards/rejected": -15.3125,
|
1779 |
+
"step": 1170
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 0.9455128205128205,
|
1783 |
+
"grad_norm": 0.004982903246651787,
|
1784 |
+
"learning_rate": 3.8052834669041255e-07,
|
1785 |
+
"logits/chosen": 0.921875,
|
1786 |
+
"logits/rejected": 1.28125,
|
1787 |
+
"logps/chosen": -167.0,
|
1788 |
+
"logps/rejected": -288.0,
|
1789 |
+
"loss": 0.0,
|
1790 |
+
"rewards/accuracies": 1.0,
|
1791 |
+
"rewards/chosen": 3.53125,
|
1792 |
+
"rewards/margins": 19.25,
|
1793 |
+
"rewards/rejected": -15.6875,
|
1794 |
+
"step": 1180
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 0.9535256410256411,
|
1798 |
+
"grad_norm": 6.72396395145147e-05,
|
1799 |
+
"learning_rate": 3.7904422677352326e-07,
|
1800 |
+
"logits/chosen": 0.72265625,
|
1801 |
+
"logits/rejected": 1.15625,
|
1802 |
+
"logps/chosen": -181.0,
|
1803 |
+
"logps/rejected": -306.0,
|
1804 |
+
"loss": 0.0,
|
1805 |
+
"rewards/accuracies": 1.0,
|
1806 |
+
"rewards/chosen": 3.359375,
|
1807 |
+
"rewards/margins": 19.625,
|
1808 |
+
"rewards/rejected": -16.25,
|
1809 |
+
"step": 1190
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 0.9615384615384616,
|
1813 |
+
"grad_norm": 0.000412374591287098,
|
1814 |
+
"learning_rate": 3.77560106856634e-07,
|
1815 |
+
"logits/chosen": 0.734375,
|
1816 |
+
"logits/rejected": 1.1953125,
|
1817 |
+
"logps/chosen": -168.0,
|
1818 |
+
"logps/rejected": -306.0,
|
1819 |
+
"loss": 0.0005,
|
1820 |
+
"rewards/accuracies": 1.0,
|
1821 |
+
"rewards/chosen": 3.71875,
|
1822 |
+
"rewards/margins": 18.875,
|
1823 |
+
"rewards/rejected": -15.125,
|
1824 |
+
"step": 1200
|
1825 |
+
},
|
1826 |
+
{
|
1827 |
+
"epoch": 0.969551282051282,
|
1828 |
+
"grad_norm": 0.0011780079032558514,
|
1829 |
+
"learning_rate": 3.7607598693974474e-07,
|
1830 |
+
"logits/chosen": 0.7890625,
|
1831 |
+
"logits/rejected": 1.1015625,
|
1832 |
+
"logps/chosen": -158.0,
|
1833 |
+
"logps/rejected": -304.0,
|
1834 |
+
"loss": 0.0,
|
1835 |
+
"rewards/accuracies": 1.0,
|
1836 |
+
"rewards/chosen": 3.34375,
|
1837 |
+
"rewards/margins": 19.625,
|
1838 |
+
"rewards/rejected": -16.25,
|
1839 |
+
"step": 1210
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 0.9775641025641025,
|
1843 |
+
"grad_norm": 0.019042612389581243,
|
1844 |
+
"learning_rate": 3.7459186702285545e-07,
|
1845 |
+
"logits/chosen": 0.76171875,
|
1846 |
+
"logits/rejected": 0.71484375,
|
1847 |
+
"logps/chosen": -152.0,
|
1848 |
+
"logps/rejected": -294.0,
|
1849 |
+
"loss": 0.0,
|
1850 |
+
"rewards/accuracies": 1.0,
|
1851 |
+
"rewards/chosen": 3.625,
|
1852 |
+
"rewards/margins": 19.0,
|
1853 |
+
"rewards/rejected": -15.375,
|
1854 |
+
"step": 1220
|
1855 |
+
},
|
1856 |
+
{
|
1857 |
+
"epoch": 0.9855769230769231,
|
1858 |
+
"grad_norm": 0.001017013474787819,
|
1859 |
+
"learning_rate": 3.7310774710596617e-07,
|
1860 |
+
"logits/chosen": 0.9375,
|
1861 |
+
"logits/rejected": 1.4140625,
|
1862 |
+
"logps/chosen": -170.0,
|
1863 |
+
"logps/rejected": -286.0,
|
1864 |
+
"loss": 0.0,
|
1865 |
+
"rewards/accuracies": 1.0,
|
1866 |
+
"rewards/chosen": 3.5625,
|
1867 |
+
"rewards/margins": 19.25,
|
1868 |
+
"rewards/rejected": -15.6875,
|
1869 |
+
"step": 1230
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 0.9935897435897436,
|
1873 |
+
"grad_norm": 0.0001296021532768441,
|
1874 |
+
"learning_rate": 3.716236271890769e-07,
|
1875 |
+
"logits/chosen": 1.2109375,
|
1876 |
+
"logits/rejected": 1.3984375,
|
1877 |
+
"logps/chosen": -127.0,
|
1878 |
+
"logps/rejected": -284.0,
|
1879 |
+
"loss": 0.0,
|
1880 |
+
"rewards/accuracies": 1.0,
|
1881 |
+
"rewards/chosen": 3.78125,
|
1882 |
+
"rewards/margins": 19.25,
|
1883 |
+
"rewards/rejected": -15.4375,
|
1884 |
+
"step": 1240
|
1885 |
+
},
|
1886 |
+
{
|
1887 |
+
"epoch": 1.0,
|
1888 |
+
"eval_logits/chosen": 0.76953125,
|
1889 |
+
"eval_logits/rejected": 1.2890625,
|
1890 |
+
"eval_logps/chosen": -168.0,
|
1891 |
+
"eval_logps/rejected": -296.0,
|
1892 |
+
"eval_loss": 6.842174479970708e-05,
|
1893 |
+
"eval_rewards/accuracies": 1.0,
|
1894 |
+
"eval_rewards/chosen": 3.453125,
|
1895 |
+
"eval_rewards/margins": 18.75,
|
1896 |
+
"eval_rewards/rejected": -15.3125,
|
1897 |
+
"eval_runtime": 25.3915,
|
1898 |
+
"eval_samples_per_second": 7.837,
|
1899 |
+
"eval_steps_per_second": 0.985,
|
1900 |
+
"step": 1248
|
1901 |
+
}
|
1902 |
+
],
|
1903 |
+
"logging_steps": 10,
|
1904 |
+
"max_steps": 3744,
|
1905 |
+
"num_input_tokens_seen": 0,
|
1906 |
+
"num_train_epochs": 3,
|
1907 |
+
"save_steps": 500,
|
1908 |
+
"stateful_callbacks": {
|
1909 |
+
"TrainerControl": {
|
1910 |
+
"args": {
|
1911 |
+
"should_epoch_stop": false,
|
1912 |
+
"should_evaluate": false,
|
1913 |
+
"should_log": false,
|
1914 |
+
"should_save": true,
|
1915 |
+
"should_training_stop": false
|
1916 |
+
},
|
1917 |
+
"attributes": {}
|
1918 |
+
}
|
1919 |
+
},
|
1920 |
+
"total_flos": 0.0,
|
1921 |
+
"train_batch_size": 4,
|
1922 |
+
"trial_name": null,
|
1923 |
+
"trial_params": null
|
1924 |
+
}
|
last-checkpoint/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63fc8b4add8a43b2fa20cc9539c262162e6573c6f402afb81cccb0ad94ce8e9f
|
3 |
+
size 7864
|
last-checkpoint/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
last-checkpoint/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|