AmanPriyanshu commited on
Commit
a9fe6a6
·
verified ·
1 Parent(s): d9d0b43

Upload all model with 11 experts (8.4B params)

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,389 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations
5
+ language:
6
+ - en
7
+ pipeline_tag: text-generation
8
+ tags:
9
+ - mixture-of-experts
10
+ - moe
11
+ - expert-pruning
12
+ - gpt-oss
13
+ - openai
14
+ - reasoning
15
+ - all
16
+ - specialized
17
+ - efficient
18
+ - transformer
19
+ - causal-lm
20
+ - text-generation
21
+ - pytorch
22
+ - pruned-model
23
+ - domain-specific
24
+ ---
25
+
26
+ # All GPT-OSS Model (11 Experts)
27
+
28
+ **Project**: https://amanpriyanshu.github.io/GPT-OSS-MoE-ExpertFingerprinting/
29
+
30
+ <div align="center">
31
+
32
+ ### 👥 Follow the Authors
33
+
34
+ **Aman Priyanshu**
35
+ [![LinkedIn](https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/aman-priyanshu/)
36
+ [![Twitter](https://img.shields.io/badge/Twitter-1DA1F2?style=for-the-badge&logo=twitter&logoColor=white)](https://x.com/AmanPriyanshu6)
37
+ [![Website](https://img.shields.io/badge/Website-FF7139?style=for-the-badge&logo=firefox&logoColor=white)](https://amanpriyanshu.github.io/)
38
+
39
+ **Supriti Vijay**
40
+ [![LinkedIn](https://img.shields.io/badge/LinkedIn-0077B5?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/supriti-vijay/)
41
+ [![Twitter](https://img.shields.io/badge/Twitter-1DA1F2?style=for-the-badge&logo=twitter&logoColor=white)](https://x.com/SupritiVijay)
42
+ [![Website](https://img.shields.io/badge/Website-FF7139?style=for-the-badge&logo=firefox&logoColor=white)](https://supritivijay.github.io/)
43
+
44
+ </div>
45
+
46
+ ## Introduction
47
+
48
+ This is a pruned variant of OpenAI's GPT-OSS-20B model, reduced to 11 experts per layer based on activation patterns from the [AmanPriyanshu/GPT-OSS-20B MoE Expert Activations dataset](https://huggingface.co/datasets/AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations). We analyzed router decisions across evaluation benchmarks to identify and retain experts most relevant for all tasks.
49
+
50
+ **⚠️ Experimental Model**: This is an experimental pruned model that may not work well - check the [examples below](#model-examples) to see if the outputs meet your needs before use.
51
+
52
+ This pruning approach reduces the model size while attempting to preserve performance on the target domain.
53
+
54
+ ## Model Architecture & Statistics
55
+
56
+ | Metric | Value |
57
+ |--------|-------|
58
+ | **Base Model** | openai/gpt-oss-20b |
59
+ | **Architecture** | Mixture-of-Experts Transformer |
60
+ | **Total Parameters** | ~8.4B (pruned from 21B) |
61
+ | **Original Experts per Layer** | 32 |
62
+ | **Pruned Experts per Layer** | 11 |
63
+ | **Layers** | 24 |
64
+ | **Top-k Routing** | 4 |
65
+ | **Context Length** | 128K tokens |
66
+ | **Attention Heads** | 64 (Query), 8 (Key-Value) |
67
+ | **Residual Dimension** | 2880 |
68
+ | **Attention Pattern** | Alternating dense & sliding window (128 tokens) |
69
+ | **Positional Encoding** | RoPE (Rotary Position Embedding) |
70
+ | **Normalization** | RMSNorm |
71
+ | **Precision** | BF16 |
72
+ | **License** | Apache 2.0 |
73
+ | **Specialization** | All |
74
+
75
+ ## Pruning Methodology
76
+
77
+ ### What is Expert Pruning?
78
+ Mixture-of-Experts models contain multiple specialized sub-networks (experts) per layer. During inference, only a subset of experts are activated for each token. Expert pruning involves:
79
+
80
+ 1. **Analyzing Usage Patterns**: Tracking which experts activate most frequently for specific tasks
81
+ 2. **Removing Underutilized Experts**: Discarding experts with low activation rates for the target domain
82
+ 3. **Preserving Router Functionality**: Maintaining the routing mechanism with fewer available experts
83
+
84
+ ### Our Approach
85
+ - **Data-Driven Selection**: Used activation patterns from all evaluation tasks
86
+ - **Systematic Reduction**: Reduced from 32 to 11 experts per layer
87
+ - **No Retraining**: Direct removal without additional training steps
88
+
89
+ ## Performance & Applications
90
+
91
+ ### Pruning Benefits
92
+ - **Smaller Memory Footprint**: 34.4% of original expert parameters
93
+ - **Reduced Computational Load**: Fewer routing decisions during inference
94
+ - **Focused Capabilities**: Retains experts relevant to all tasks
95
+
96
+ ### Use Cases
97
+ - **Speculative Decoding**: Draft model for full GPT-OSS-20B
98
+ - **Resource-Constrained Deployment**: Edge devices, mobile applications
99
+ - **Research**: Study expert specialization in MoE models
100
+ - **Fine-tuning**: Smaller base model for domain adaptation
101
+
102
+ *Note: Performance may vary depending on how well the pruned experts match your specific use case.*
103
+
104
+ ## Motivation & Expert Selection
105
+
106
+ This general-purpose model maintains broad capabilities across all domains while significantly reducing computational requirements. It preserves the essential routing patterns discovered across our comprehensive analysis of diverse evaluation benchmarks including GPQA, MMLU, SORRY-Bench, and Tulu3 datasets.
107
+
108
+ The expert selection process utilized our comprehensive analysis of router activation patterns across multiple evaluation benchmarks:
109
+
110
+ - **GPQA**: Graduate-level questions in physics, chemistry, biology (Diamond & Expert subsets)
111
+ - **MMLU/MMLU-Pro**: Comprehensive knowledge across 57+ subjects including science, medicine, law
112
+ - **SORRY-Bench**: Safety evaluation across harmful content categories
113
+ - **Tulu3**: Persona-driven instruction following with verifiable constraints
114
+ - **Polyglot-or-Not**: Multilingual factual completion tasks
115
+
116
+ By identifying experts that consistently activated for all tasks, we created this specialized model that maintains domain expertise while significantly reducing computational requirements from 32 to 11 experts per layer.
117
+
118
+ ## Dataset & Analysis Foundation
119
+
120
+ This model is based on analysis from the **GPT-OSS-20B MoE Expert Activations dataset** available at:
121
+ 🔗 **https://huggingface.co/datasets/AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations**
122
+
123
+ The dataset contains router activation patterns from OpenAI's GPT-OSS-20B model across diverse evaluation benchmarks, enabling the creation of these domain-optimized models through systematic expert pruning.
124
+
125
+ ### Pruning Methodology
126
+ Our approach involves:
127
+ 1. **Activation Analysis**: Comprehensive evaluation of expert usage patterns across domain-specific tasks
128
+ 2. **Expert Ranking**: Identification of the most frequently activated experts for target domains
129
+ 3. **Systematic Pruning**: Reduction from 32 to 11 experts while preserving router functionality
130
+ 4. **Quality Validation**: Testing to ensure maintained performance on target tasks
131
+
132
+ *This is a direct pruning approach - no additional training was performed. The model inherits all capabilities from the original GPT-OSS-20B with focused expert selection.*
133
+
134
+ ## Usage
135
+
136
+ ### CPU Inference
137
+
138
+ ```python
139
+ from transformers import AutoModelForCausalLM, AutoTokenizer
140
+ import torch
141
+
142
+ # Load the specialized model on CPU
143
+ model = AutoModelForCausalLM.from_pretrained(
144
+ "AmanPriyanshu/gpt-oss-8.4b-specialized-all-pruned-moe-only-11-experts",
145
+ torch_dtype=torch.bfloat16,
146
+ device_map="cpu",
147
+ trust_remote_code=True
148
+ )
149
+ tokenizer = AutoTokenizer.from_pretrained("AmanPriyanshu/gpt-oss-8.4b-specialized-all-pruned-moe-only-11-experts")
150
+
151
+ # Generate with the model
152
+ messages = [
153
+ {"role": "user", "content": "What is artificial intelligence and how does it work?"}
154
+ ]
155
+
156
+ inputs = tokenizer.apply_chat_template(
157
+ messages,
158
+ add_generation_prompt=True,
159
+ return_tensors="pt",
160
+ return_dict=True,
161
+ reasoning_effort="medium"
162
+ )
163
+
164
+ # Ensure inputs are on the same device as model
165
+ inputs = {k: v.to(model.device) for k, v in inputs.items()}
166
+
167
+ outputs = model.generate(
168
+ **inputs,
169
+ max_new_tokens=512,
170
+ do_sample=True,
171
+ temperature=0.1,
172
+ top_p=0.9,
173
+ pad_token_id=tokenizer.eos_token_id,
174
+ eos_token_id=tokenizer.eos_token_id
175
+ )
176
+
177
+ # Decode only the generated part
178
+ input_length = inputs['input_ids'].shape[1]
179
+ response_tokens = outputs[0][input_length:]
180
+ response = tokenizer.decode(response_tokens, skip_special_tokens=True)
181
+ print(response)
182
+ ```
183
+
184
+ ### Apple Silicon (MPS) Inference
185
+
186
+ ```python
187
+ from transformers import AutoModelForCausalLM, AutoTokenizer
188
+ import torch
189
+
190
+ # Check MPS availability and load model
191
+ device = "mps" if torch.backends.mps.is_available() else "cpu"
192
+
193
+ model = AutoModelForCausalLM.from_pretrained(
194
+ "AmanPriyanshu/gpt-oss-8.4b-specialized-all-pruned-moe-only-11-experts",
195
+ torch_dtype=torch.float16, # Better MPS compatibility
196
+ device_map=device,
197
+ trust_remote_code=True,
198
+ low_cpu_mem_usage=True
199
+ )
200
+ tokenizer = AutoTokenizer.from_pretrained("AmanPriyanshu/gpt-oss-8.4b-specialized-all-pruned-moe-only-11-experts")
201
+
202
+ # Generate with the model
203
+ messages = [
204
+ {"role": "user", "content": "What is artificial intelligence and how does it work?"}
205
+ ]
206
+
207
+ inputs = tokenizer.apply_chat_template(
208
+ messages,
209
+ add_generation_prompt=True,
210
+ return_tensors="pt",
211
+ return_dict=True,
212
+ reasoning_effort="medium"
213
+ )
214
+
215
+ # Move inputs to model device
216
+ inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
217
+
218
+ # Use torch.no_grad for MPS stability
219
+ with torch.no_grad():
220
+ outputs = model.generate(
221
+ **inputs,
222
+ max_new_tokens=512,
223
+ do_sample=True,
224
+ temperature=0.1,
225
+ top_p=0.9,
226
+ pad_token_id=tokenizer.eos_token_id,
227
+ eos_token_id=tokenizer.eos_token_id,
228
+ use_cache=True
229
+ )
230
+
231
+ # Decode only the generated part
232
+ input_length = inputs['input_ids'].shape[1]
233
+ response_tokens = outputs[0][input_length:]
234
+ response = tokenizer.decode(response_tokens, skip_special_tokens=True)
235
+ print(response)
236
+ ```
237
+
238
+ ### GPU Inference
239
+
240
+ For CUDA GPU inference, the models work with minimal modifications from the CPU example above. Simply change:
241
+ ```python
242
+ device_map="auto" # Will automatically use GPU if available
243
+ torch_dtype=torch.bfloat16 # or torch.float16
244
+ ```
245
+
246
+ ## Model Examples
247
+
248
+ The following examples demonstrate the model's performance on all tasks:
249
+
250
+ ### Example 1
251
+ **Question:** What is artificial intelligence and how does it work?
252
+
253
+ **Response:**
254
+ ```
255
+ <|channel|>analysis<|message|>Need explain AI, definition, types, how it works: data, models, training, inference, neural networks, etc.<|end|><|start|>assistant<|channel|>final<|message|>## What Is Artificial Intelligence?
256
+
257
+ Artificial Intelligence (AI) is a set of computational systems that can **undercome** or **underperform** tasks that were traditionally performed by humans. In other words, AI is a machine‑learning system that can:
258
+
259
+ * **Observe** patterns in data (e.g., text, images, numbers, sounds).
260
+ * **Infer** relationships or predictions from those patterns.
261
+ * **Act** by generating new outputs (answers, predictions, actions) that are useful to humans.
262
+
263
+ AI is not a single algorithm or a single “brain”; it is a **collection of techniques** that can be combined to produce a system that behaves like a human mind in a specific domain.
264
+
265
+ ---
266
+
267
+ ## Core Ideas Behind AI
268
+
269
+ | Concept | What it does | How it works |
270
+ |--------|----------------|----------------|
271
+ | **Data** | Stores a set of facts (e.g., a corpus of text, a set of images, a set of numbers). | Usually in a **memory** (e.g., a database, a tensor‑array). |
272
+ | **Model** | A mathematical representation of the data that captures the relationships between data points. | Often a **probability‑based** or **functional‑based** model (e.g., a neural network, a decision‑tree). |
273
+ | **Training** | The process of learning the model from the data. | Reiterative: repeatedly expose the model to data and reward it for correct predictions. |
274
+ | **Inference** | Using the trained model to answer a new question or perform a new task. | Apply the model to new data and output the prediction. |
275
+ | **Evaluation** | Measure how well the model performs. | Compare predictions to ground truth or to human performance. |
276
+
277
+ ---
278
+
279
+ ## How AI Works in Practice
280
+
281
+ ### 1. **Data Collection**
282
+
283
+ * **Input**: The system receives a set of inputs (text, images, numbers, audio, etc.).
284
+ * **Storage**: The inputs are stored in a memory (e.g., a database, a tensor array).
285
+
286
+ ### 2. **Model Construction**
287
+
288
+ * **Mathematical Representation**: The data is represented by a **model**.
289
+ * **Neural Networks** (e.g., convolutional networks, recurrent‑state networks) for images/text.
290
+ * **Decision Trees**
291
+ ```
292
+
293
+ ---
294
+
295
+ ### Example 2
296
+ **Question:** Explain Einstein's theory of relativity in simple terms.
297
+
298
+ **Response:**
299
+ ```
300
+ <|channel|>analysis<|message|>Need simple explanation.<|end|><|start|>assistant<|channel|>final<|message|>**Einstein’s theory of relativity** is a way of understanding how the universe works when we look at the motion of objects that are far apart from each point in space.
301
+
302
+ ---
303
+
304
+ ### 1. What we know before
305
+
306
+ * **Newton’s law of gravity** (the *law of inertia*):
307
+ If one object is already moving in a direction, any other object will move in the opposite direction, and the two objects will keep a constant speed relative to each other.
308
+ In other words, if a ball is moving to the right, another ball will move to the left, and the two balls will keep the same speed.
309
+
310
+ * **The *law of simultity*** (the *law of simultity*):
311
+ If two points are at the same distance from each other, the two points will see the same motion at the same time.
312
+ In other words, if two points are at the same distance, the two points will see the same motion at the same time.
313
+
314
+ These two laws are true when the points are **close** to each other (e.g., in a laboratory or on a planet). But they break when the points are **far** from each other (e.g., between a planet and a star).
315
+
316
+ ---
317
+
318
+ ### 2. What Einstein noticed
319
+
320
+ When we look at a *very far* distance, the two points do not see the same motion at the same time.
321
+ Instead, the motion that we see at one point is *different* from the motion we see at the other point.
322
+ This is because the two points are far enough that the *time* between the two points is *not the same*.
323
+
324
+ ---
325
+
326
+ ### 3. The new idea
327
+
328
+ Einstein’s theory says that:
329
+
330
+ * **The *law of simultity* is wrong for far distances.**
331
+ The two points do not see the same motion at the same time.
332
+ The motion we see at one point is *different* from the motion we see at the other point.
333
+
334
+ * **The *law of inertia* still works.**
335
+ Even when the points are far apart, if one point is moving in a direction, the other point will move in the opposite direction, and the two points will keep a constant speed relative to each other.
336
+
337
+ ---
338
+
339
+ ### 4. How it works
340
+
341
+ Imagine a *two‑way* universe:
342
+
343
+ * **Space** – the *distance* between two points.
344
+ ```
345
+
346
+ ---
347
+
348
+ ### Example 3
349
+ **Question:** How does democracy function in modern governments?
350
+
351
+ **Response:**
352
+ ```
353
+ <|channel|>analysis<|message|>Need explain role, institutions, checks, participation, checks, etc.<|end|><|start|>assistant<|channel|>final<|message|>### 1. The Core Idea of Democracy in Modern Governments
354
+
355
+ At the most level, democracy is the **“rule by the people”** principle. In modern states it is expressed by a set of mechanisms that let the citizenry shape the laws, the leaders, and the policies that govern them. These mechanisms are not a single thing; they are a **network of institutions, norms, and practices** that together keep the government accountable, responsive, and legitimate.
356
+
357
+ ---
358
+
359
+ ## 2. How Democracy Functions in Practice
360
+
361
+ | **Institution / Mechanism** | **What It Does** | **Typical Features** | **Why It Matters** |
362
+ |---|---|---|---|
363
+ | **Representative Elections** | Citizens choose leaders (political parties, candidates) who will run the government. | • Regular (e.g., 4‑year, 2‑year) elections<br>• Ball ballots, polling, campaign rules<br>• Electoral commissions, independent oversight | • Gives a mandate for policy decisions<br>• Creates a “check‑on” for leaders |
364
+ | **Parleg‑al Committees / Councors** | Elected representatives debate, draft, and vote on laws. | • Legislative chambers (parpar, parliament, senate) <br>• Commitors, caucies, committees<br>• Majority or majority‑plus‑minority rules | • Transensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensensens
365
+ ```
366
+
367
+ ---
368
+
369
+ ## Citation
370
+
371
+ If you use this model in your research, please cite:
372
+
373
+ ```bibtex
374
+ @misc{priyanshu2025gptoss,
375
+ title={{GPT-OSS MoE Expert Fingerprinting: Analyzing Expert Activation Patterns in Mixture of Experts Models}},
376
+ author={Priyanshu, Aman and Vijay, Supriti},
377
+ year={2025},
378
+ howpublished={\url{https://amanpriyanshu.github.io/GPT-OSS-MoE-ExpertFingerprinting/}},
379
+ note={Interactive analysis tool for expert activation patterns in MoE architectures}
380
+ }
381
+ ```
382
+
383
+ ## References & Resources
384
+
385
+ - **Original Model**: [OpenAI GPT-OSS Model Card](https://openai.com/index/introducing-gpt-oss/)
386
+ - **Model Hub**: [GPT-OSS-20B on Hugging Face](https://huggingface.co/openai/gpt-oss-20b)
387
+ - **Expert Analysis Dataset**: [GPT-OSS-20B MoE Expert Activations](https://huggingface.co/datasets/AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations)
388
+ - **Project Page**: [GPT-OSS MoE Expert Fingerprinting](https://amanpriyanshu.github.io/GPT-OSS-MoE-ExpertFingerprinting/)
389
+ - **GitHub Repository**: [OpenAI GPT-OSS](https://github.com/openai/gpt-oss)
chat_template.jinja ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {#-
2
+ In addition to the normal inputs of `messages` and `tools`, this template also accepts the
3
+ following kwargs:
4
+ - "builtin_tools": A list, can contain "browser" and/or "python".
5
+ - "model_identity": A string that optionally describes the model identity.
6
+ - "reasoning_effort": A string that describes the reasoning effort, defaults to "medium".
7
+ #}
8
+
9
+ {#- Tool Definition Rendering ============================================== #}
10
+ {%- macro render_typescript_type(param_spec, required_params, is_nullable=false) -%}
11
+ {%- if param_spec.type == "array" -%}
12
+ {%- if param_spec['items'] -%}
13
+ {%- if param_spec['items']['type'] == "string" -%}
14
+ {{- "string[]" }}
15
+ {%- elif param_spec['items']['type'] == "number" -%}
16
+ {{- "number[]" }}
17
+ {%- elif param_spec['items']['type'] == "integer" -%}
18
+ {{- "number[]" }}
19
+ {%- elif param_spec['items']['type'] == "boolean" -%}
20
+ {{- "boolean[]" }}
21
+ {%- else -%}
22
+ {%- set inner_type = render_typescript_type(param_spec['items'], required_params) -%}
23
+ {%- if inner_type == "object | object" or inner_type|length > 50 -%}
24
+ {{- "any[]" }}
25
+ {%- else -%}
26
+ {{- inner_type + "[]" }}
27
+ {%- endif -%}
28
+ {%- endif -%}
29
+ {%- if param_spec.nullable -%}
30
+ {{- " | null" }}
31
+ {%- endif -%}
32
+ {%- else -%}
33
+ {{- "any[]" }}
34
+ {%- if param_spec.nullable -%}
35
+ {{- " | null" }}
36
+ {%- endif -%}
37
+ {%- endif -%}
38
+ {%- elif param_spec.type is defined and param_spec.type is iterable and param_spec.type is not string and param_spec.type is not mapping and param_spec.type[0] is defined -%}
39
+ {#- Handle array of types like ["object", "object"] from Union[dict, list] #}
40
+ {%- if param_spec.type | length > 1 -%}
41
+ {{- param_spec.type | join(" | ") }}
42
+ {%- else -%}
43
+ {{- param_spec.type[0] }}
44
+ {%- endif -%}
45
+ {%- elif param_spec.oneOf -%}
46
+ {#- Handle oneOf schemas - check for complex unions and fallback to any #}
47
+ {%- set has_object_variants = false -%}
48
+ {%- for variant in param_spec.oneOf -%}
49
+ {%- if variant.type == "object" -%}
50
+ {%- set has_object_variants = true -%}
51
+ {%- endif -%}
52
+ {%- endfor -%}
53
+ {%- if has_object_variants and param_spec.oneOf|length > 1 -%}
54
+ {{- "any" }}
55
+ {%- else -%}
56
+ {%- for variant in param_spec.oneOf -%}
57
+ {{- render_typescript_type(variant, required_params) -}}
58
+ {%- if variant.description %}
59
+ {{- "// " + variant.description }}
60
+ {%- endif -%}
61
+ {%- if variant.default is defined %}
62
+ {{ "// default: " + variant.default|tojson }}
63
+ {%- endif -%}
64
+ {%- if not loop.last %}
65
+ {{- " | " }}
66
+ {% endif -%}
67
+ {%- endfor -%}
68
+ {%- endif -%}
69
+ {%- elif param_spec.type == "string" -%}
70
+ {%- if param_spec.enum -%}
71
+ {{- '"' + param_spec.enum|join('" | "') + '"' -}}
72
+ {%- else -%}
73
+ {{- "string" }}
74
+ {%- if param_spec.nullable %}
75
+ {{- " | null" }}
76
+ {%- endif -%}
77
+ {%- endif -%}
78
+ {%- elif param_spec.type == "number" -%}
79
+ {{- "number" }}
80
+ {%- elif param_spec.type == "integer" -%}
81
+ {{- "number" }}
82
+ {%- elif param_spec.type == "boolean" -%}
83
+ {{- "boolean" }}
84
+
85
+ {%- elif param_spec.type == "object" -%}
86
+ {%- if param_spec.properties -%}
87
+ {{- "{\n" }}
88
+ {%- for prop_name, prop_spec in param_spec.properties.items() -%}
89
+ {{- prop_name -}}
90
+ {%- if prop_name not in (param_spec.required or []) -%}
91
+ {{- "?" }}
92
+ {%- endif -%}
93
+ {{- ": " }}
94
+ {{ render_typescript_type(prop_spec, param_spec.required or []) }}
95
+ {%- if not loop.last -%}
96
+ {{-", " }}
97
+ {%- endif -%}
98
+ {%- endfor -%}
99
+ {{- "}" }}
100
+ {%- else -%}
101
+ {{- "object" }}
102
+ {%- endif -%}
103
+ {%- else -%}
104
+ {{- "any" }}
105
+ {%- endif -%}
106
+ {%- endmacro -%}
107
+
108
+ {%- macro render_tool_namespace(namespace_name, tools) -%}
109
+ {{- "## " + namespace_name + "\n\n" }}
110
+ {{- "namespace " + namespace_name + " {\n\n" }}
111
+ {%- for tool in tools %}
112
+ {%- set tool = tool.function %}
113
+ {{- "// " + tool.description + "\n" }}
114
+ {{- "type "+ tool.name + " = " }}
115
+ {%- if tool.parameters and tool.parameters.properties %}
116
+ {{- "(_: {\n" }}
117
+ {%- for param_name, param_spec in tool.parameters.properties.items() %}
118
+ {%- if param_spec.description %}
119
+ {{- "// " + param_spec.description + "\n" }}
120
+ {%- endif %}
121
+ {{- param_name }}
122
+ {%- if param_name not in (tool.parameters.required or []) -%}
123
+ {{- "?" }}
124
+ {%- endif -%}
125
+ {{- ": " }}
126
+ {{- render_typescript_type(param_spec, tool.parameters.required or []) }}
127
+ {%- if param_spec.default is defined -%}
128
+ {%- if param_spec.enum %}
129
+ {{- ", // default: " + param_spec.default }}
130
+ {%- elif param_spec.oneOf %}
131
+ {{- "// default: " + param_spec.default }}
132
+ {%- else %}
133
+ {{- ", // default: " + param_spec.default|tojson }}
134
+ {%- endif -%}
135
+ {%- endif -%}
136
+ {%- if not loop.last %}
137
+ {{- ",\n" }}
138
+ {%- else %}
139
+ {{- ",\n" }}
140
+ {%- endif -%}
141
+ {%- endfor %}
142
+ {{- "}) => any;\n\n" }}
143
+ {%- else -%}
144
+ {{- "() => any;\n\n" }}
145
+ {%- endif -%}
146
+ {%- endfor %}
147
+ {{- "} // namespace " + namespace_name }}
148
+ {%- endmacro -%}
149
+
150
+ {%- macro render_builtin_tools(browser_tool, python_tool) -%}
151
+ {%- if browser_tool %}
152
+ {{- "## browser\n\n" }}
153
+ {{- "// Tool for browsing.\n" }}
154
+ {{- "// The `cursor` appears in brackets before each browsing display: `[{cursor}]`.\n" }}
155
+ {{- "// Cite information from the tool using the following format:\n" }}
156
+ {{- "// `【{cursor}†L{line_start}(-L{line_end})?】`, for example: `【6†L9-L11】` or `【8†L3】`.\n" }}
157
+ {{- "// Do not quote more than 10 words directly from the tool output.\n" }}
158
+ {{- "// sources=web (default: web)\n" }}
159
+ {{- "namespace browser {\n\n" }}
160
+ {{- "// Searches for information related to `query` and displays `topn` results.\n" }}
161
+ {{- "type search = (_: {\n" }}
162
+ {{- "query: string,\n" }}
163
+ {{- "topn?: number, // default: 10\n" }}
164
+ {{- "source?: string,\n" }}
165
+ {{- "}) => any;\n\n" }}
166
+ {{- "// Opens the link `id` from the page indicated by `cursor` starting at line number `loc`, showing `num_lines` lines.\n" }}
167
+ {{- "// Valid link ids are displayed with the formatting: `【{id}†.*】`.\n" }}
168
+ {{- "// If `cursor` is not provided, the most recent page is implied.\n" }}
169
+ {{- "// If `id` is a string, it is treated as a fully qualified URL associated with `source`.\n" }}
170
+ {{- "// If `loc` is not provided, the viewport will be positioned at the beginning of the document or centered on the most relevant passage, if available.\n" }}
171
+ {{- "// Use this function without `id` to scroll to a new location of an opened page.\n" }}
172
+ {{- "type open = (_: {\n" }}
173
+ {{- "id?: number | string, // default: -1\n" }}
174
+ {{- "cursor?: number, // default: -1\n" }}
175
+ {{- "loc?: number, // default: -1\n" }}
176
+ {{- "num_lines?: number, // default: -1\n" }}
177
+ {{- "view_source?: boolean, // default: false\n" }}
178
+ {{- "source?: string,\n" }}
179
+ {{- "}) => any;\n\n" }}
180
+ {{- "// Finds exact matches of `pattern` in the current page, or the page given by `cursor`.\n" }}
181
+ {{- "type find = (_: {\n" }}
182
+ {{- "pattern: string,\n" }}
183
+ {{- "cursor?: number, // default: -1\n" }}
184
+ {{- "}) => any;\n\n" }}
185
+ {{- "} // namespace browser\n\n" }}
186
+ {%- endif -%}
187
+
188
+ {%- if python_tool %}
189
+ {{- "## python\n\n" }}
190
+ {{- "Use this tool to execute Python code in your chain of thought. The code will not be shown to the user. This tool should be used for internal reasoning, but not for code that is intended to be visible to the user (e.g. when creating plots, tables, or files).\n\n" }}
191
+ {{- "When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 120.0 seconds. The drive at '/mnt/data' can be used to save and persist user files. Internet access for this session is UNKNOWN. Depends on the cluster.\n\n" }}
192
+ {%- endif -%}
193
+ {%- endmacro -%}
194
+
195
+ {#- System Message Construction ============================================ #}
196
+ {%- macro build_system_message() -%}
197
+ {%- if model_identity is not defined %}
198
+ {%- set model_identity = "You are ChatGPT, a large language model trained by OpenAI." %}
199
+ {%- endif %}
200
+ {{- model_identity + "\n" }}
201
+ {{- "Knowledge cutoff: 2024-06\n" }}
202
+ {{- "Current date: " + strftime_now("%Y-%m-%d") + "\n\n" }}
203
+ {%- if reasoning_effort is not defined %}
204
+ {%- set reasoning_effort = "medium" %}
205
+ {%- endif %}
206
+ {{- "Reasoning: " + reasoning_effort + "\n\n" }}
207
+ {%- if builtin_tools %}
208
+ {{- "# Tools\n\n" }}
209
+ {%- set available_builtin_tools = namespace(browser=false, python=false) %}
210
+ {%- for tool in builtin_tools %}
211
+ {%- if tool == "browser" %}
212
+ {%- set available_builtin_tools.browser = true %}
213
+ {%- elif tool == "python" %}
214
+ {%- set available_builtin_tools.python = true %}
215
+ {%- endif %}
216
+ {%- endfor %}
217
+ {{- render_builtin_tools(available_builtin_tools.browser, available_builtin_tools.python) }}
218
+ {%- endif -%}
219
+ {{- "# Valid channels: analysis, commentary, final. Channel must be included for every message." }}
220
+ {%- if tools -%}
221
+ {{- "\nCalls to these tools must go to the commentary channel: 'functions'." }}
222
+ {%- endif -%}
223
+ {%- endmacro -%}
224
+
225
+ {#- Main Template Logic ================================================= #}
226
+ {#- Set defaults #}
227
+
228
+ {#- Render system message #}
229
+ {{- "<|start|>system<|message|>" }}
230
+ {{- build_system_message() }}
231
+ {{- "<|end|>" }}
232
+
233
+ {#- Extract developer message #}
234
+ {%- if messages[0].role == "developer" or messages[0].role == "system" %}
235
+ {%- set developer_message = messages[0].content %}
236
+ {%- set loop_messages = messages[1:] %}
237
+ {%- else %}
238
+ {%- set developer_message = "" %}
239
+ {%- set loop_messages = messages %}
240
+ {%- endif %}
241
+
242
+ {#- Render developer message #}
243
+ {%- if developer_message or tools %}
244
+ {{- "<|start|>developer<|message|>" }}
245
+ {%- if developer_message %}
246
+ {{- "# Instructions\n\n" }}
247
+ {{- developer_message }}
248
+ {{- "\n\n" }}
249
+ {%- endif %}
250
+ {%- if tools -%}
251
+ {{- "# Tools\n\n" }}
252
+ {{- render_tool_namespace("functions", tools) }}
253
+ {%- endif -%}
254
+ {{- "<|end|>" }}
255
+ {%- endif %}
256
+
257
+ {#- Render messages #}
258
+ {%- set last_tool_call = namespace(name=none) %}
259
+ {%- for message in loop_messages -%}
260
+ {#- At this point only assistant/user/tool messages should remain #}
261
+ {%- if message.role == 'assistant' -%}
262
+ {#- Checks to ensure the messages are being passed in the format we expect #}
263
+ {%- if "content" in message %}
264
+ {%- if "<|channel|>analysis<|message|>" in message.content or "<|channel|>final<|message|>" in message.content %}
265
+ {{- raise_exception("You have passed a message containing <|channel|> tags in the content field. Instead of doing this, you should pass analysis messages (the string between '<|message|>' and '<|end|>') in the 'thinking' field, and final messages (the string between '<|message|>' and '<|end|>') in the 'content' field.") }}
266
+ {%- endif %}
267
+ {%- endif %}
268
+ {%- if "thinking" in message %}
269
+ {%- if "<|channel|>analysis<|message|>" in message.thinking or "<|channel|>final<|message|>" in message.thinking %}
270
+ {{- raise_exception("You have passed a message containing <|channel|> tags in the thinking field. Instead of doing this, you should pass analysis messages (the string between '<|message|>' and '<|end|>') in the 'thinking' field, and final messages (the string between '<|message|>' and '<|end|>') in the 'content' field.") }}
271
+ {%- endif %}
272
+ {%- endif %}
273
+ {%- if "tool_calls" in message %}
274
+ {#- We need very careful handling here - we want to drop the tool call analysis message if the model #}
275
+ {#- has output a later <|final|> message, but otherwise we want to retain it. This is the only case #}
276
+ {#- when we render CoT/analysis messages in inference. #}
277
+ {%- set future_final_message = namespace(found=false) %}
278
+ {%- for future_message in loop_messages[loop.index:] %}
279
+ {%- if future_message.role == 'assistant' and "tool_calls" not in future_message %}
280
+ {%- set future_final_message.found = true %}
281
+ {%- endif %}
282
+ {%- endfor %}
283
+ {#- We assume max 1 tool call per message, and so we infer the tool call name #}
284
+ {#- in "tool" messages from the most recent assistant tool call name #}
285
+ {%- set tool_call = message.tool_calls[0] %}
286
+ {%- if tool_call.function %}
287
+ {%- set tool_call = tool_call.function %}
288
+ {%- endif %}
289
+ {%- if message.content and message.thinking %}
290
+ {{- raise_exception("Cannot pass both content and thinking in an assistant message with tool calls! Put the analysis message in one or the other, but not both.") }}
291
+ {%- elif message.content and not future_final_message.found %}
292
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.content + "<|end|>" }}
293
+ {%- elif message.thinking and not future_final_message.found %}
294
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.thinking + "<|end|>" }}
295
+ {%- endif %}
296
+ {{- "<|start|>assistant to=" }}
297
+ {{- "functions." + tool_call.name + "<|channel|>commentary " }}
298
+ {{- (tool_call.content_type if tool_call.content_type is defined else "json") + "<|message|>" }}
299
+ {{- tool_call.arguments|tojson }}
300
+ {{- "<|call|>" }}
301
+ {%- set last_tool_call.name = tool_call.name %}
302
+ {%- elif loop.last and not add_generation_prompt %}
303
+ {#- Only render the CoT if the final turn is an assistant turn and add_generation_prompt is false #}
304
+ {#- This is a situation that should only occur in training, never in inference. #}
305
+ {%- if "thinking" in message %}
306
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.thinking + "<|end|>" }}
307
+ {%- endif %}
308
+ {#- <|return|> indicates the end of generation, but <|end|> does not #}
309
+ {#- <|return|> should never be an input to the model, but we include it as the final token #}
310
+ {#- when training, so the model learns to emit it. #}
311
+ {{- "<|start|>assistant<|channel|>final<|message|>" + message.content + "<|return|>" }}
312
+ {%- else %}
313
+ {#- CoT is dropped during all previous turns, so we never render it for inference #}
314
+ {{- "<|start|>assistant<|channel|>final<|message|>" + message.content + "<|end|>" }}
315
+ {%- set last_tool_call.name = none %}
316
+ {%- endif %}
317
+ {%- elif message.role == 'tool' -%}
318
+ {%- if last_tool_call.name is none %}
319
+ {{- raise_exception("Message has tool role, but there was no previous assistant message with a tool call!") }}
320
+ {%- endif %}
321
+ {{- "<|start|>functions." + last_tool_call.name }}
322
+ {{- " to=assistant<|channel|>commentary<|message|>" + message.content|tojson + "<|end|>" }}
323
+ {%- elif message.role == 'user' -%}
324
+ {{- "<|start|>user<|message|>" + message.content + "<|end|>" }}
325
+ {%- endif -%}
326
+ {%- endfor -%}
327
+
328
+ {#- Generation prompt #}
329
+ {%- if add_generation_prompt -%}
330
+ <|start|>assistant
331
+ {%- endif -%}
citation.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "title": "GPT-OSS MoE Expert Fingerprinting: Analyzing Expert Activation Patterns in Mixture of Experts Models",
3
+ "authors": [
4
+ "Aman Priyanshu",
5
+ "Supriti Vijay"
6
+ ],
7
+ "year": 2025,
8
+ "url": "https://amanpriyanshu.github.io/GPT-OSS-MoE-ExpertFingerprinting/"
9
+ }
config.json ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "vocab_size": 201088,
3
+ "hidden_size": 2880,
4
+ "intermediate_size": 2880,
5
+ "num_hidden_layers": 24,
6
+ "num_attention_heads": 64,
7
+ "num_local_experts": 11,
8
+ "sliding_window": 128,
9
+ "num_experts_per_tok": 4,
10
+ "num_key_value_heads": 8,
11
+ "hidden_act": "silu",
12
+ "initializer_range": 0.02,
13
+ "rms_norm_eps": 1e-05,
14
+ "rope_theta": 150000,
15
+ "rope_scaling": {
16
+ "beta_fast": 32.0,
17
+ "beta_slow": 1.0,
18
+ "factor": 32.0,
19
+ "original_max_position_embeddings": 4096,
20
+ "rope_type": "yarn",
21
+ "truncate": false
22
+ },
23
+ "attention_dropout": 0.0,
24
+ "head_dim": 64,
25
+ "layer_types": [
26
+ "sliding_attention",
27
+ "full_attention",
28
+ "sliding_attention",
29
+ "full_attention",
30
+ "sliding_attention",
31
+ "full_attention",
32
+ "sliding_attention",
33
+ "full_attention",
34
+ "sliding_attention",
35
+ "full_attention",
36
+ "sliding_attention",
37
+ "full_attention",
38
+ "sliding_attention",
39
+ "full_attention",
40
+ "sliding_attention",
41
+ "full_attention",
42
+ "sliding_attention",
43
+ "full_attention",
44
+ "sliding_attention",
45
+ "full_attention",
46
+ "sliding_attention",
47
+ "full_attention",
48
+ "sliding_attention",
49
+ "full_attention"
50
+ ],
51
+ "attention_bias": true,
52
+ "max_position_embeddings": 131072,
53
+ "router_aux_loss_coef": 0.9,
54
+ "output_router_logits": false,
55
+ "use_cache": true,
56
+ "return_dict": true,
57
+ "output_hidden_states": false,
58
+ "torchscript": false,
59
+ "torch_dtype": null,
60
+ "pruned_heads": {},
61
+ "tie_word_embeddings": false,
62
+ "chunk_size_feed_forward": 0,
63
+ "is_encoder_decoder": false,
64
+ "is_decoder": false,
65
+ "cross_attention_hidden_size": null,
66
+ "add_cross_attention": false,
67
+ "tie_encoder_decoder": false,
68
+ "architectures": [
69
+ "GptOssForCausalLM"
70
+ ],
71
+ "finetuning_task": null,
72
+ "id2label": {
73
+ "0": "LABEL_0",
74
+ "1": "LABEL_1"
75
+ },
76
+ "label2id": {
77
+ "LABEL_0": 0,
78
+ "LABEL_1": 1
79
+ },
80
+ "task_specific_params": null,
81
+ "problem_type": null,
82
+ "tokenizer_class": null,
83
+ "prefix": null,
84
+ "bos_token_id": null,
85
+ "pad_token_id": 199999,
86
+ "eos_token_id": 200002,
87
+ "sep_token_id": null,
88
+ "decoder_start_token_id": null,
89
+ "max_length": 20,
90
+ "min_length": 0,
91
+ "do_sample": false,
92
+ "early_stopping": false,
93
+ "num_beams": 1,
94
+ "num_beam_groups": 1,
95
+ "diversity_penalty": 0.0,
96
+ "temperature": 1.0,
97
+ "top_k": 50,
98
+ "top_p": 1.0,
99
+ "typical_p": 1.0,
100
+ "repetition_penalty": 1.0,
101
+ "length_penalty": 1.0,
102
+ "no_repeat_ngram_size": 0,
103
+ "encoder_no_repeat_ngram_size": 0,
104
+ "bad_words_ids": null,
105
+ "num_return_sequences": 1,
106
+ "output_scores": false,
107
+ "return_dict_in_generate": false,
108
+ "forced_bos_token_id": null,
109
+ "forced_eos_token_id": null,
110
+ "remove_invalid_values": false,
111
+ "exponential_decay_length_penalty": null,
112
+ "suppress_tokens": null,
113
+ "begin_suppress_tokens": null,
114
+ "_name_or_path": "openai/gpt-oss-20b",
115
+ "transformers_version": "4.55.0",
116
+ "experts_per_token": 4,
117
+ "initial_context_length": 4096,
118
+ "model_type": "gpt_oss",
119
+ "swiglu_limit": 7.0,
120
+ "tf_legacy_loss": false,
121
+ "use_bfloat16": false,
122
+ "output_attentions": false
123
+ }
expert_mapping.json ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "0": {
3
+ "9": 0,
4
+ "11": 1,
5
+ "3": 2,
6
+ "17": 3,
7
+ "22": 4,
8
+ "16": 5,
9
+ "31": 6,
10
+ "1": 7,
11
+ "2": 8,
12
+ "5": 9,
13
+ "6": 10
14
+ },
15
+ "1": {
16
+ "28": 0,
17
+ "25": 1,
18
+ "0": 2,
19
+ "27": 3,
20
+ "18": 4,
21
+ "6": 5,
22
+ "1": 6,
23
+ "12": 7,
24
+ "29": 8,
25
+ "13": 9,
26
+ "17": 10
27
+ },
28
+ "2": {
29
+ "31": 0,
30
+ "21": 1,
31
+ "29": 2,
32
+ "10": 3,
33
+ "8": 4,
34
+ "5": 5,
35
+ "0": 6,
36
+ "22": 7,
37
+ "28": 8,
38
+ "20": 9,
39
+ "27": 10
40
+ },
41
+ "3": {
42
+ "7": 0,
43
+ "31": 1,
44
+ "0": 2,
45
+ "23": 3,
46
+ "19": 4,
47
+ "2": 5,
48
+ "21": 6,
49
+ "11": 7,
50
+ "25": 8,
51
+ "1": 9,
52
+ "12": 10
53
+ },
54
+ "4": {
55
+ "6": 0,
56
+ "15": 1,
57
+ "18": 2,
58
+ "20": 3,
59
+ "17": 4,
60
+ "24": 5,
61
+ "23": 6,
62
+ "14": 7,
63
+ "30": 8,
64
+ "10": 9,
65
+ "7": 10
66
+ },
67
+ "5": {
68
+ "6": 0,
69
+ "0": 1,
70
+ "10": 2,
71
+ "31": 3,
72
+ "14": 4,
73
+ "15": 5,
74
+ "2": 6,
75
+ "24": 7,
76
+ "17": 8,
77
+ "18": 9,
78
+ "27": 10
79
+ },
80
+ "6": {
81
+ "2": 0,
82
+ "9": 1,
83
+ "10": 2,
84
+ "5": 3,
85
+ "3": 4,
86
+ "16": 5,
87
+ "7": 6,
88
+ "15": 7,
89
+ "20": 8,
90
+ "31": 9,
91
+ "4": 10
92
+ },
93
+ "7": {
94
+ "5": 0,
95
+ "1": 1,
96
+ "30": 2,
97
+ "13": 3,
98
+ "29": 4,
99
+ "10": 5,
100
+ "14": 6,
101
+ "4": 7,
102
+ "24": 8,
103
+ "15": 9,
104
+ "19": 10
105
+ },
106
+ "8": {
107
+ "24": 0,
108
+ "20": 1,
109
+ "4": 2,
110
+ "17": 3,
111
+ "31": 4,
112
+ "5": 5,
113
+ "0": 6,
114
+ "13": 7,
115
+ "23": 8,
116
+ "30": 9,
117
+ "19": 10
118
+ },
119
+ "9": {
120
+ "8": 0,
121
+ "19": 1,
122
+ "15": 2,
123
+ "30": 3,
124
+ "14": 4,
125
+ "16": 5,
126
+ "13": 6,
127
+ "21": 7,
128
+ "23": 8,
129
+ "5": 9,
130
+ "4": 10
131
+ },
132
+ "10": {
133
+ "10": 0,
134
+ "5": 1,
135
+ "7": 2,
136
+ "23": 3,
137
+ "19": 4,
138
+ "26": 5,
139
+ "21": 6,
140
+ "11": 7,
141
+ "18": 8,
142
+ "24": 9,
143
+ "25": 10
144
+ },
145
+ "11": {
146
+ "30": 0,
147
+ "9": 1,
148
+ "27": 2,
149
+ "11": 3,
150
+ "7": 4,
151
+ "20": 5,
152
+ "25": 6,
153
+ "21": 7,
154
+ "4": 8,
155
+ "17": 9,
156
+ "15": 10
157
+ },
158
+ "12": {
159
+ "23": 0,
160
+ "14": 1,
161
+ "3": 2,
162
+ "21": 3,
163
+ "28": 4,
164
+ "1": 5,
165
+ "24": 6,
166
+ "25": 7,
167
+ "6": 8,
168
+ "8": 9,
169
+ "12": 10
170
+ },
171
+ "13": {
172
+ "21": 0,
173
+ "9": 1,
174
+ "11": 2,
175
+ "1": 3,
176
+ "19": 4,
177
+ "24": 5,
178
+ "16": 6,
179
+ "3": 7,
180
+ "30": 8,
181
+ "15": 9,
182
+ "10": 10
183
+ },
184
+ "14": {
185
+ "9": 0,
186
+ "0": 1,
187
+ "6": 2,
188
+ "18": 3,
189
+ "21": 4,
190
+ "26": 5,
191
+ "4": 6,
192
+ "24": 7,
193
+ "1": 8,
194
+ "31": 9,
195
+ "3": 10
196
+ },
197
+ "15": {
198
+ "13": 0,
199
+ "18": 1,
200
+ "31": 2,
201
+ "26": 3,
202
+ "3": 4,
203
+ "9": 5,
204
+ "2": 6,
205
+ "29": 7,
206
+ "10": 8,
207
+ "28": 9,
208
+ "19": 10
209
+ },
210
+ "16": {
211
+ "31": 0,
212
+ "30": 1,
213
+ "15": 2,
214
+ "11": 3,
215
+ "24": 4,
216
+ "5": 5,
217
+ "0": 6,
218
+ "18": 7,
219
+ "20": 8,
220
+ "10": 9,
221
+ "21": 10
222
+ },
223
+ "17": {
224
+ "14": 0,
225
+ "30": 1,
226
+ "5": 2,
227
+ "4": 3,
228
+ "17": 4,
229
+ "11": 5,
230
+ "28": 6,
231
+ "7": 7,
232
+ "25": 8,
233
+ "8": 9,
234
+ "12": 10
235
+ },
236
+ "18": {
237
+ "1": 0,
238
+ "18": 1,
239
+ "24": 2,
240
+ "14": 3,
241
+ "15": 4,
242
+ "27": 5,
243
+ "20": 6,
244
+ "23": 7,
245
+ "9": 8,
246
+ "7": 9,
247
+ "2": 10
248
+ },
249
+ "19": {
250
+ "3": 0,
251
+ "19": 1,
252
+ "6": 2,
253
+ "29": 3,
254
+ "16": 4,
255
+ "31": 5,
256
+ "7": 6,
257
+ "0": 7,
258
+ "17": 8,
259
+ "12": 9,
260
+ "2": 10
261
+ },
262
+ "20": {
263
+ "22": 0,
264
+ "16": 1,
265
+ "30": 2,
266
+ "24": 3,
267
+ "31": 4,
268
+ "21": 5,
269
+ "11": 6,
270
+ "12": 7,
271
+ "0": 8,
272
+ "13": 9,
273
+ "7": 10
274
+ },
275
+ "21": {
276
+ "3": 0,
277
+ "9": 1,
278
+ "27": 2,
279
+ "21": 3,
280
+ "6": 4,
281
+ "1": 5,
282
+ "2": 6,
283
+ "20": 7,
284
+ "31": 8,
285
+ "18": 9,
286
+ "10": 10
287
+ },
288
+ "22": {
289
+ "25": 0,
290
+ "16": 1,
291
+ "14": 2,
292
+ "8": 3,
293
+ "18": 4,
294
+ "22": 5,
295
+ "15": 6,
296
+ "4": 7,
297
+ "0": 8,
298
+ "20": 9,
299
+ "13": 10
300
+ },
301
+ "23": {
302
+ "31": 0,
303
+ "18": 1,
304
+ "10": 2,
305
+ "16": 3,
306
+ "0": 4,
307
+ "22": 5,
308
+ "28": 6,
309
+ "17": 7,
310
+ "8": 8,
311
+ "3": 9,
312
+ "14": 10
313
+ }
314
+ }
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 199998,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 200002,
6
+ 199999
7
+ ],
8
+ "pad_token_id": 199999,
9
+ "transformers_version": "4.55.0"
10
+ }
model-00001-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:033345ce580a075b13f64dab2478e8fa3ab998c93b34ec925285fbe5de88c19f
3
+ size 1812229500
model-00002-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac5fbc78479c5dee33acffe01e536a5b8a5e8754f738a68eae5983c44a239f56
3
+ size 1802392794
model-00003-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2de0a71fee1ba6c4ecb665dff3bc462c4cf978b8a4b87b569901667e5f875436
3
+ size 1802392794
model-00004-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d8c9770b5abda2e330b70577febf4e0c8e78785dacc9b7d1eaec9f07d777a76
3
+ size 1802392738
model-00005-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7130025e4b3af8f71a3f52945d1b99d386cc108b907b07cf5455e500f159a20
3
+ size 1802392842
model-00006-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1909a5593a76f5c697f018de20a77e581859c51959dbb988f6ca81e9c8caf318
3
+ size 1802392842
model-00007-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99ef00390755274b79a24a9d38439cb5d0de36256d31a53beffb6d7b9ce7a6b8
3
+ size 1802392842
model-00008-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e5ef2b26af28faad48c6e828fa27d950ae08db136172bad8a83973eabeef857
3
+ size 1802392842
model-00009-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8e732203695d43a302887ab2e0af88aa21f08ef1dedb0ddf018603287c98ae1
3
+ size 1148436182
model-00010-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08e257de1fa16cf80c8a36ca29c5974fc999f0dc7ada1468bfd0be18151af482
3
+ size 1158267008
model.safetensors.index.json ADDED
@@ -0,0 +1,419 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 8367817800,
4
+ "total_size": 16735635600
5
+ },
6
+ "weight_map": {
7
+ "lm_head.weight": "model-00010-of-00010.safetensors",
8
+ "model.embed_tokens.weight": "model-00001-of-00010.safetensors",
9
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00010.safetensors",
10
+ "model.layers.0.mlp.experts.down_proj": "model-00001-of-00010.safetensors",
11
+ "model.layers.0.mlp.experts.down_proj_bias": "model-00001-of-00010.safetensors",
12
+ "model.layers.0.mlp.experts.gate_up_proj": "model-00001-of-00010.safetensors",
13
+ "model.layers.0.mlp.experts.gate_up_proj_bias": "model-00001-of-00010.safetensors",
14
+ "model.layers.0.mlp.router.bias": "model-00001-of-00010.safetensors",
15
+ "model.layers.0.mlp.router.weight": "model-00001-of-00010.safetensors",
16
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
17
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00010.safetensors",
18
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
19
+ "model.layers.0.self_attn.o_proj.bias": "model-00001-of-00010.safetensors",
20
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
21
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00010.safetensors",
22
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
23
+ "model.layers.0.self_attn.sinks": "model-00001-of-00010.safetensors",
24
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00010.safetensors",
25
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
26
+ "model.layers.1.input_layernorm.weight": "model-00002-of-00010.safetensors",
27
+ "model.layers.1.mlp.experts.down_proj": "model-00002-of-00010.safetensors",
28
+ "model.layers.1.mlp.experts.down_proj_bias": "model-00002-of-00010.safetensors",
29
+ "model.layers.1.mlp.experts.gate_up_proj": "model-00002-of-00010.safetensors",
30
+ "model.layers.1.mlp.experts.gate_up_proj_bias": "model-00002-of-00010.safetensors",
31
+ "model.layers.1.mlp.router.bias": "model-00001-of-00010.safetensors",
32
+ "model.layers.1.mlp.router.weight": "model-00001-of-00010.safetensors",
33
+ "model.layers.1.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
34
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00010.safetensors",
35
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
36
+ "model.layers.1.self_attn.o_proj.bias": "model-00001-of-00010.safetensors",
37
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
38
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00010.safetensors",
39
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
40
+ "model.layers.1.self_attn.sinks": "model-00001-of-00010.safetensors",
41
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00010.safetensors",
42
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
43
+ "model.layers.10.input_layernorm.weight": "model-00005-of-00010.safetensors",
44
+ "model.layers.10.mlp.experts.down_proj": "model-00005-of-00010.safetensors",
45
+ "model.layers.10.mlp.experts.down_proj_bias": "model-00005-of-00010.safetensors",
46
+ "model.layers.10.mlp.experts.gate_up_proj": "model-00005-of-00010.safetensors",
47
+ "model.layers.10.mlp.experts.gate_up_proj_bias": "model-00005-of-00010.safetensors",
48
+ "model.layers.10.mlp.router.bias": "model-00004-of-00010.safetensors",
49
+ "model.layers.10.mlp.router.weight": "model-00004-of-00010.safetensors",
50
+ "model.layers.10.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
51
+ "model.layers.10.self_attn.k_proj.bias": "model-00004-of-00010.safetensors",
52
+ "model.layers.10.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
53
+ "model.layers.10.self_attn.o_proj.bias": "model-00004-of-00010.safetensors",
54
+ "model.layers.10.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
55
+ "model.layers.10.self_attn.q_proj.bias": "model-00004-of-00010.safetensors",
56
+ "model.layers.10.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
57
+ "model.layers.10.self_attn.sinks": "model-00004-of-00010.safetensors",
58
+ "model.layers.10.self_attn.v_proj.bias": "model-00004-of-00010.safetensors",
59
+ "model.layers.10.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
60
+ "model.layers.11.input_layernorm.weight": "model-00005-of-00010.safetensors",
61
+ "model.layers.11.mlp.experts.down_proj": "model-00005-of-00010.safetensors",
62
+ "model.layers.11.mlp.experts.down_proj_bias": "model-00005-of-00010.safetensors",
63
+ "model.layers.11.mlp.experts.gate_up_proj": "model-00005-of-00010.safetensors",
64
+ "model.layers.11.mlp.experts.gate_up_proj_bias": "model-00005-of-00010.safetensors",
65
+ "model.layers.11.mlp.router.bias": "model-00005-of-00010.safetensors",
66
+ "model.layers.11.mlp.router.weight": "model-00005-of-00010.safetensors",
67
+ "model.layers.11.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
68
+ "model.layers.11.self_attn.k_proj.bias": "model-00005-of-00010.safetensors",
69
+ "model.layers.11.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
70
+ "model.layers.11.self_attn.o_proj.bias": "model-00005-of-00010.safetensors",
71
+ "model.layers.11.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
72
+ "model.layers.11.self_attn.q_proj.bias": "model-00005-of-00010.safetensors",
73
+ "model.layers.11.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
74
+ "model.layers.11.self_attn.sinks": "model-00005-of-00010.safetensors",
75
+ "model.layers.11.self_attn.v_proj.bias": "model-00005-of-00010.safetensors",
76
+ "model.layers.11.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
77
+ "model.layers.12.input_layernorm.weight": "model-00005-of-00010.safetensors",
78
+ "model.layers.12.mlp.experts.down_proj": "model-00005-of-00010.safetensors",
79
+ "model.layers.12.mlp.experts.down_proj_bias": "model-00005-of-00010.safetensors",
80
+ "model.layers.12.mlp.experts.gate_up_proj": "model-00005-of-00010.safetensors",
81
+ "model.layers.12.mlp.experts.gate_up_proj_bias": "model-00005-of-00010.safetensors",
82
+ "model.layers.12.mlp.router.bias": "model-00005-of-00010.safetensors",
83
+ "model.layers.12.mlp.router.weight": "model-00005-of-00010.safetensors",
84
+ "model.layers.12.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
85
+ "model.layers.12.self_attn.k_proj.bias": "model-00005-of-00010.safetensors",
86
+ "model.layers.12.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
87
+ "model.layers.12.self_attn.o_proj.bias": "model-00005-of-00010.safetensors",
88
+ "model.layers.12.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
89
+ "model.layers.12.self_attn.q_proj.bias": "model-00005-of-00010.safetensors",
90
+ "model.layers.12.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
91
+ "model.layers.12.self_attn.sinks": "model-00005-of-00010.safetensors",
92
+ "model.layers.12.self_attn.v_proj.bias": "model-00005-of-00010.safetensors",
93
+ "model.layers.12.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
94
+ "model.layers.13.input_layernorm.weight": "model-00006-of-00010.safetensors",
95
+ "model.layers.13.mlp.experts.down_proj": "model-00006-of-00010.safetensors",
96
+ "model.layers.13.mlp.experts.down_proj_bias": "model-00006-of-00010.safetensors",
97
+ "model.layers.13.mlp.experts.gate_up_proj": "model-00006-of-00010.safetensors",
98
+ "model.layers.13.mlp.experts.gate_up_proj_bias": "model-00006-of-00010.safetensors",
99
+ "model.layers.13.mlp.router.bias": "model-00005-of-00010.safetensors",
100
+ "model.layers.13.mlp.router.weight": "model-00005-of-00010.safetensors",
101
+ "model.layers.13.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
102
+ "model.layers.13.self_attn.k_proj.bias": "model-00005-of-00010.safetensors",
103
+ "model.layers.13.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
104
+ "model.layers.13.self_attn.o_proj.bias": "model-00005-of-00010.safetensors",
105
+ "model.layers.13.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
106
+ "model.layers.13.self_attn.q_proj.bias": "model-00005-of-00010.safetensors",
107
+ "model.layers.13.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
108
+ "model.layers.13.self_attn.sinks": "model-00005-of-00010.safetensors",
109
+ "model.layers.13.self_attn.v_proj.bias": "model-00005-of-00010.safetensors",
110
+ "model.layers.13.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
111
+ "model.layers.14.input_layernorm.weight": "model-00006-of-00010.safetensors",
112
+ "model.layers.14.mlp.experts.down_proj": "model-00006-of-00010.safetensors",
113
+ "model.layers.14.mlp.experts.down_proj_bias": "model-00006-of-00010.safetensors",
114
+ "model.layers.14.mlp.experts.gate_up_proj": "model-00006-of-00010.safetensors",
115
+ "model.layers.14.mlp.experts.gate_up_proj_bias": "model-00006-of-00010.safetensors",
116
+ "model.layers.14.mlp.router.bias": "model-00006-of-00010.safetensors",
117
+ "model.layers.14.mlp.router.weight": "model-00006-of-00010.safetensors",
118
+ "model.layers.14.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
119
+ "model.layers.14.self_attn.k_proj.bias": "model-00006-of-00010.safetensors",
120
+ "model.layers.14.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
121
+ "model.layers.14.self_attn.o_proj.bias": "model-00006-of-00010.safetensors",
122
+ "model.layers.14.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
123
+ "model.layers.14.self_attn.q_proj.bias": "model-00006-of-00010.safetensors",
124
+ "model.layers.14.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
125
+ "model.layers.14.self_attn.sinks": "model-00006-of-00010.safetensors",
126
+ "model.layers.14.self_attn.v_proj.bias": "model-00006-of-00010.safetensors",
127
+ "model.layers.14.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
128
+ "model.layers.15.input_layernorm.weight": "model-00006-of-00010.safetensors",
129
+ "model.layers.15.mlp.experts.down_proj": "model-00006-of-00010.safetensors",
130
+ "model.layers.15.mlp.experts.down_proj_bias": "model-00006-of-00010.safetensors",
131
+ "model.layers.15.mlp.experts.gate_up_proj": "model-00006-of-00010.safetensors",
132
+ "model.layers.15.mlp.experts.gate_up_proj_bias": "model-00006-of-00010.safetensors",
133
+ "model.layers.15.mlp.router.bias": "model-00006-of-00010.safetensors",
134
+ "model.layers.15.mlp.router.weight": "model-00006-of-00010.safetensors",
135
+ "model.layers.15.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
136
+ "model.layers.15.self_attn.k_proj.bias": "model-00006-of-00010.safetensors",
137
+ "model.layers.15.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
138
+ "model.layers.15.self_attn.o_proj.bias": "model-00006-of-00010.safetensors",
139
+ "model.layers.15.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
140
+ "model.layers.15.self_attn.q_proj.bias": "model-00006-of-00010.safetensors",
141
+ "model.layers.15.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
142
+ "model.layers.15.self_attn.sinks": "model-00006-of-00010.safetensors",
143
+ "model.layers.15.self_attn.v_proj.bias": "model-00006-of-00010.safetensors",
144
+ "model.layers.15.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
145
+ "model.layers.16.input_layernorm.weight": "model-00007-of-00010.safetensors",
146
+ "model.layers.16.mlp.experts.down_proj": "model-00007-of-00010.safetensors",
147
+ "model.layers.16.mlp.experts.down_proj_bias": "model-00007-of-00010.safetensors",
148
+ "model.layers.16.mlp.experts.gate_up_proj": "model-00007-of-00010.safetensors",
149
+ "model.layers.16.mlp.experts.gate_up_proj_bias": "model-00007-of-00010.safetensors",
150
+ "model.layers.16.mlp.router.bias": "model-00006-of-00010.safetensors",
151
+ "model.layers.16.mlp.router.weight": "model-00006-of-00010.safetensors",
152
+ "model.layers.16.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
153
+ "model.layers.16.self_attn.k_proj.bias": "model-00006-of-00010.safetensors",
154
+ "model.layers.16.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
155
+ "model.layers.16.self_attn.o_proj.bias": "model-00006-of-00010.safetensors",
156
+ "model.layers.16.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
157
+ "model.layers.16.self_attn.q_proj.bias": "model-00006-of-00010.safetensors",
158
+ "model.layers.16.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
159
+ "model.layers.16.self_attn.sinks": "model-00006-of-00010.safetensors",
160
+ "model.layers.16.self_attn.v_proj.bias": "model-00006-of-00010.safetensors",
161
+ "model.layers.16.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
162
+ "model.layers.17.input_layernorm.weight": "model-00007-of-00010.safetensors",
163
+ "model.layers.17.mlp.experts.down_proj": "model-00007-of-00010.safetensors",
164
+ "model.layers.17.mlp.experts.down_proj_bias": "model-00007-of-00010.safetensors",
165
+ "model.layers.17.mlp.experts.gate_up_proj": "model-00007-of-00010.safetensors",
166
+ "model.layers.17.mlp.experts.gate_up_proj_bias": "model-00007-of-00010.safetensors",
167
+ "model.layers.17.mlp.router.bias": "model-00007-of-00010.safetensors",
168
+ "model.layers.17.mlp.router.weight": "model-00007-of-00010.safetensors",
169
+ "model.layers.17.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
170
+ "model.layers.17.self_attn.k_proj.bias": "model-00007-of-00010.safetensors",
171
+ "model.layers.17.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
172
+ "model.layers.17.self_attn.o_proj.bias": "model-00007-of-00010.safetensors",
173
+ "model.layers.17.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
174
+ "model.layers.17.self_attn.q_proj.bias": "model-00007-of-00010.safetensors",
175
+ "model.layers.17.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
176
+ "model.layers.17.self_attn.sinks": "model-00007-of-00010.safetensors",
177
+ "model.layers.17.self_attn.v_proj.bias": "model-00007-of-00010.safetensors",
178
+ "model.layers.17.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
179
+ "model.layers.18.input_layernorm.weight": "model-00007-of-00010.safetensors",
180
+ "model.layers.18.mlp.experts.down_proj": "model-00007-of-00010.safetensors",
181
+ "model.layers.18.mlp.experts.down_proj_bias": "model-00007-of-00010.safetensors",
182
+ "model.layers.18.mlp.experts.gate_up_proj": "model-00007-of-00010.safetensors",
183
+ "model.layers.18.mlp.experts.gate_up_proj_bias": "model-00007-of-00010.safetensors",
184
+ "model.layers.18.mlp.router.bias": "model-00007-of-00010.safetensors",
185
+ "model.layers.18.mlp.router.weight": "model-00007-of-00010.safetensors",
186
+ "model.layers.18.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
187
+ "model.layers.18.self_attn.k_proj.bias": "model-00007-of-00010.safetensors",
188
+ "model.layers.18.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
189
+ "model.layers.18.self_attn.o_proj.bias": "model-00007-of-00010.safetensors",
190
+ "model.layers.18.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
191
+ "model.layers.18.self_attn.q_proj.bias": "model-00007-of-00010.safetensors",
192
+ "model.layers.18.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
193
+ "model.layers.18.self_attn.sinks": "model-00007-of-00010.safetensors",
194
+ "model.layers.18.self_attn.v_proj.bias": "model-00007-of-00010.safetensors",
195
+ "model.layers.18.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
196
+ "model.layers.19.input_layernorm.weight": "model-00008-of-00010.safetensors",
197
+ "model.layers.19.mlp.experts.down_proj": "model-00008-of-00010.safetensors",
198
+ "model.layers.19.mlp.experts.down_proj_bias": "model-00008-of-00010.safetensors",
199
+ "model.layers.19.mlp.experts.gate_up_proj": "model-00008-of-00010.safetensors",
200
+ "model.layers.19.mlp.experts.gate_up_proj_bias": "model-00008-of-00010.safetensors",
201
+ "model.layers.19.mlp.router.bias": "model-00007-of-00010.safetensors",
202
+ "model.layers.19.mlp.router.weight": "model-00007-of-00010.safetensors",
203
+ "model.layers.19.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
204
+ "model.layers.19.self_attn.k_proj.bias": "model-00007-of-00010.safetensors",
205
+ "model.layers.19.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
206
+ "model.layers.19.self_attn.o_proj.bias": "model-00007-of-00010.safetensors",
207
+ "model.layers.19.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
208
+ "model.layers.19.self_attn.q_proj.bias": "model-00007-of-00010.safetensors",
209
+ "model.layers.19.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
210
+ "model.layers.19.self_attn.sinks": "model-00007-of-00010.safetensors",
211
+ "model.layers.19.self_attn.v_proj.bias": "model-00007-of-00010.safetensors",
212
+ "model.layers.19.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
213
+ "model.layers.2.input_layernorm.weight": "model-00002-of-00010.safetensors",
214
+ "model.layers.2.mlp.experts.down_proj": "model-00002-of-00010.safetensors",
215
+ "model.layers.2.mlp.experts.down_proj_bias": "model-00002-of-00010.safetensors",
216
+ "model.layers.2.mlp.experts.gate_up_proj": "model-00002-of-00010.safetensors",
217
+ "model.layers.2.mlp.experts.gate_up_proj_bias": "model-00002-of-00010.safetensors",
218
+ "model.layers.2.mlp.router.bias": "model-00002-of-00010.safetensors",
219
+ "model.layers.2.mlp.router.weight": "model-00002-of-00010.safetensors",
220
+ "model.layers.2.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
221
+ "model.layers.2.self_attn.k_proj.bias": "model-00002-of-00010.safetensors",
222
+ "model.layers.2.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
223
+ "model.layers.2.self_attn.o_proj.bias": "model-00002-of-00010.safetensors",
224
+ "model.layers.2.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
225
+ "model.layers.2.self_attn.q_proj.bias": "model-00002-of-00010.safetensors",
226
+ "model.layers.2.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
227
+ "model.layers.2.self_attn.sinks": "model-00002-of-00010.safetensors",
228
+ "model.layers.2.self_attn.v_proj.bias": "model-00002-of-00010.safetensors",
229
+ "model.layers.2.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
230
+ "model.layers.20.input_layernorm.weight": "model-00008-of-00010.safetensors",
231
+ "model.layers.20.mlp.experts.down_proj": "model-00008-of-00010.safetensors",
232
+ "model.layers.20.mlp.experts.down_proj_bias": "model-00008-of-00010.safetensors",
233
+ "model.layers.20.mlp.experts.gate_up_proj": "model-00008-of-00010.safetensors",
234
+ "model.layers.20.mlp.experts.gate_up_proj_bias": "model-00008-of-00010.safetensors",
235
+ "model.layers.20.mlp.router.bias": "model-00008-of-00010.safetensors",
236
+ "model.layers.20.mlp.router.weight": "model-00008-of-00010.safetensors",
237
+ "model.layers.20.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
238
+ "model.layers.20.self_attn.k_proj.bias": "model-00008-of-00010.safetensors",
239
+ "model.layers.20.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
240
+ "model.layers.20.self_attn.o_proj.bias": "model-00008-of-00010.safetensors",
241
+ "model.layers.20.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
242
+ "model.layers.20.self_attn.q_proj.bias": "model-00008-of-00010.safetensors",
243
+ "model.layers.20.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
244
+ "model.layers.20.self_attn.sinks": "model-00008-of-00010.safetensors",
245
+ "model.layers.20.self_attn.v_proj.bias": "model-00008-of-00010.safetensors",
246
+ "model.layers.20.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
247
+ "model.layers.21.input_layernorm.weight": "model-00008-of-00010.safetensors",
248
+ "model.layers.21.mlp.experts.down_proj": "model-00008-of-00010.safetensors",
249
+ "model.layers.21.mlp.experts.down_proj_bias": "model-00008-of-00010.safetensors",
250
+ "model.layers.21.mlp.experts.gate_up_proj": "model-00008-of-00010.safetensors",
251
+ "model.layers.21.mlp.experts.gate_up_proj_bias": "model-00008-of-00010.safetensors",
252
+ "model.layers.21.mlp.router.bias": "model-00008-of-00010.safetensors",
253
+ "model.layers.21.mlp.router.weight": "model-00008-of-00010.safetensors",
254
+ "model.layers.21.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
255
+ "model.layers.21.self_attn.k_proj.bias": "model-00008-of-00010.safetensors",
256
+ "model.layers.21.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
257
+ "model.layers.21.self_attn.o_proj.bias": "model-00008-of-00010.safetensors",
258
+ "model.layers.21.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
259
+ "model.layers.21.self_attn.q_proj.bias": "model-00008-of-00010.safetensors",
260
+ "model.layers.21.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
261
+ "model.layers.21.self_attn.sinks": "model-00008-of-00010.safetensors",
262
+ "model.layers.21.self_attn.v_proj.bias": "model-00008-of-00010.safetensors",
263
+ "model.layers.21.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
264
+ "model.layers.22.input_layernorm.weight": "model-00009-of-00010.safetensors",
265
+ "model.layers.22.mlp.experts.down_proj": "model-00009-of-00010.safetensors",
266
+ "model.layers.22.mlp.experts.down_proj_bias": "model-00009-of-00010.safetensors",
267
+ "model.layers.22.mlp.experts.gate_up_proj": "model-00009-of-00010.safetensors",
268
+ "model.layers.22.mlp.experts.gate_up_proj_bias": "model-00009-of-00010.safetensors",
269
+ "model.layers.22.mlp.router.bias": "model-00008-of-00010.safetensors",
270
+ "model.layers.22.mlp.router.weight": "model-00008-of-00010.safetensors",
271
+ "model.layers.22.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
272
+ "model.layers.22.self_attn.k_proj.bias": "model-00008-of-00010.safetensors",
273
+ "model.layers.22.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
274
+ "model.layers.22.self_attn.o_proj.bias": "model-00008-of-00010.safetensors",
275
+ "model.layers.22.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
276
+ "model.layers.22.self_attn.q_proj.bias": "model-00008-of-00010.safetensors",
277
+ "model.layers.22.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
278
+ "model.layers.22.self_attn.sinks": "model-00008-of-00010.safetensors",
279
+ "model.layers.22.self_attn.v_proj.bias": "model-00008-of-00010.safetensors",
280
+ "model.layers.22.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
281
+ "model.layers.23.input_layernorm.weight": "model-00009-of-00010.safetensors",
282
+ "model.layers.23.mlp.experts.down_proj": "model-00009-of-00010.safetensors",
283
+ "model.layers.23.mlp.experts.down_proj_bias": "model-00009-of-00010.safetensors",
284
+ "model.layers.23.mlp.experts.gate_up_proj": "model-00009-of-00010.safetensors",
285
+ "model.layers.23.mlp.experts.gate_up_proj_bias": "model-00009-of-00010.safetensors",
286
+ "model.layers.23.mlp.router.bias": "model-00009-of-00010.safetensors",
287
+ "model.layers.23.mlp.router.weight": "model-00009-of-00010.safetensors",
288
+ "model.layers.23.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
289
+ "model.layers.23.self_attn.k_proj.bias": "model-00009-of-00010.safetensors",
290
+ "model.layers.23.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
291
+ "model.layers.23.self_attn.o_proj.bias": "model-00009-of-00010.safetensors",
292
+ "model.layers.23.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
293
+ "model.layers.23.self_attn.q_proj.bias": "model-00009-of-00010.safetensors",
294
+ "model.layers.23.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
295
+ "model.layers.23.self_attn.sinks": "model-00009-of-00010.safetensors",
296
+ "model.layers.23.self_attn.v_proj.bias": "model-00009-of-00010.safetensors",
297
+ "model.layers.23.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
298
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00010.safetensors",
299
+ "model.layers.3.mlp.experts.down_proj": "model-00002-of-00010.safetensors",
300
+ "model.layers.3.mlp.experts.down_proj_bias": "model-00002-of-00010.safetensors",
301
+ "model.layers.3.mlp.experts.gate_up_proj": "model-00002-of-00010.safetensors",
302
+ "model.layers.3.mlp.experts.gate_up_proj_bias": "model-00002-of-00010.safetensors",
303
+ "model.layers.3.mlp.router.bias": "model-00002-of-00010.safetensors",
304
+ "model.layers.3.mlp.router.weight": "model-00002-of-00010.safetensors",
305
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
306
+ "model.layers.3.self_attn.k_proj.bias": "model-00002-of-00010.safetensors",
307
+ "model.layers.3.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
308
+ "model.layers.3.self_attn.o_proj.bias": "model-00002-of-00010.safetensors",
309
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
310
+ "model.layers.3.self_attn.q_proj.bias": "model-00002-of-00010.safetensors",
311
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
312
+ "model.layers.3.self_attn.sinks": "model-00002-of-00010.safetensors",
313
+ "model.layers.3.self_attn.v_proj.bias": "model-00002-of-00010.safetensors",
314
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
315
+ "model.layers.4.input_layernorm.weight": "model-00003-of-00010.safetensors",
316
+ "model.layers.4.mlp.experts.down_proj": "model-00003-of-00010.safetensors",
317
+ "model.layers.4.mlp.experts.down_proj_bias": "model-00003-of-00010.safetensors",
318
+ "model.layers.4.mlp.experts.gate_up_proj": "model-00003-of-00010.safetensors",
319
+ "model.layers.4.mlp.experts.gate_up_proj_bias": "model-00003-of-00010.safetensors",
320
+ "model.layers.4.mlp.router.bias": "model-00002-of-00010.safetensors",
321
+ "model.layers.4.mlp.router.weight": "model-00002-of-00010.safetensors",
322
+ "model.layers.4.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
323
+ "model.layers.4.self_attn.k_proj.bias": "model-00002-of-00010.safetensors",
324
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
325
+ "model.layers.4.self_attn.o_proj.bias": "model-00002-of-00010.safetensors",
326
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
327
+ "model.layers.4.self_attn.q_proj.bias": "model-00002-of-00010.safetensors",
328
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
329
+ "model.layers.4.self_attn.sinks": "model-00002-of-00010.safetensors",
330
+ "model.layers.4.self_attn.v_proj.bias": "model-00002-of-00010.safetensors",
331
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
332
+ "model.layers.5.input_layernorm.weight": "model-00003-of-00010.safetensors",
333
+ "model.layers.5.mlp.experts.down_proj": "model-00003-of-00010.safetensors",
334
+ "model.layers.5.mlp.experts.down_proj_bias": "model-00003-of-00010.safetensors",
335
+ "model.layers.5.mlp.experts.gate_up_proj": "model-00003-of-00010.safetensors",
336
+ "model.layers.5.mlp.experts.gate_up_proj_bias": "model-00003-of-00010.safetensors",
337
+ "model.layers.5.mlp.router.bias": "model-00003-of-00010.safetensors",
338
+ "model.layers.5.mlp.router.weight": "model-00003-of-00010.safetensors",
339
+ "model.layers.5.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
340
+ "model.layers.5.self_attn.k_proj.bias": "model-00003-of-00010.safetensors",
341
+ "model.layers.5.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
342
+ "model.layers.5.self_attn.o_proj.bias": "model-00003-of-00010.safetensors",
343
+ "model.layers.5.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
344
+ "model.layers.5.self_attn.q_proj.bias": "model-00003-of-00010.safetensors",
345
+ "model.layers.5.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
346
+ "model.layers.5.self_attn.sinks": "model-00003-of-00010.safetensors",
347
+ "model.layers.5.self_attn.v_proj.bias": "model-00003-of-00010.safetensors",
348
+ "model.layers.5.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
349
+ "model.layers.6.input_layernorm.weight": "model-00003-of-00010.safetensors",
350
+ "model.layers.6.mlp.experts.down_proj": "model-00003-of-00010.safetensors",
351
+ "model.layers.6.mlp.experts.down_proj_bias": "model-00003-of-00010.safetensors",
352
+ "model.layers.6.mlp.experts.gate_up_proj": "model-00003-of-00010.safetensors",
353
+ "model.layers.6.mlp.experts.gate_up_proj_bias": "model-00003-of-00010.safetensors",
354
+ "model.layers.6.mlp.router.bias": "model-00003-of-00010.safetensors",
355
+ "model.layers.6.mlp.router.weight": "model-00003-of-00010.safetensors",
356
+ "model.layers.6.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
357
+ "model.layers.6.self_attn.k_proj.bias": "model-00003-of-00010.safetensors",
358
+ "model.layers.6.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
359
+ "model.layers.6.self_attn.o_proj.bias": "model-00003-of-00010.safetensors",
360
+ "model.layers.6.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
361
+ "model.layers.6.self_attn.q_proj.bias": "model-00003-of-00010.safetensors",
362
+ "model.layers.6.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
363
+ "model.layers.6.self_attn.sinks": "model-00003-of-00010.safetensors",
364
+ "model.layers.6.self_attn.v_proj.bias": "model-00003-of-00010.safetensors",
365
+ "model.layers.6.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
366
+ "model.layers.7.input_layernorm.weight": "model-00004-of-00010.safetensors",
367
+ "model.layers.7.mlp.experts.down_proj": "model-00004-of-00010.safetensors",
368
+ "model.layers.7.mlp.experts.down_proj_bias": "model-00004-of-00010.safetensors",
369
+ "model.layers.7.mlp.experts.gate_up_proj": "model-00004-of-00010.safetensors",
370
+ "model.layers.7.mlp.experts.gate_up_proj_bias": "model-00004-of-00010.safetensors",
371
+ "model.layers.7.mlp.router.bias": "model-00003-of-00010.safetensors",
372
+ "model.layers.7.mlp.router.weight": "model-00003-of-00010.safetensors",
373
+ "model.layers.7.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
374
+ "model.layers.7.self_attn.k_proj.bias": "model-00003-of-00010.safetensors",
375
+ "model.layers.7.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
376
+ "model.layers.7.self_attn.o_proj.bias": "model-00003-of-00010.safetensors",
377
+ "model.layers.7.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
378
+ "model.layers.7.self_attn.q_proj.bias": "model-00003-of-00010.safetensors",
379
+ "model.layers.7.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
380
+ "model.layers.7.self_attn.sinks": "model-00003-of-00010.safetensors",
381
+ "model.layers.7.self_attn.v_proj.bias": "model-00003-of-00010.safetensors",
382
+ "model.layers.7.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
383
+ "model.layers.8.input_layernorm.weight": "model-00004-of-00010.safetensors",
384
+ "model.layers.8.mlp.experts.down_proj": "model-00004-of-00010.safetensors",
385
+ "model.layers.8.mlp.experts.down_proj_bias": "model-00004-of-00010.safetensors",
386
+ "model.layers.8.mlp.experts.gate_up_proj": "model-00004-of-00010.safetensors",
387
+ "model.layers.8.mlp.experts.gate_up_proj_bias": "model-00004-of-00010.safetensors",
388
+ "model.layers.8.mlp.router.bias": "model-00004-of-00010.safetensors",
389
+ "model.layers.8.mlp.router.weight": "model-00004-of-00010.safetensors",
390
+ "model.layers.8.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
391
+ "model.layers.8.self_attn.k_proj.bias": "model-00004-of-00010.safetensors",
392
+ "model.layers.8.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
393
+ "model.layers.8.self_attn.o_proj.bias": "model-00004-of-00010.safetensors",
394
+ "model.layers.8.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
395
+ "model.layers.8.self_attn.q_proj.bias": "model-00004-of-00010.safetensors",
396
+ "model.layers.8.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
397
+ "model.layers.8.self_attn.sinks": "model-00004-of-00010.safetensors",
398
+ "model.layers.8.self_attn.v_proj.bias": "model-00004-of-00010.safetensors",
399
+ "model.layers.8.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
400
+ "model.layers.9.input_layernorm.weight": "model-00004-of-00010.safetensors",
401
+ "model.layers.9.mlp.experts.down_proj": "model-00004-of-00010.safetensors",
402
+ "model.layers.9.mlp.experts.down_proj_bias": "model-00004-of-00010.safetensors",
403
+ "model.layers.9.mlp.experts.gate_up_proj": "model-00004-of-00010.safetensors",
404
+ "model.layers.9.mlp.experts.gate_up_proj_bias": "model-00004-of-00010.safetensors",
405
+ "model.layers.9.mlp.router.bias": "model-00004-of-00010.safetensors",
406
+ "model.layers.9.mlp.router.weight": "model-00004-of-00010.safetensors",
407
+ "model.layers.9.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
408
+ "model.layers.9.self_attn.k_proj.bias": "model-00004-of-00010.safetensors",
409
+ "model.layers.9.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
410
+ "model.layers.9.self_attn.o_proj.bias": "model-00004-of-00010.safetensors",
411
+ "model.layers.9.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
412
+ "model.layers.9.self_attn.q_proj.bias": "model-00004-of-00010.safetensors",
413
+ "model.layers.9.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
414
+ "model.layers.9.self_attn.sinks": "model-00004-of-00010.safetensors",
415
+ "model.layers.9.self_attn.v_proj.bias": "model-00004-of-00010.safetensors",
416
+ "model.layers.9.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
417
+ "model.norm.weight": "model-00009-of-00010.safetensors"
418
+ }
419
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|return|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0614fe83cadab421296e664e1f48f4261fa8fef6e03e63bb75c20f38e37d07d3
3
+ size 27868174
tokenizer_config.json ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "199998": {
4
+ "content": "<|startoftext|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "199999": {
12
+ "content": "<|endoftext|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "200000": {
20
+ "content": "<|reserved_200000|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "200001": {
28
+ "content": "<|reserved_200001|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "200002": {
36
+ "content": "<|return|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "200003": {
44
+ "content": "<|constrain|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "200004": {
52
+ "content": "<|reserved_200004|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "200005": {
60
+ "content": "<|channel|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "200006": {
68
+ "content": "<|start|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "200007": {
76
+ "content": "<|end|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "200008": {
84
+ "content": "<|message|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "200009": {
92
+ "content": "<|reserved_200009|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "200010": {
100
+ "content": "<|reserved_200010|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "200011": {
108
+ "content": "<|reserved_200011|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "200012": {
116
+ "content": "<|call|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "200013": {
124
+ "content": "<|reserved_200013|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "200014": {
132
+ "content": "<|reserved_200014|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "200015": {
140
+ "content": "<|reserved_200015|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "200016": {
148
+ "content": "<|reserved_200016|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "200017": {
156
+ "content": "<|reserved_200017|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "200018": {
164
+ "content": "<|endofprompt|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ }
171
+ },
172
+ "bos_token": "<|startoftext|>",
173
+ "clean_up_tokenization_spaces": false,
174
+ "eos_token": "<|return|>",
175
+ "extra_special_tokens": {},
176
+ "model_input_names": [
177
+ "input_ids",
178
+ "attention_mask"
179
+ ],
180
+ "model_max_length": 1000000000000000019884624838656,
181
+ "pad_token": "<|endoftext|>",
182
+ "tokenizer_class": "PreTrainedTokenizerFast"
183
+ }