AlphaGaO commited on
Commit
1803312
·
verified ·
1 Parent(s): a710d9d

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ license_link: https://huggingface.co/Qwen/Qwen3-32B/blob/main/LICENSE
5
+ pipeline_tag: text-generation
6
+ ---
7
+
8
+ # Qwen3-32B
9
+ <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
10
+ <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
11
+ </a>
12
+
13
+ ## Qwen3 Highlights
14
+
15
+ Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features:
16
+
17
+ - **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios.
18
+ - **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning.
19
+ - **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience.
20
+ - **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks.
21
+ - **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**.
22
+
23
+ ## Model Overview
24
+
25
+ **Qwen3-32B** has the following features:
26
+ - Type: Causal Language Models
27
+ - Training Stage: Pretraining & Post-training
28
+ - Number of Parameters: 32.8B
29
+ - Number of Paramaters (Non-Embedding): 31.2B
30
+ - Number of Layers: 64
31
+ - Number of Attention Heads (GQA): 64 for Q and 8 for KV
32
+ - Context Length: 32,768 natively and [131,072 tokens with YaRN](#processing-long-texts).
33
+
34
+ For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).
35
+
36
+ ## Quickstart
37
+
38
+ The code of Qwen3 has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`.
39
+
40
+ With `transformers<4.51.0`, you will encounter the following error:
41
+ ```
42
+ KeyError: 'qwen3'
43
+ ```
44
+
45
+ The following contains a code snippet illustrating how to use the model generate content based on given inputs.
46
+ ```python
47
+ from transformers import AutoModelForCausalLM, AutoTokenizer
48
+
49
+ model_name = "Qwen/Qwen3-32B"
50
+
51
+ # load the tokenizer and the model
52
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
53
+ model = AutoModelForCausalLM.from_pretrained(
54
+ model_name,
55
+ torch_dtype="auto",
56
+ device_map="auto"
57
+ )
58
+
59
+ # prepare the model input
60
+ prompt = "Give me a short introduction to large language model."
61
+ messages = [
62
+ {"role": "user", "content": prompt}
63
+ ]
64
+ text = tokenizer.apply_chat_template(
65
+ messages,
66
+ tokenize=False,
67
+ add_generation_prompt=True,
68
+ enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
69
+ )
70
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
71
+
72
+ # conduct text completion
73
+ generated_ids = model.generate(
74
+ **model_inputs,
75
+ max_new_tokens=32768
76
+ )
77
+ output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
78
+
79
+ # parsing thinking content
80
+ try:
81
+ # rindex finding 151668 (</think>)
82
+ index = len(output_ids) - output_ids[::-1].index(151668)
83
+ except ValueError:
84
+ index = 0
85
+
86
+ thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
87
+ content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
88
+
89
+ print("thinking content:", thinking_content)
90
+ print("content:", content)
91
+ ```
92
+
93
+ For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint:
94
+ - SGLang:
95
+ ```shell
96
+ python -m sglang.launch_server --model-path Qwen/Qwen3-32B --reasoning-parser qwen3
97
+ ```
98
+ - vLLM:
99
+ ```shell
100
+ vllm serve Qwen/Qwen3-32B --enable-reasoning --reasoning-parser deepseek_r1
101
+ ```
102
+
103
+ For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.
104
+
105
+ ## Switching Between Thinking and Non-Thinking Mode
106
+
107
+ > [!TIP]
108
+ > The `enable_thinking` switch is also available in APIs created by SGLang and vLLM.
109
+ > Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users.
110
+
111
+ ### `enable_thinking=True`
112
+
113
+ By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode.
114
+
115
+ ```python
116
+ text = tokenizer.apply_chat_template(
117
+ messages,
118
+ tokenize=False,
119
+ add_generation_prompt=True,
120
+ enable_thinking=True # True is the default value for enable_thinking
121
+ )
122
+ ```
123
+
124
+ In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response.
125
+
126
+ > [!NOTE]
127
+ > For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.
128
+
129
+
130
+ ### `enable_thinking=False`
131
+
132
+ We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency.
133
+
134
+ ```python
135
+ text = tokenizer.apply_chat_template(
136
+ messages,
137
+ tokenize=False,
138
+ add_generation_prompt=True,
139
+ enable_thinking=False # Setting enable_thinking=False disables thinking mode
140
+ )
141
+ ```
142
+
143
+ In this mode, the model will not generate any think content and will not include a `<think>...</think>` block.
144
+
145
+ > [!NOTE]
146
+ > For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.
147
+
148
+ ### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input
149
+
150
+ We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations.
151
+
152
+ Here is an example of a multi-turn conversation:
153
+
154
+ ```python
155
+ from transformers import AutoModelForCausalLM, AutoTokenizer
156
+
157
+ class QwenChatbot:
158
+ def __init__(self, model_name="Qwen/Qwen3-32B"):
159
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
160
+ self.model = AutoModelForCausalLM.from_pretrained(model_name)
161
+ self.history = []
162
+
163
+ def generate_response(self, user_input):
164
+ messages = self.history + [{"role": "user", "content": user_input}]
165
+
166
+ text = self.tokenizer.apply_chat_template(
167
+ messages,
168
+ tokenize=False,
169
+ add_generation_prompt=True
170
+ )
171
+
172
+ inputs = self.tokenizer(text, return_tensors="pt")
173
+ response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist()
174
+ response = self.tokenizer.decode(response_ids, skip_special_tokens=True)
175
+
176
+ # Update history
177
+ self.history.append({"role": "user", "content": user_input})
178
+ self.history.append({"role": "assistant", "content": response})
179
+
180
+ return response
181
+
182
+ # Example Usage
183
+ if __name__ == "__main__":
184
+ chatbot = QwenChatbot()
185
+
186
+ # First input (without /think or /no_think tags, thinking mode is enabled by default)
187
+ user_input_1 = "How many r's in strawberries?"
188
+ print(f"User: {user_input_1}")
189
+ response_1 = chatbot.generate_response(user_input_1)
190
+ print(f"Bot: {response_1}")
191
+ print("----------------------")
192
+
193
+ # Second input with /no_think
194
+ user_input_2 = "Then, how many r's in blueberries? /no_think"
195
+ print(f"User: {user_input_2}")
196
+ response_2 = chatbot.generate_response(user_input_2)
197
+ print(f"Bot: {response_2}")
198
+ print("----------------------")
199
+
200
+ # Third input with /think
201
+ user_input_3 = "Really? /think"
202
+ print(f"User: {user_input_3}")
203
+ response_3 = chatbot.generate_response(user_input_3)
204
+ print(f"Bot: {response_3}")
205
+ ```
206
+
207
+ > [!NOTE]
208
+ > For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled.
209
+ > When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block.
210
+
211
+ ## Agentic Use
212
+
213
+ Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.
214
+
215
+ To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
216
+ ```python
217
+ from qwen_agent.agents import Assistant
218
+
219
+ # Define LLM
220
+ llm_cfg = {
221
+ 'model': 'Qwen3-32B',
222
+
223
+ # Use the endpoint provided by Alibaba Model Studio:
224
+ # 'model_type': 'qwen_dashscope',
225
+ # 'api_key': os.getenv('DASHSCOPE_API_KEY'),
226
+
227
+ # Use a custom endpoint compatible with OpenAI API:
228
+ 'model_server': 'http://localhost:8000/v1', # api_base
229
+ 'api_key': 'EMPTY',
230
+
231
+ # Other parameters:
232
+ # 'generate_cfg': {
233
+ # # Add: When the response content is `<think>this is the thought</think>this is the answer;
234
+ # # Do not add: When the response has been separated by reasoning_content and content.
235
+ # 'thought_in_content': True,
236
+ # },
237
+ }
238
+
239
+ # Define Tools
240
+ tools = [
241
+ {'mcpServers': { # You can specify the MCP configuration file
242
+ 'time': {
243
+ 'command': 'uvx',
244
+ 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
245
+ },
246
+ "fetch": {
247
+ "command": "uvx",
248
+ "args": ["mcp-server-fetch"]
249
+ }
250
+ }
251
+ },
252
+ 'code_interpreter', # Built-in tools
253
+ ]
254
+
255
+ # Define Agent
256
+ bot = Assistant(llm=llm_cfg, function_list=tools)
257
+
258
+ # Streaming generation
259
+ messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
260
+ for responses in bot.run(messages=messages):
261
+ pass
262
+ print(responses)
263
+ ```
264
+
265
+ ## Processing Long Texts
266
+
267
+ Qwen3 natively supports context lengths of up to 32,768 tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method.
268
+
269
+ YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks:
270
+
271
+ - Modifying the model files:
272
+ In the `config.json` file, add the `rope_scaling` fields:
273
+ ```json
274
+ {
275
+ ...,
276
+ "rope_scaling": {
277
+ "rope_type": "yarn",
278
+ "factor": 4.0,
279
+ "original_max_position_embeddings": 32768
280
+ }
281
+ }
282
+ ```
283
+ For `llama.cpp`, you need to regenerate the GGUF file after the modification.
284
+
285
+ - Passing command line arguments:
286
+
287
+ For `vllm`, you can use
288
+ ```shell
289
+ vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072
290
+ ```
291
+
292
+ For `sglang`, you can use
293
+ ```shell
294
+ python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}'
295
+ ```
296
+
297
+ For `llama-server` from `llama.cpp`, you can use
298
+ ```shell
299
+ llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768
300
+ ```
301
+
302
+ > [!IMPORTANT]
303
+ > If you encounter the following warning
304
+ > ```
305
+ > Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'}
306
+ > ```
307
+ > please upgrade `transformers>=4.51.0`.
308
+
309
+ > [!NOTE]
310
+ > All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.**
311
+ > We advise adding the `rope_scaling` configuration only when processing long contexts is required.
312
+ > It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0.
313
+
314
+ > [!NOTE]
315
+ > The default `max_position_embeddings` in `config.json` is set to 40,960. This allocation includes reserving 32,768 tokens for outputs and 8,192 tokens for typical prompts, which is sufficient for most scenarios involving short text processing. If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance.
316
+
317
+ > [!TIP]
318
+ > The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default and no extra configuration is needed.
319
+
320
+ ## Best Practices
321
+
322
+ To achieve optimal performance, we recommend the following settings:
323
+
324
+ 1. **Sampling Parameters**:
325
+ - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions.
326
+ - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`.
327
+ - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.
328
+
329
+ 2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance.
330
+
331
+ 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
332
+ - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
333
+ - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."
334
+
335
+ 4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed.
336
+
337
+ ### Citation
338
+
339
+ If you find our work helpful, feel free to give us a cite.
340
+
341
+ ```
342
+ @misc{qwen3,
343
+ title = {Qwen3},
344
+ url = {https://qwenlm.github.io/blog/qwen3/},
345
+ author = {Qwen Team},
346
+ month = {April},
347
+ year = {2025}
348
+ }
349
+ ```
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 5120,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 25600,
14
+ "max_position_embeddings": 40960,
15
+ "max_window_layers": 64,
16
+ "model_type": "qwen3",
17
+ "num_attention_heads": 64,
18
+ "num_hidden_layers": 64,
19
+ "num_key_value_heads": 8,
20
+ "quantization_config": {
21
+ "bits": 4,
22
+ "checkpoint_format": "gptq",
23
+ "desc_act": true,
24
+ "group_size": 128,
25
+ "lm_head": false,
26
+ "meta": {
27
+ "damp_auto_increment": 0.0025,
28
+ "damp_percent": 0.01,
29
+ "mse": 0.0,
30
+ "quantizer": [
31
+ "gptqmodel:2.2.0"
32
+ ],
33
+ "static_groups": false,
34
+ "true_sequential": true,
35
+ "uri": "https://github.com/modelcloud/gptqmodel"
36
+ },
37
+ "pack_dtype": "int32",
38
+ "quant_method": "gptq",
39
+ "sym": true
40
+ },
41
+ "rms_norm_eps": 1e-06,
42
+ "rope_scaling": null,
43
+ "rope_theta": 1000000,
44
+ "sliding_window": null,
45
+ "tie_word_embeddings": false,
46
+ "torch_dtype": "bfloat16",
47
+ "transformers_version": "4.51.1",
48
+ "use_cache": true,
49
+ "use_sliding_window": false,
50
+ "vocab_size": 151936
51
+ }
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "temperature": 0.6,
10
+ "top_k": 20,
11
+ "top_p": 0.95,
12
+ "transformers_version": "4.51.1"
13
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f2a211b3ab7597c1c7ec1839ed96939693eb1cba5250686b74fe6212422a2bf
3
+ size 3955280848
model-00002-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3412cdb7ad0c3450a571bd86b8d7c6fa4d23d9f1e879e8bd02a8d85df6f97726
3
+ size 3989151776
model-00003-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:613cffa0907f68d549fbce2ef755baa0e23e5ec8ec95f167e7a5bfc3ae605848
3
+ size 3939923288
model-00004-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:992841056d598846b83c7eac58efe32c169420cbb4e7fab4d6795e89b58ed030
3
+ size 3989151824
model-00005-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93614942f81e0dc6469b2f950c7b8d50bfe90419b11746584684e508540d0693
3
+ size 3467226552
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
quant_log.csv ADDED
@@ -0,0 +1,449 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ layer,module,loss,samples,damp,time
2
+ 0,self_attn.k_proj,0.00084445,0.01000,1.355
3
+ 0,self_attn.v_proj,0.00072033,0.01000,1.073
4
+ 0,self_attn.q_proj,0.00448764,0.01000,1.103
5
+ 0,self_attn.o_proj,0.03491052,0.01000,1.915
6
+ 0,mlp.up_proj,0.10763087,0.01000,1.270
7
+ 0,mlp.gate_proj,0.12017425,0.01000,1.215
8
+ 0,mlp.down_proj,0.15161967,0.01000,9.403
9
+ 1,self_attn.k_proj,0.00146198,0.01000,1.148
10
+ 1,self_attn.v_proj,0.00136717,0.01000,1.095
11
+ 1,self_attn.q_proj,0.00875795,0.01000,1.127
12
+ 1,self_attn.o_proj,0.02284934,0.01000,1.921
13
+ 1,mlp.up_proj,2.50290871,0.01000,1.282
14
+ 1,mlp.gate_proj,7.95832253,0.01000,1.227
15
+ 1,mlp.down_proj,0.77240515,0.01000,9.523
16
+ 2,self_attn.k_proj,0.00249198,0.01000,1.156
17
+ 2,self_attn.v_proj,0.00247288,0.01000,1.145
18
+ 2,self_attn.q_proj,0.01329362,0.01000,1.175
19
+ 2,self_attn.o_proj,0.03674788,0.01000,1.930
20
+ 2,mlp.up_proj,5.06338310,0.01000,1.286
21
+ 2,mlp.gate_proj,11.86531734,0.01000,1.241
22
+ 2,mlp.down_proj,0.61950397,0.01000,9.965
23
+ 3,self_attn.k_proj,0.00479199,0.01000,1.162
24
+ 3,self_attn.v_proj,0.00472043,0.01000,1.102
25
+ 3,self_attn.q_proj,0.02623926,0.01000,1.137
26
+ 3,self_attn.o_proj,0.04439195,0.01000,1.936
27
+ 3,mlp.up_proj,8.10474873,0.01000,1.282
28
+ 3,mlp.gate_proj,18.35421753,0.01000,1.227
29
+ 3,mlp.down_proj,0.98753399,0.01000,10.097
30
+ 4,self_attn.k_proj,0.00827565,0.01000,1.162
31
+ 4,self_attn.v_proj,0.00790047,0.01000,1.105
32
+ 4,self_attn.q_proj,0.04734420,0.01000,1.138
33
+ 4,self_attn.o_proj,0.06192198,0.01000,1.938
34
+ 4,mlp.up_proj,15.59199524,0.01000,1.290
35
+ 4,mlp.gate_proj,27.69424248,0.01000,1.233
36
+ 4,mlp.down_proj,0.96507412,0.01000,9.775
37
+ 5,self_attn.k_proj,0.01020239,0.01000,1.156
38
+ 5,self_attn.v_proj,0.00862016,0.01000,1.095
39
+ 5,self_attn.q_proj,0.06078981,0.01000,1.114
40
+ 5,self_attn.o_proj,0.05601742,0.01000,1.930
41
+ 5,mlp.up_proj,14.45485306,0.01000,1.289
42
+ 5,mlp.gate_proj,33.35854340,0.01000,1.227
43
+ 5,mlp.down_proj,1.30971122,0.01000,10.054
44
+ 6,self_attn.k_proj,0.01319816,0.01000,1.155
45
+ 6,self_attn.v_proj,0.01328853,0.01000,1.093
46
+ 6,self_attn.q_proj,0.07695664,0.01000,1.138
47
+ 6,self_attn.o_proj,0.06468368,0.01000,1.930
48
+ 6,mlp.up_proj,34.57817078,0.01000,1.287
49
+ 6,mlp.gate_proj,62.04237366,0.01000,1.226
50
+ 6,mlp.down_proj,0.01269285,0.01250,14.531
51
+ 7,self_attn.k_proj,0.08456115,0.01000,1.154
52
+ 7,self_attn.v_proj,0.08851108,0.01000,1.096
53
+ 7,self_attn.q_proj,0.49945003,0.01000,1.141
54
+ 7,self_attn.o_proj,0.18865642,0.01000,1.931
55
+ 7,mlp.up_proj,38.16622162,0.01000,1.290
56
+ 7,mlp.gate_proj,69.22668457,0.01000,1.230
57
+ 7,mlp.down_proj,1.58483887,0.01000,9.869
58
+ 8,self_attn.k_proj,0.07494055,0.01000,1.160
59
+ 8,self_attn.v_proj,0.08083526,0.01000,1.096
60
+ 8,self_attn.q_proj,0.42355564,0.01000,1.131
61
+ 8,self_attn.o_proj,0.18367028,0.01000,1.939
62
+ 8,mlp.up_proj,9.35465622,0.01000,1.289
63
+ 8,mlp.gate_proj,16.39128876,0.01000,1.237
64
+ 8,mlp.down_proj,1.32671118,0.01000,10.029
65
+ 9,self_attn.k_proj,0.04111180,0.01000,1.160
66
+ 9,self_attn.v_proj,0.03782024,0.01000,1.102
67
+ 9,self_attn.q_proj,0.23333739,0.01000,1.131
68
+ 9,self_attn.o_proj,0.11133460,0.01000,1.938
69
+ 9,mlp.up_proj,8.30704403,0.01000,1.290
70
+ 9,mlp.gate_proj,8.77419662,0.01000,1.228
71
+ 9,mlp.down_proj,1.69836545,0.01000,9.883
72
+ 10,self_attn.k_proj,0.07155330,0.01000,1.164
73
+ 10,self_attn.v_proj,0.07626767,0.01000,1.096
74
+ 10,self_attn.q_proj,0.42122790,0.01000,1.135
75
+ 10,self_attn.o_proj,0.23861034,0.01000,1.940
76
+ 10,mlp.up_proj,9.50298119,0.01000,1.302
77
+ 10,mlp.gate_proj,9.95470428,0.01000,1.230
78
+ 10,mlp.down_proj,1.70076036,0.01000,9.590
79
+ 11,self_attn.k_proj,0.10377507,0.01000,1.211
80
+ 11,self_attn.v_proj,0.10968649,0.01000,1.098
81
+ 11,self_attn.q_proj,0.59237367,0.01000,1.145
82
+ 11,self_attn.o_proj,0.39272535,0.01000,1.945
83
+ 11,mlp.up_proj,11.13495445,0.01000,1.289
84
+ 11,mlp.gate_proj,11.68858433,0.01000,1.236
85
+ 11,mlp.down_proj,2.05591583,0.01000,10.094
86
+ 12,self_attn.k_proj,0.07082967,0.01000,1.163
87
+ 12,self_attn.v_proj,0.06914499,0.01000,1.106
88
+ 12,self_attn.q_proj,0.41684151,0.01000,1.163
89
+ 12,self_attn.o_proj,0.22683367,0.01000,1.939
90
+ 12,mlp.up_proj,12.31419468,0.01000,1.274
91
+ 12,mlp.gate_proj,12.97047234,0.01000,1.221
92
+ 12,mlp.down_proj,2.25689316,0.01000,10.020
93
+ 13,self_attn.k_proj,0.14114851,0.01000,1.207
94
+ 13,self_attn.v_proj,0.15250701,0.01000,1.103
95
+ 13,self_attn.q_proj,0.81382513,0.01000,1.142
96
+ 13,self_attn.o_proj,0.35289651,0.01000,1.943
97
+ 13,mlp.up_proj,12.48627949,0.01000,1.282
98
+ 13,mlp.gate_proj,13.48831558,0.01000,1.220
99
+ 13,mlp.down_proj,2.25837231,0.01000,10.110
100
+ 14,self_attn.k_proj,0.07376991,0.01000,1.168
101
+ 14,self_attn.v_proj,0.07685138,0.01000,1.117
102
+ 14,self_attn.q_proj,0.38745856,0.01000,1.140
103
+ 14,self_attn.o_proj,0.30865502,0.01000,1.959
104
+ 14,mlp.up_proj,11.99713326,0.01000,1.274
105
+ 14,mlp.gate_proj,12.85952759,0.01000,1.209
106
+ 14,mlp.down_proj,2.12551332,0.01000,9.997
107
+ 15,self_attn.k_proj,0.06791130,0.01000,1.165
108
+ 15,self_attn.v_proj,0.06280433,0.01000,1.094
109
+ 15,self_attn.q_proj,0.40966851,0.01000,1.120
110
+ 15,self_attn.o_proj,0.29280996,0.01000,1.955
111
+ 15,mlp.up_proj,11.24449444,0.01000,1.274
112
+ 15,mlp.gate_proj,11.78489780,0.01000,1.211
113
+ 15,mlp.down_proj,1.95185041,0.01000,9.966
114
+ 16,self_attn.k_proj,0.06665783,0.01000,1.133
115
+ 16,self_attn.v_proj,0.07242101,0.01000,1.088
116
+ 16,self_attn.q_proj,0.39381784,0.01000,1.113
117
+ 16,self_attn.o_proj,0.31686711,0.01000,1.899
118
+ 16,mlp.up_proj,9.96550941,0.01000,1.271
119
+ 16,mlp.gate_proj,10.36652184,0.01000,1.211
120
+ 16,mlp.down_proj,1.76844561,0.01000,9.794
121
+ 17,self_attn.k_proj,0.07068338,0.01000,1.143
122
+ 17,self_attn.v_proj,0.06909667,0.01000,1.083
123
+ 17,self_attn.q_proj,0.40254653,0.01000,1.118
124
+ 17,self_attn.o_proj,0.32059002,0.01000,1.904
125
+ 17,mlp.up_proj,10.42084408,0.01000,1.270
126
+ 17,mlp.gate_proj,10.90568161,0.01000,1.219
127
+ 17,mlp.down_proj,1.91881168,0.01000,9.564
128
+ 18,self_attn.k_proj,0.09127137,0.01000,1.145
129
+ 18,self_attn.v_proj,0.09213912,0.01000,1.080
130
+ 18,self_attn.q_proj,0.54628879,0.01000,1.119
131
+ 18,self_attn.o_proj,0.31876135,0.01000,1.905
132
+ 18,mlp.up_proj,11.16375256,0.01000,1.270
133
+ 18,mlp.gate_proj,11.67426300,0.01000,1.216
134
+ 18,mlp.down_proj,2.19837117,0.01000,10.099
135
+ 19,self_attn.k_proj,0.10808913,0.01000,1.229
136
+ 19,self_attn.v_proj,0.10830463,0.01000,1.153
137
+ 19,self_attn.q_proj,0.65837091,0.01000,1.197
138
+ 19,self_attn.o_proj,0.42198572,0.01000,1.945
139
+ 19,mlp.up_proj,12.45958519,0.01000,1.290
140
+ 19,mlp.gate_proj,13.01492310,0.01000,1.236
141
+ 19,mlp.down_proj,2.61802077,0.01000,9.524
142
+ 20,self_attn.k_proj,0.18187775,0.01000,1.220
143
+ 20,self_attn.v_proj,0.19337222,0.01000,1.097
144
+ 20,self_attn.q_proj,1.07225728,0.01000,1.132
145
+ 20,self_attn.o_proj,0.51924539,0.01000,1.937
146
+ 20,mlp.up_proj,13.94374943,0.01000,1.283
147
+ 20,mlp.gate_proj,14.43085098,0.01000,1.230
148
+ 20,mlp.down_proj,3.04058361,0.01000,9.800
149
+ 21,self_attn.k_proj,0.20855561,0.01000,1.161
150
+ 21,self_attn.v_proj,0.20912249,0.01000,1.095
151
+ 21,self_attn.q_proj,1.26167750,0.01000,1.130
152
+ 21,self_attn.o_proj,0.94335997,0.01000,1.935
153
+ 21,mlp.up_proj,14.96346760,0.01000,1.292
154
+ 21,mlp.gate_proj,15.50564194,0.01000,1.236
155
+ 21,mlp.down_proj,3.49554133,0.01000,9.639
156
+ 22,self_attn.k_proj,0.19087496,0.01000,1.165
157
+ 22,self_attn.v_proj,0.20093921,0.01000,1.099
158
+ 22,self_attn.q_proj,1.15021396,0.01000,1.138
159
+ 22,self_attn.o_proj,1.07747006,0.01000,1.947
160
+ 22,mlp.up_proj,16.75186539,0.01000,1.289
161
+ 22,mlp.gate_proj,17.39946365,0.01000,1.237
162
+ 22,mlp.down_proj,4.26147366,0.01000,10.328
163
+ 23,self_attn.k_proj,0.26674122,0.01000,1.160
164
+ 23,self_attn.v_proj,0.29125738,0.01000,1.100
165
+ 23,self_attn.q_proj,1.52494669,0.01000,1.142
166
+ 23,self_attn.o_proj,0.76965928,0.01000,1.940
167
+ 23,mlp.up_proj,18.62470818,0.01000,1.291
168
+ 23,mlp.gate_proj,19.27264023,0.01000,1.229
169
+ 23,mlp.down_proj,5.07388306,0.01000,10.069
170
+ 24,self_attn.k_proj,0.49650919,0.01000,1.162
171
+ 24,self_attn.v_proj,0.52540350,0.01000,1.104
172
+ 24,self_attn.q_proj,3.05510259,0.01000,1.140
173
+ 24,self_attn.o_proj,1.55237389,0.01000,1.940
174
+ 24,mlp.up_proj,20.77119446,0.01000,1.290
175
+ 24,mlp.gate_proj,21.62130356,0.01000,1.232
176
+ 24,mlp.down_proj,5.86625624,0.01000,9.937
177
+ 25,self_attn.k_proj,0.43485135,0.01000,1.181
178
+ 25,self_attn.v_proj,0.46278542,0.01000,1.127
179
+ 25,self_attn.q_proj,2.58664703,0.01000,1.155
180
+ 25,self_attn.o_proj,1.39695156,0.01000,1.939
181
+ 25,mlp.up_proj,23.31319046,0.01000,1.272
182
+ 25,mlp.gate_proj,24.15132904,0.01000,1.215
183
+ 25,mlp.down_proj,7.23103762,0.01000,9.861
184
+ 26,self_attn.k_proj,0.39909238,0.01000,1.193
185
+ 26,self_attn.v_proj,0.44533104,0.01000,1.100
186
+ 26,self_attn.q_proj,2.33590698,0.01000,1.149
187
+ 26,self_attn.o_proj,1.38106966,0.01000,1.939
188
+ 26,mlp.up_proj,25.31088638,0.01000,1.293
189
+ 26,mlp.gate_proj,26.39056778,0.01000,1.233
190
+ 26,mlp.down_proj,8.96655846,0.01000,10.080
191
+ 27,self_attn.k_proj,0.57419753,0.01000,1.157
192
+ 27,self_attn.v_proj,0.62974054,0.01000,1.096
193
+ 27,self_attn.q_proj,3.25098705,0.01000,1.132
194
+ 27,self_attn.o_proj,1.53530598,0.01000,1.947
195
+ 27,mlp.up_proj,29.02573013,0.01000,1.273
196
+ 27,mlp.gate_proj,30.56631660,0.01000,1.223
197
+ 27,mlp.down_proj,11.24117279,0.01000,10.109
198
+ 28,self_attn.k_proj,0.76582295,0.01000,1.165
199
+ 28,self_attn.v_proj,0.86502939,0.01000,1.100
200
+ 28,self_attn.q_proj,4.45867062,0.01000,1.189
201
+ 28,self_attn.o_proj,1.66220069,0.01000,1.946
202
+ 28,mlp.up_proj,33.51585770,0.01000,1.289
203
+ 28,mlp.gate_proj,35.57453537,0.01000,1.234
204
+ 28,mlp.down_proj,12.54188347,0.01000,10.038
205
+ 29,self_attn.k_proj,1.15691853,0.01000,1.155
206
+ 29,self_attn.v_proj,1.22658408,0.01000,1.099
207
+ 29,self_attn.q_proj,6.31454229,0.01000,1.136
208
+ 29,self_attn.o_proj,1.81649864,0.01000,1.932
209
+ 29,mlp.up_proj,35.35622406,0.01000,1.289
210
+ 29,mlp.gate_proj,38.42974472,0.01000,1.228
211
+ 29,mlp.down_proj,12.99395370,0.01000,10.210
212
+ 30,self_attn.k_proj,2.37444258,0.01000,1.156
213
+ 30,self_attn.v_proj,2.74426389,0.01000,1.102
214
+ 30,self_attn.q_proj,12.41589069,0.01000,1.133
215
+ 30,self_attn.o_proj,2.34893894,0.01000,1.893
216
+ 30,mlp.up_proj,43.69886017,0.01000,1.287
217
+ 30,mlp.gate_proj,57.59215164,0.01000,1.230
218
+ 30,mlp.down_proj,10.94703674,0.01000,10.039
219
+ 31,self_attn.k_proj,1.94846034,0.01000,1.149
220
+ 31,self_attn.v_proj,2.21520495,0.01000,1.075
221
+ 31,self_attn.q_proj,10.18080139,0.01000,1.132
222
+ 31,self_attn.o_proj,1.65798235,0.01000,1.936
223
+ 31,mlp.up_proj,79.61448669,0.01000,1.271
224
+ 31,mlp.gate_proj,106.99736023,0.01000,1.209
225
+ 31,mlp.down_proj,10.12814331,0.01000,10.047
226
+ 32,self_attn.k_proj,0.59653777,0.01000,1.162
227
+ 32,self_attn.v_proj,0.69479501,0.01000,1.098
228
+ 32,self_attn.q_proj,3.31510782,0.01000,1.133
229
+ 32,self_attn.o_proj,1.46756899,0.01000,1.940
230
+ 32,mlp.up_proj,43.01534653,0.01000,1.286
231
+ 32,mlp.gate_proj,56.31040573,0.01000,1.234
232
+ 32,mlp.down_proj,10.57728004,0.01000,9.948
233
+ 33,self_attn.k_proj,0.48007959,0.01000,1.160
234
+ 33,self_attn.v_proj,0.43353027,0.01000,1.098
235
+ 33,self_attn.q_proj,2.66944003,0.01000,1.140
236
+ 33,self_attn.o_proj,1.16452909,0.01000,1.936
237
+ 33,mlp.up_proj,37.45748901,0.01000,1.287
238
+ 33,mlp.gate_proj,40.18311691,0.01000,1.233
239
+ 33,mlp.down_proj,11.59187508,0.01000,10.155
240
+ 34,self_attn.k_proj,0.68396556,0.01000,1.139
241
+ 34,self_attn.v_proj,0.71251822,0.01000,1.115
242
+ 34,self_attn.q_proj,3.97808266,0.01000,1.138
243
+ 34,self_attn.o_proj,1.66452718,0.01000,1.939
244
+ 34,mlp.up_proj,35.96574783,0.01000,1.289
245
+ 34,mlp.gate_proj,37.39558792,0.01000,1.235
246
+ 34,mlp.down_proj,9.91393089,0.01000,10.292
247
+ 35,self_attn.k_proj,0.81941670,0.01000,1.203
248
+ 35,self_attn.v_proj,0.87227821,0.01000,1.105
249
+ 35,self_attn.q_proj,4.91163492,0.01000,1.143
250
+ 35,self_attn.o_proj,2.68042612,0.01000,1.947
251
+ 35,mlp.up_proj,40.16371918,0.01000,1.290
252
+ 35,mlp.gate_proj,41.72699738,0.01000,1.237
253
+ 35,mlp.down_proj,11.24375725,0.01000,10.171
254
+ 36,self_attn.k_proj,0.51701021,0.01000,1.158
255
+ 36,self_attn.v_proj,0.50001544,0.01000,1.100
256
+ 36,self_attn.q_proj,3.13710260,0.01000,1.133
257
+ 36,self_attn.o_proj,2.25207853,0.01000,1.932
258
+ 36,mlp.up_proj,43.13101578,0.01000,1.290
259
+ 36,mlp.gate_proj,44.59401703,0.01000,1.230
260
+ 36,mlp.down_proj,12.66608524,0.01000,9.877
261
+ 37,self_attn.k_proj,1.04409146,0.01000,1.162
262
+ 37,self_attn.v_proj,1.07487774,0.01000,1.093
263
+ 37,self_attn.q_proj,6.32459784,0.01000,1.136
264
+ 37,self_attn.o_proj,3.52424717,0.01000,1.932
265
+ 37,mlp.up_proj,44.28659821,0.01000,1.283
266
+ 37,mlp.gate_proj,47.45639801,0.01000,1.229
267
+ 37,mlp.down_proj,13.08962440,0.01000,9.656
268
+ 38,self_attn.k_proj,0.70040083,0.01000,1.158
269
+ 38,self_attn.v_proj,0.67634487,0.01000,1.094
270
+ 38,self_attn.q_proj,4.15942144,0.01000,1.174
271
+ 38,self_attn.o_proj,2.98514795,0.01000,2.024
272
+ 38,mlp.up_proj,41.48029327,0.01000,1.287
273
+ 38,mlp.gate_proj,42.63742828,0.01000,1.230
274
+ 38,mlp.down_proj,12.77038860,0.01000,10.071
275
+ 39,self_attn.k_proj,0.65501523,0.01000,1.160
276
+ 39,self_attn.v_proj,0.63400817,0.01000,1.098
277
+ 39,self_attn.q_proj,3.95633459,0.01000,1.133
278
+ 39,self_attn.o_proj,3.05778980,0.01000,1.932
279
+ 39,mlp.up_proj,40.32540512,0.01000,1.287
280
+ 39,mlp.gate_proj,38.98909760,0.01000,1.230
281
+ 39,mlp.down_proj,12.88877487,0.01000,9.644
282
+ 40,self_attn.k_proj,0.79315072,0.01000,1.199
283
+ 40,self_attn.v_proj,0.83237386,0.01000,1.098
284
+ 40,self_attn.q_proj,4.84926462,0.01000,1.139
285
+ 40,self_attn.o_proj,3.72353125,0.01000,1.937
286
+ 40,mlp.up_proj,36.79884338,0.01000,1.285
287
+ 40,mlp.gate_proj,33.97525787,0.01000,1.231
288
+ 40,mlp.down_proj,13.06659889,0.01000,9.896
289
+ 41,self_attn.k_proj,0.77358478,0.01000,1.162
290
+ 41,self_attn.v_proj,0.79954886,0.01000,1.102
291
+ 41,self_attn.q_proj,4.96604729,0.01000,1.154
292
+ 41,self_attn.o_proj,4.04304123,0.01000,1.932
293
+ 41,mlp.up_proj,39.54935455,0.01000,1.285
294
+ 41,mlp.gate_proj,35.93714523,0.01000,1.229
295
+ 41,mlp.down_proj,13.71113300,0.01000,9.885
296
+ 42,self_attn.k_proj,1.06457448,0.01000,1.167
297
+ 42,self_attn.v_proj,1.16151261,0.01000,1.103
298
+ 42,self_attn.q_proj,6.94136667,0.01000,1.145
299
+ 42,self_attn.o_proj,4.39309359,0.01000,1.953
300
+ 42,mlp.up_proj,42.69610596,0.01000,1.290
301
+ 42,mlp.gate_proj,37.84614944,0.01000,1.234
302
+ 42,mlp.down_proj,15.12725925,0.01000,9.906
303
+ 43,self_attn.k_proj,1.61698508,0.01000,1.163
304
+ 43,self_attn.v_proj,1.77028954,0.01000,1.106
305
+ 43,self_attn.q_proj,9.79468918,0.01000,1.140
306
+ 43,self_attn.o_proj,5.09574652,0.01000,1.940
307
+ 43,mlp.up_proj,47.06604004,0.01000,1.290
308
+ 43,mlp.gate_proj,42.68894958,0.01000,1.238
309
+ 43,mlp.down_proj,71.66894531,0.01000,9.856
310
+ 44,self_attn.k_proj,2.43886280,0.01000,1.166
311
+ 44,self_attn.v_proj,2.89231634,0.01000,1.103
312
+ 44,self_attn.q_proj,16.36064911,0.01000,1.142
313
+ 44,self_attn.o_proj,7.35442448,0.01000,1.952
314
+ 44,mlp.up_proj,50.47723389,0.01000,1.294
315
+ 44,mlp.gate_proj,45.26785660,0.01000,1.238
316
+ 44,mlp.down_proj,21.54353142,0.01000,10.164
317
+ 45,self_attn.k_proj,2.58890462,0.01000,1.188
318
+ 45,self_attn.v_proj,2.63187599,0.01000,1.139
319
+ 45,self_attn.q_proj,15.66180992,0.01000,1.163
320
+ 45,self_attn.o_proj,10.39427853,0.01000,1.901
321
+ 45,mlp.up_proj,54.53451157,0.01000,1.270
322
+ 45,mlp.gate_proj,49.89876556,0.01000,1.212
323
+ 45,mlp.down_proj,24.80439377,0.01000,9.717
324
+ 46,self_attn.k_proj,2.55938125,0.01000,1.166
325
+ 46,self_attn.v_proj,3.04971075,0.01000,1.105
326
+ 46,self_attn.q_proj,16.63127899,0.01000,1.148
327
+ 46,self_attn.o_proj,9.02083397,0.01000,1.952
328
+ 46,mlp.up_proj,60.18568039,0.01000,1.306
329
+ 46,mlp.gate_proj,55.02159119,0.01000,1.240
330
+ 46,mlp.down_proj,27.04306030,0.01000,9.606
331
+ 47,self_attn.k_proj,3.76372766,0.01000,1.155
332
+ 47,self_attn.v_proj,4.82143879,0.01000,1.099
333
+ 47,self_attn.q_proj,25.24352837,0.01000,1.128
334
+ 47,self_attn.o_proj,8.62299347,0.01000,1.929
335
+ 47,mlp.up_proj,61.80413818,0.01000,1.286
336
+ 47,mlp.gate_proj,56.39230347,0.01000,1.229
337
+ 47,mlp.down_proj,31.00769043,0.01000,9.843
338
+ 48,self_attn.k_proj,4.33097410,0.01000,1.161
339
+ 48,self_attn.v_proj,5.22913170,0.01000,1.142
340
+ 48,self_attn.q_proj,30.00033569,0.01000,1.141
341
+ 48,self_attn.o_proj,12.27084541,0.01000,1.937
342
+ 48,mlp.up_proj,67.28833771,0.01000,1.288
343
+ 48,mlp.gate_proj,62.79892731,0.01000,1.235
344
+ 48,mlp.down_proj,32.55909729,0.01000,10.066
345
+ 49,self_attn.k_proj,4.58533096,0.01000,1.165
346
+ 49,self_attn.v_proj,5.24146271,0.01000,1.129
347
+ 49,self_attn.q_proj,30.29653358,0.01000,1.145
348
+ 49,self_attn.o_proj,11.43666840,0.01000,1.944
349
+ 49,mlp.up_proj,74.19294739,0.01000,1.292
350
+ 49,mlp.gate_proj,70.05332184,0.01000,1.237
351
+ 49,mlp.down_proj,41.66929245,0.01000,10.226
352
+ 50,self_attn.k_proj,4.90630198,0.01000,1.172
353
+ 50,self_attn.v_proj,6.09085226,0.01000,1.140
354
+ 50,self_attn.q_proj,33.87724686,0.01000,1.149
355
+ 50,self_attn.o_proj,12.26939774,0.01000,2.030
356
+ 50,mlp.up_proj,82.19618225,0.01000,1.300
357
+ 50,mlp.gate_proj,79.56748962,0.01000,1.242
358
+ 50,mlp.down_proj,59.55751038,0.01000,10.154
359
+ 51,self_attn.k_proj,7.50695181,0.01000,1.177
360
+ 51,self_attn.v_proj,9.00130844,0.01000,1.108
361
+ 51,self_attn.q_proj,49.72457886,0.01000,1.146
362
+ 51,self_attn.o_proj,19.06943130,0.01000,1.967
363
+ 51,mlp.up_proj,99.14331818,0.01000,1.280
364
+ 51,mlp.gate_proj,96.68820190,0.01000,1.229
365
+ 51,mlp.down_proj,84.43814087,0.01000,9.983
366
+ 52,self_attn.k_proj,10.91156769,0.01000,1.221
367
+ 52,self_attn.v_proj,14.22049236,0.01000,1.115
368
+ 52,self_attn.q_proj,74.50735474,0.01000,1.158
369
+ 52,self_attn.o_proj,25.46066093,0.01000,1.945
370
+ 52,mlp.up_proj,123.48661041,0.01000,1.291
371
+ 52,mlp.gate_proj,119.77017212,0.01000,1.231
372
+ 52,mlp.down_proj,103.57630157,0.01000,10.104
373
+ 53,self_attn.k_proj,16.57922745,0.01000,1.190
374
+ 53,self_attn.v_proj,19.28343582,0.01000,1.129
375
+ 53,self_attn.q_proj,109.98464203,0.01000,1.136
376
+ 53,self_attn.o_proj,22.90372849,0.01000,1.959
377
+ 53,mlp.up_proj,136.34761047,0.01000,1.294
378
+ 53,mlp.gate_proj,131.46084595,0.01000,1.244
379
+ 53,mlp.down_proj,144.92550659,0.01000,10.088
380
+ 54,self_attn.k_proj,25.23480988,0.01000,1.176
381
+ 54,self_attn.v_proj,31.61150742,0.01000,1.107
382
+ 54,self_attn.q_proj,162.99169922,0.01000,1.145
383
+ 54,self_attn.o_proj,38.40440750,0.01000,1.953
384
+ 54,mlp.up_proj,175.13397217,0.01000,1.297
385
+ 54,mlp.gate_proj,169.29081726,0.01000,1.238
386
+ 54,mlp.down_proj,170.20622253,0.01000,10.085
387
+ 55,self_attn.k_proj,25.52989578,0.01000,1.170
388
+ 55,self_attn.v_proj,27.89676666,0.01000,1.110
389
+ 55,self_attn.q_proj,163.61907959,0.01000,1.150
390
+ 55,self_attn.o_proj,34.60001373,0.01000,1.956
391
+ 55,mlp.up_proj,190.99429321,0.01000,1.299
392
+ 55,mlp.gate_proj,181.47290039,0.01000,1.236
393
+ 55,mlp.down_proj,213.51348877,0.01000,9.837
394
+ 56,self_attn.k_proj,46.52150726,0.01000,1.189
395
+ 56,self_attn.v_proj,62.56267166,0.01000,1.120
396
+ 56,self_attn.q_proj,294.94454956,0.01000,1.160
397
+ 56,self_attn.o_proj,38.20604324,0.01000,1.910
398
+ 56,mlp.up_proj,216.63262939,0.01000,1.294
399
+ 56,mlp.gate_proj,203.21862793,0.01000,1.242
400
+ 56,mlp.down_proj,245.69470215,0.01000,10.165
401
+ 57,self_attn.k_proj,56.03170776,0.01000,1.169
402
+ 57,self_attn.v_proj,83.18040466,0.01000,1.115
403
+ 57,self_attn.q_proj,353.62338257,0.01000,1.146
404
+ 57,self_attn.o_proj,44.33944702,0.01000,1.953
405
+ 57,mlp.up_proj,233.12094116,0.01000,1.296
406
+ 57,mlp.gate_proj,214.46443176,0.01000,1.241
407
+ 57,mlp.down_proj,291.15484619,0.01000,9.823
408
+ 58,self_attn.k_proj,100.01489258,0.01000,1.142
409
+ 58,self_attn.v_proj,133.82089233,0.01000,1.082
410
+ 58,self_attn.q_proj,638.43444824,0.01000,1.125
411
+ 58,self_attn.o_proj,64.26174927,0.01000,1.945
412
+ 58,mlp.up_proj,265.95632935,0.01000,1.296
413
+ 58,mlp.gate_proj,240.49734497,0.01000,1.235
414
+ 58,mlp.down_proj,350.90069580,0.01000,9.628
415
+ 59,self_attn.k_proj,127.59719849,0.01000,1.212
416
+ 59,self_attn.v_proj,186.20983887,0.01000,1.105
417
+ 59,self_attn.q_proj,846.85949707,0.01000,1.141
418
+ 59,self_attn.o_proj,57.52569580,0.01000,1.940
419
+ 59,mlp.up_proj,288.86016846,0.01000,1.290
420
+ 59,mlp.gate_proj,258.25326538,0.01000,1.233
421
+ 59,mlp.down_proj,439.54940796,0.01000,10.137
422
+ 60,self_attn.k_proj,122.05357361,0.01000,1.163
423
+ 60,self_attn.v_proj,153.96994019,0.01000,1.104
424
+ 60,self_attn.q_proj,804.22961426,0.01000,1.141
425
+ 60,self_attn.o_proj,124.09367371,0.01000,1.945
426
+ 60,mlp.up_proj,315.71032715,0.01000,1.295
427
+ 60,mlp.gate_proj,274.82501221,0.01000,1.235
428
+ 60,mlp.down_proj,618.82397461,0.01000,10.123
429
+ 61,self_attn.k_proj,158.34274292,0.01000,1.168
430
+ 61,self_attn.v_proj,258.58428955,0.01000,1.104
431
+ 61,self_attn.q_proj,1107.40454102,0.01000,1.145
432
+ 61,self_attn.o_proj,134.68112183,0.01000,1.953
433
+ 61,mlp.up_proj,327.80285645,0.01000,1.300
434
+ 61,mlp.gate_proj,281.97460938,0.01000,1.237
435
+ 61,mlp.down_proj,851.01434326,0.01000,9.817
436
+ 62,self_attn.k_proj,171.83435059,0.01000,1.173
437
+ 62,self_attn.v_proj,254.51989746,0.01000,1.092
438
+ 62,self_attn.q_proj,1126.85229492,0.01000,1.168
439
+ 62,self_attn.o_proj,285.54168701,0.01000,1.958
440
+ 62,mlp.up_proj,373.82440186,0.01000,1.294
441
+ 62,mlp.gate_proj,336.40557861,0.01000,1.244
442
+ 62,mlp.down_proj,1390.11401367,0.01000,10.021
443
+ 63,self_attn.k_proj,75.29898071,0.01000,1.174
444
+ 63,self_attn.v_proj,103.37579346,0.01000,1.134
445
+ 63,self_attn.q_proj,490.16372681,0.01000,1.143
446
+ 63,self_attn.o_proj,210.85589600,0.01000,1.949
447
+ 63,mlp.up_proj,456.76293945,0.01000,1.288
448
+ 63,mlp.gate_proj,422.48721313,0.01000,1.237
449
+ 63,mlp.down_proj,4042.77978516,0.01000,10.259
quantize_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bits": 4,
3
+ "group_size": 128,
4
+ "desc_act": true,
5
+ "sym": true,
6
+ "lm_head": false,
7
+ "quant_method": "gptq",
8
+ "checkpoint_format": "gptq",
9
+ "pack_dtype": "int32",
10
+ "meta": {
11
+ "quantizer": [
12
+ "gptqmodel:2.2.0"
13
+ ],
14
+ "uri": "https://github.com/modelcloud/gptqmodel",
15
+ "damp_percent": 0.01,
16
+ "damp_auto_increment": 0.0025,
17
+ "static_groups": false,
18
+ "true_sequential": true,
19
+ "mse": 0.0
20
+ }
21
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": "<unk>"
25
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
tokenizer_config.json ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in message.content %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
231
+ "clean_up_tokenization_spaces": false,
232
+ "eos_token": "<|im_end|>",
233
+ "errors": "replace",
234
+ "extra_special_tokens": {},
235
+ "model_max_length": 131072,
236
+ "pad_token": "<unk>",
237
+ "split_special_tokens": false,
238
+ "tokenizer_class": "Qwen2TokenizerFast",
239
+ "unk_token": null,
240
+ "_commit_hash": null
241
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff