File size: 6,997 Bytes
190dd04 e6ecb05 190dd04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
---
tags:
- mistral
- lora
- peft
- transformers
- scientific-ml
- fine-tuned
- research-assistant
- hypothesis-generation
- scientific-writing
- scientific-reasoning
license: apache-2.0
library_name: peft
datasets:
- Allanatrix/Scientific_Research_Tokenized
pipeline_tag: text-generation
language:
- en
model-index:
- name: Nexa Mistral 7B Sci
results:
- task:
type: text-generation
name: Text Generation
dataset:
type: allen/nexa-scientific-tokens
name: Nexa Scientific Tokens
metrics:
- name: BLEU
type: bleu
value: 10
- name: Entropy Novelty
type: entropy
value: 6
- name: Internal Consistency
type: custom
value: 9
base_model:
- mistralai/Mistral-7B-v0.1
metrics:
- bleu
---
# Model Card for `nexa-mistral-7b-psi`
## Model Details
**Model Description**:
`nexa-mistral-7b-psi` is a fine-tuned variant of the open-weight `Mistral-7B-v0.1` model, optimized for scientific research generation tasks such as hypothesis generation, abstract writing, and methodology completion. Fine-tuning was performed using the PEFT (Parameter-Efficient Fine-Tuning) library with LoRA in 4-bit quantized mode using the `bitsandbytes` backend.
This model is part of the **Nexa Scientific Intelligence (Psi)** series, developed for scalable, automated scientific reasoning and domain-specific text generation.
---
**Developed by**: Allan (Independent Scientific Intelligence Architect)
**Funded by**: Self-funded
**Shared by**: Allan (https://huggingface.co/allan-wandeer)
**Model type**: Decoder-only transformer (causal language model)
**Language(s)**: English (scientific domain-specific vocabulary)
**License**: Apache 2.0 (inherits from base model)
**Fine-tuned from**: `mistralai/Mistral-7B-v0.1`
**Repository**: https://huggingface.co/allan-wandeer/nexa-mistral-7b-psi
**Demo**: Coming soon via Hugging Face Spaces or Lambda inference endpoint.
---
## Uses
### Direct Use
- Scientific hypothesis generation
- Abstract and method section synthesis
- Domain-specific research writing
- Semantic completion of structured research prompts
### Downstream Use
- Fine-tuning or distillation into smaller expert models
- Foundation for test-time reasoning agents
- Seed model for bootstrapping larger synthetic scientific corpora
### Out-of-Scope Use
- General conversation or chat use cases
- Non-English scientific domains
- Legal, financial, or clinical advice generation
---
## Bias, Risks, and Limitations
While the model performs well on structured scientific input, it inherits biases from its base model (`Mistral-7B`) and fine-tuning dataset. Results should be evaluated by domain experts before use in high-stakes settings. It may hallucinate plausible but incorrect facts, especially in low-data areas.
---
## Recommendations
Users should:
- Validate critical outputs against trusted scientific literature
- Avoid deploying in clinical or regulatory environments without further evaluation
- Consider additional domain fine-tuning for niche fields
---
## How to Get Started with the Model
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "allan-wandia/nexa-mistral-7b-sci"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")
prompt = "Generate a novel hypothesis in quantum materials research:"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=250)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
---
## Training Details
### Training Data
* **Size**: 100 million tokens sampled from a 500M+ token corpus
* **Source**: Curated scientific literature, abstracts, methodologies, and domain-labeled corpora (Bio, Physics, QST, Astro)
* **Labeling**: Token-level labels auto-generated via `Nexa DataVault` tokenizer infrastructure
### Preprocessing
* Tokenization with sequence truncation to 1024 tokens
* Labeled and batched using CPU; inference dispatched to GPU asynchronously
### Training Hyperparameters
- **Base model**: `mistralai/Mistral-7B-v0.1`
- **Sequence length**: `1024`
- **Batch size**: `1` (with gradient accumulation)
- **Gradient Accumulation Steps**: `64`
- **Effective Batch Size**: `64`
- **Learning rate**: `2e-5`
- **Epochs**: `2`
- **LoRA**: Enabled (PEFT)
- **Quantization**: 4-bit via `bitsandbytes`
- **Optimizer**: 8-bit AdamW
- **Framework**: Transformers + PEFT + Accelerate
---
## Evaluation
### Testing Data
* Synthetic scientific prompts across domains (Physics, Biology, Materials Science)
### Evaluation Factors
* Semantic coherence (BLEU)
* Hypothesis novelty (entropy score)
* Internal scientific consistency (domain-specific rubric)
### Metrics
| Metric | Score |
| ---------------------- | ----- |
| BLEU (coherence) | 10/10 |
| Entropy novelty | 6/10 |
| Scientific consistency | 9/10 |
| Model similarity coef | 87% |
### Results
Model performs robustly in hypothesis generation and scientific prose tasks. While base coherence is high, novelty depends on prompt diversity. Well-suited as a distiller or inference agent for synthetic scientific corpora generation.
---
## Environmental Impact
| Component | Value |
| -------------- | ----------------------------------- |
| Hardware Type | 2× NVIDIA T4 GPUs |
| Hours used | \~7.5 |
| Cloud Provider | Kaggle (Google Cloud) |
| Compute Region | US |
| Carbon Emitted | Estimate pending (likely < 1kg CO2) |
---
## Technical Specifications
### Model Architecture
* Transformer decoder (Mistral-7B architecture)
* LoRA adapters applied to attention and FFN layers
* Quantized with `bitsandbytes` to 4-bit for memory efficiency
### Compute Infrastructure
* CPU: Intel i5 8th Gen vPro (batch preprocessing)
* GPU: 2× NVIDIA T4 (CUDA 12.1)
### Software Stack
* PEFT 0.12.0
* Transformers 4.41.1
* Accelerate
* TRL
* Torch 2.x
---
## Citation
**BibTeX**:
```bibtex
@misc{nexa-mistral-7b-sci,
title = {Nexa Mistral 7B Sci},
author = {Allan Wandia},
year = {2025},
howpublished = {\url{https://huggingface.co/allan-Wandia/nexa-mistral-7b-sci}},
note = {Fine-tuned model for scientific generation tasks}
}
```
---
## Model Card Contact
For questions, contact Allan via Hugging Face or at:
📫 Email: \[[email protected]]
---
## Model Card Authors
* Allan Wandia (Independent ML Engineer and Systems Architect)
---
## Glossary
* **LoRA**: Low-Rank Adaptation
* **PEFT**: Parameter-Efficient Fine-Tuning
* **BLEU**: Bilingual Evaluation Understudy Score
* **Entropy Score**: Metric used to estimate novelty/variation
* **Safe Tensors**: Secure, fast format for model weights
## Links
**Github Repo and notebook**: https://github.com/DarkStarStrix/Nexa_Auto
--- |